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Abstract: The problem of adaptive fault-tolerant control for linear systems with time-varying
actuator faults including outage and loss of effectiveness is investigated in this paper. After
presenting a time-varying actuator fault model, a novel adaptive observer is designed so that
the fault parameter can be estimated fast. Here, the inevitable fault estimation error, as well as
the exogenous disturbance, is regarded as a part of the combined disturbance to be attenuated.
Then, based on the Lyapunov stability theory and the estimated fault parameters, some sufficient
conditions for designing the adaptive robust H∞ fault-tolerant controller are presented in the
framework of linear matrix inequalities (LMIs), which can guarantee that the closed-loop system
is asymptotically stable and robust for both time-varying fault and exogenous disturbance.
Finally, the effectiveness and applicability of the proposed method is illustrated by a linearized
longitudinal motion equation of the F-18 aircraft.

Keywords: Fault-tolerant control, time-varying actuator failure, fault estimator, fast
adaptation, robust control, linear matrix inequalities(LMIs).

1. INTRODUCTION

With the increasing requirements for high performance,
modern control systems have become more and more com-
plex. Component failures, such as actuator faults, are usu-
ally inevitable and often cause performance degradation
or even instable (Steinberg (2005)). Therefore, designing
fault-tolerant control (FTC) systems, which make the sys-
tems operate in safe conditions and have required perfor-
mance whenever components of the system are healthy or
faulted, has received extensive attention in the past few
decades, see Chen (2013), Mahmoud (2003), Ye and Yang
(2006), and Zolghadri and Henry (2013).

Generally, FTC can be achieved in two ways: passive
and active approaches. The former utilizes robust control
technique to design a feedback control law with fixed
gain to make the faulty system robust for possible system
faults (Liao (2002); Pujol (2007); Zhang and Wang (2007).
The passive fault-tolerant controller is usually easy to
be designed, but it may result in limited fault tolerant
capability.
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Compared with passive approach, the structure or the pa-
rameters of the controllers designed with active approach
are adjustable according to the online fault information.
There are many active approaches, such as Ding (2002),
Cieslak (2008) and Maki (2004). For active fault-tolerant
control schemes, it can be seen that fault estimation is
a key link. In Zhang and Jiang (2001), a Kalman filter is
used to estimate the efficiency of the actuators. Polycarpou
(2001) uses the learning method based on neural network
to estimate fault information. In Shen (2013), an adaptive
law is given to estimate fault parameters which are used
to design the robust controller online. Among the above-
mentioned methods, adaptive technique has been paid
much attention for its adapting ability to deal with the
parametric uncertainties and structural variations of the
systems. In Yang and Ye (2010), a novel reliable controller
is proposed, which is updated adaptively to reduce the
effect of actuator fault using the on-line fault estima-
tion. Motivated by this, Zuo, Ho, and Wang (2010) and
Chen (2013) extended the above idea to singular systems
and Markovian jumping systems. This works have further
shown that the reliable controller design method based on
on-line fault estimation is effective to attenuate actuator
degradation. However, the algorithms given by the above
works are suitable for the constant fault case and cannot
be simply extended to the time-varying fault case.

In practical application, the faults are usually time-varying
and sometimes even be fast time-varying. In Zhang and
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Jiang (2009), the active fault-tolerant control is studied
to deal with the time-varying actuator fault, but it is
assumed that the fault is piecewise constant. Shen (2012)
investigates the fault-tolerant control problem for Takagi-
Sugeno (T-S) fuzzy systems based on fault diagnosis
and estimation to reduce the effect of actuator time-
varying faults. It can been seen that there may exists
error between real fault parameter and the estimation
value in the estimation process, especially for the fast
time-varying fault. If the estimation error is ignored, the
effect of adaptive control may be discounted. Therefore, it
is necessary to consider the fault estimation error when
designing fault-tolerant controller, which motivates this
paper.

This paper investigates the problem of designing robust
adaptive fault-tolerant controller for linear systems with
time-varying actuator faults. Compared with some exist-
ing work, the main contributions of this paper are as
follows: Firstly, for time-varying actuator fault, a novel
adaptive fault estimation architecture is presented so that
the fault parameters can be estimated fast and smoothly.
Secondly, the estimation error is regarded as a part of the
combined disturbance to be attenuated when the fault-
tolerant controller is design. Thus, the closed-loop system
is robust for fault estimation error as well as the exogenous
disturbance. Thirdly, the adaptive fault estimator and the
robust controller can be designed independently.

The rest of this paper is organized as follows. Section 2
presents the system model with actuator fault. In Section
3, a novel adaptive estimator is designed to estimate
the fault parameters fast and smoothly. Then, based on
the estimated parameters, the design method of adaptive
robust controller is presented in Section 4. Finally, the
simplified F-18 aircraft model is used to illustrate the
effectiveness of the proposed design method.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following class of continuous-time linear
system: {

ẋ(t) = Ax(t) + Bu(t) + B1ω(t)
y(t) = Cx(t) + Du(t) + D1ω(t)
z(t) = Czx(t) + Dzu(t)

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is
the control input vector, y(t) ∈ Rp is the measured
output,z(t) ∈ Rq is the regulated output. ω(t) ∈ L2[0,∞)
is the exogenous disturbance, and it is assumed that ω(t)
is norm bounded, that is ||ω(t)|| ≤ ω̄. A, B, C, D, B1, D1,
Cz, Dz are known constant matrices.

In this work, the fault model of actuator degradation is
assumed as follows:

uF
i (t) = (1− ρi(t))ui(t), 0 ≤ ρ

i
≤ ρi(t) ≤ ρ̄i (2)

where ρi(t) is a time-varying fault parameter. uF
i (t) de-

notes the ith actuator has failed. ρ
i

and ρ̄i are the lower
and upper bounds of ρi(t), respectively. At the same time,
it is assumed that there exist the known positive constants
¯̄ρi such that |ρ̇i(t)| ≤ ¯̄ρi.

Set ρ(t) = (ρ1(t), ρ2(t), · · · , ρm(t))T , the uniform actuator
fault model is defined as follows:

uF (t) = (I − Λ(ρ(t)))u(t) (3)

The dynamics(1) with actuator faults can be rewritten as{
ẋ(t) = Ax(t) + B(I − Λ(ρ(t)))u(t) + B1ω(t)
y(t) = Cx(t) + D(I − Λ(ρ(t)))u(t) + D1ω(t)
z(t) = Czx(t) + Dz(I − Λ(ρ(t)))u(t)

(4)

The objective of this paper is to stabilize system (1) with a
robust H∞ controller and meet the required performance
despite actuator fault and external disturbance.

3. FAULT PARAMETER ESTIMATION

In this section, a novel adaptive fault estimation algorithm
is proposed to estimate the actuator fault.

The considered observer is as follows:
˙̂x(t) = Ax̂(t) + B(I − Λ(ρ̂(t)))u(t) + L(y(t)− ŷ(t))
ŷ(t) = Cx̂(t) + D(I − Λ(ρ̂(t)))u(t) (5)

where ρ̂(t) is the estimated value of ρ(t) at time t, which
means ρ̂i(t) is the estimation of ρi(t).

Let e(t) = x(t) − x̂(t), the fault estimation error ρ̃(t) =
ρ(t) − ρ̂(t), ρ̃f (t) = ρ(t) − ρ̂f (t), then the error dynamics
can be obtained as

ė(t) = (A− LC)e(t)− (B − LD)Λ(u(t))ρ̃(t)
+ (B1 − LD1)ω(t) (6)

Theorem 1. If there exists a symmetric positive-definite
matrix X, positive-definite diagonal matrix Υ,Υf , real
matrices L and W > 0 with appropriate dimensions, and
positive scalars τ and ε, such that the following conditions
hold:

X(A− LC) + (A− LC)T X
+εX(B1 − LD1)(B1 − LD1)T X < −W

(7)

and ρ̂i is to be generated through the following adaptive
law:

˙̂ρi(t) = Proj{Fi}

=





0,
ρ̂i(t) ≥ ρ̄i, and Fi > 0
or ρ̂i(t) ≤ ρ

i
and Fi < 0

Fi, otherwise, i = 1, 2, · · · ,m

(8)

˙̂ρfi(t) = Proj{Ffi}

=





0,
ρ̂fi(t) ≥ ρ̄i, and Ffi > 0
or ρ̂fi(t) ≤ ρ

i
and Ffi < 0

Ffi, otherwise, i = 1, 2, · · · ,m

(9)

where F = −Υ[Λ(u(t))(B−LD)T Xe(t)+ τ(ρ̂(t)− ρ̂f (t))],
Ff = Υf (ρ̂(t) − ρ̂f (t)), and Fi,Ffi are the ith row of
F and Ff , then the state of system (6) is semiglobally
uniformly ultimately bounded, which means ρ̃(t), ρ̃f (t)
and the state are converging to a small neighborhood of
zero asymptotically.

Proof. Choose the following function
V (t) = eT (t)Xe(t) + ρ̃T (t)Υ−1ρ̃(t) + τ ρ̃T

f (t)Υ−1
f ρ̃f (t)

(10)

Differentiating V and substitute (7)- (9) into (11) yields

V̇ ≤ −eT (t)We(t) + ε−1ω(t)T ω(t)

+ 2
m∑

i=1

riρ̃i(t)ρ̇i(t) + 2τ
m∑

i=1

rfiρ̃fi(t)ρ̇i(t)
(11)

where ri, and rfi are the ith main diagonal elements of
Υ−1 and Υ−1

f , respectively.
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Since 0 ≤ ρ
i
≤ ρ̂i(t) ≤ ρ̄i ≤ 1 and 0 ≤ ρ

i
≤ ρ̂fi(t) ≤ ρ̄i ≤ 1

which can be guaranteed by (8) and (9), and |ρ̇i(t)| ≤ ¯̄ρi,
then we have

ρ̃i(t)ρ̇i(t) ≤ −ρ̃2
i (t) + (ρ̄i − ρ

i
)(ρ̄i − ρ

i
+ ¯̄ρi) (12)

ρ̃fi(t)ρ̇i(t) ≤ −ρ̃2
fi(t) + (ρ̄i − ρ

i
)(ρ̄i − ρ

i
+ ¯̄ρi) (13)

With ||ω(t)|| ≤ ω̄, the following inequality can be obtained.

V̇ ≤ −λ0V (t) + µ (14)

where λ0 = min{λmin(W )
λmax(X) , 2}, µ = ε−1ω̄2 + 2

m∑
i=1

(ri +

τrfi)(ρ̄i − ρ
i
)(ρ̄i − ρ

i
+ ¯̄ρi).

Then, it can be obtained that d
dt (V (t)eλ0t) ≤ eλ0tµ,

furthermore

0 ≤ V (t) ≤ µ

λ0
+ V (0)e−λ0t − µ

λ0
e−λ0t ≤ µ

λ0
+ V (0)

(15)

Let α = µ
λ0

+ V (0), then there exists |e(t)| ≤
√

α
λmin(X) ,

|ρ̃i| ≤
√

2ψα, |ρ̃fi| ≤
√

2ψα. The proof is completed.

τ(ρ̂(t)− ρ̂f (t)) is added into adaptive law (8).

4. ROBUST H∞ FAULT-TOLERANT CONTROLLER
DESIGN

Next, we will use the fault estimation information in
Section 3 to construct the following controller:

u(t) = (K0 +
m∑

i=1

ρ̂i(t)Kai)x(t) (16)

Let Īi denote a square matrix whose (i, i) element is 1 and
others are 0. Then, choose

Λ(ρ̃(t))(K0 + Ka(ρ̂(t)))x(t) = (Ī1 Ī2 · · · Īm)ω̄(t)

= (Ī1 Ī2 · · · Īm)




(K0 + Ka(ρ̂(t)))x(t)ρ̃1(t)
(K0 + Ka(ρ̂(t)))x(t)ρ̃2(t)

...
(K0 + Ka(ρ̂(t)))x(t)ρ̃m(t)




(17)

Hence, by substituting the estimation parameter ρ̂(t) and
control law (16) into system (4), the system can be
rewritten as {

ẋ(t) = Aρ̂x(t) + BF ωF (t)
z(t) = Cρ̂x(t) + DF ωF (t) (18)

where
Aρ̂ = A + B(I − Λ(ρ̂(t)))K(ρ̂(t)), BF = [B̄ B1],
Cρ̂ = Cz + Dz(I − Λ(ρ̂(t)))K(ρ̂(t)), DF = [D̄z 0],
ωF (t) = [ω̄T (t) ωT (t)]T , B̄ = [BĪ1 BĪ2 · · ·BĪm],
D̄z = [Dz Ī1 Dz Ī2 · · ·Dz Īm].

Theorem 2. If there exist matrices Q > 0, Y0,Yai, i =
1 · · ·m, constants γ1 > 0,γ2 > 0 and a symmetric matrix
Θ with [

Θ11 Θ12

Θ21 Θ22

]
(19)

and Θ11,Θ22 ∈ Rml×ml such that the following inequali-
ties hold:

Θii
22 ≤ 0, i = 1, · · · ,m (20)

with Θii
22 ∈ Rl×l is the (i, i) block of Θ22, and for δ ∈ {δ =

(δ1 · · · δm)T : δi ∈ {ρi
, ρ̄i}}

Θ11 + Θ12∆(δ) + (Θ12∆(δ))T + ∆(δ)Θ22∆(δ) ≥ 0[
U E
ET F

]
+ GT ΘG < 0

(21)

where
∆(δ) = diag[δ1Il×l, · · · , δmIl×l], l = Dim(U)

U =




U11 B̄ QCT
z + Y T

0 DT
z

∗ −γ2
2I D̄T

z
∗ ∗ −I




U11 = AQ + QAT + BY0 + Y T
0 BT +

1
γ2
1

B1B
T
1

Ei =



−BiY0 + BYai 0 −Y T

0 DT
zi + Y T

aiD
T
z

0 0 0
0 0 0


 ,

Fij =



−BiYaj − [BjYai]T 0 −Y T

ajD
T
zi

0 0 0
−DzjYai 0 0




Y0 = K0Q, Yai = KaiQ,Bi = B ∗ Īi, Dzi = Dz ∗ Īi

E = [E1, E2, · · · , Em],

F =




F11 F12 · · · F1m

F21 F12 · · · F2m

...
... · · · ...

Fm1 Fm2 · · · Fmm


 , G =







Il×l

...
Il×l


 0

0 Iml×ml




then the controller gain is given by K(ρ̂(t)) = Y0Q
−1 +

m∑
i=1

ρ̂i(t)YaiQ
−1, and ρ̂i(t) is determined according to the

adaptive law (8), which ensure that the system (4) is
asymptotically stable with ωF (t) = 0 and satisfies required
H∞ performance.

Proof. Choose a Lyapunov function as V (t) = xT (t)Px(t),
then

V̇ (t) + zT (t)z(t)− γ2
1ωT (t)ω(t)− γ2

2 ω̄T (t)ω̄(t)

≤
[

x(t)
ω̄(t)

]T

XF

[
x(t)
ω̄(t)

]
(22)

where

XF =
[

XF11 ∗
B̄T P + D̄T

z Cρ̂ D̄T
z D̄z − γ2

2I

]

XF11 = PAρ̂ +AT
ρ̂ P +

1
γ2
1

PB1B
T
1 P + CT

ρ̂ Cρ̂

(23)

Choose Q = P−1, pre- and post-multiplying XF with[
Q 0
0 I

]
(24)

then,using Schur-complement formula, XF is rewritten as


Aρ̂Q + QAT

ρ̂ +
1
γ2
1

B1B
T
1 B̄ QCT

ρ̂

∗ −γ2
2I D̄T

p

∗ ∗ −I




= U +
m∑

i=1

ρ̂iEi + (
m∑

i=1

ρ̂iEi)T +
m∑

i=1

m∑

j=1

ρ̂iρ̂jFij

(25)

Based on Lemma 1 in Yang and Ye (2010), XF < 0 can be
obtained when the conditions required in Theorem 2 are
met, which means

V̇ (t) + zT (t)z(t)− γ2
1ωT (t)ω(t)− γ2

2 ω̄T (t)ω̄(t) < 0 (26)
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Fig. 1. Exogenous disturbance

When ω̄(t) = 0 and ω(t) = 0, we have V̇ (t) < 0. Hence,
the closed-loop system (4) is asymptotically stable.

Using the initial state x(0) = 0 and V (∞) > 0, integrating
(26) on [0,∞) leads to

||z(t)||2 ≤ γ2
1 ||ω(t)||2 + γ2

2 ||ω̄(t)||2 (27)

Therefore, the required performance holds for system (4).
The proof is completed.

5. SIMULATION RESULTS

Consider the following linearized longitudinal motion
equation of the F-18 in Yang and Ye (2010)[

α̇(t)
q̇(t)

]
=

[−1.175 0.9871
−8.458 −0.8776

] [
α(t)
q(t)

]

+
[−0.194 −0.03593
−19.29 −3.803

] [
δE(t)

δPTV (t)

]
+

[
1
4

]
ω(t)

y(t) =
[

α(t)
q(t)

]
+

[
0.5 0
0 2

] [
δE(t)

δPTV (t)

]
+

[
1
0

]
ω(t)

Then, output z(t) is chosen as

z(t) =

[−1 0
2 1
0 2

] [
α(t)
q(t)

]
+

[−0.5 0.3
−1 0
0 1

] [
δE(t)

δPTV (t)

]

wd is white noise whose noise power and sample time are
0.1 and 0.01s. The disturbance is given as follows (See Fig.
1):

ω(t) =
{

0, 0 ≤ t ≤ 2
0.5 + 0.05wd, 2 < t ≤ 14

The actuator fault is supposed as
uF (t) = (I − Λ(ρ(t)))u(t)

where

ρ1(t) =





0, 0 ≤ t ≤ 2
0.4, 2 < t ≤ 6

0.2sin(4t− 24) + 0.4, 6 < t ≤ 12
0.4 t > 12

ρ2(t) =
{

0, 0 ≤ t ≤ 2
0.3, 2 < t

Choose Υ = [0.5 0; 0 2], τ = 200,Υf = [10 0; 0 40]. Using
standard adaptive law and the adaptive law presented in
Theorem 1 respectively, the fault estimations of actuator

0 2 4 6 8 10 12 14 16 18
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0.4

0.6

0.8

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

Fig. 2. Faults (dashed) and their estimation (solid) with
the standard adaptive law
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Fig. 3. Faults (dashed) and their estimation (solid) with
adaptive law (8)

are shown in Fig.2 and Fig.3. From the Fig.3, it can
be seen that the time-varying fault can be estimated fast
with small error. Compared with Fig.2, it is easy to find
that the adaptive law presented in this paper can generate
better estimation of time-varying fault than standard
adaptive law, which illustrates the modification term in
F works well to avoid the high-frequency oscillations in
the adaptive fault update law.

Then, the regulated output z(t) of the closed-loop system
using different adaptive estimations are presented in Fig.4
and Fig.5. The actuator fault occurs at t = 2, then the
adaptive controllers are used to keep the performance and
stability of the fault system. Fig.4 and Fig.5 show that
different estimations lead to different performance of the
closed-loop system. The controller proposed in Theorem
2 makes the fault system have better performance. From
Fig. 5, it can be seen that the proposed adaptive controller
can reduce the effect of the fault and ensure the stability
of the closed-loop system.

Note that, the schemes proposed in Chen (2013); Yang and
Ye (2010); Zhang and Jiang (2009) are no longer effective
for the above time-varying actuator fault, because the
actuator faults are considered as constant and piecewise
constant, respectively.
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Fig. 4. The output z(t) of the closed-loop system with
standard adaptive law
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Fig. 5. The output z(t) of the closed-loop system with
adaptive law (9)

6. CONCLUSION

In this paper, the problem of adaptive fault-tolerant con-
trol for linear systems with time-varying actuator faults is
considered. In order to estimated the fault fast, a novel
estimator is designed and the adaptive law has a new
architecture. Then, in the system dynamic equation, the
fault estimation error is regarded as a part of the combined
disturbance, and the adaptive fault-tolerant controller is
designed so that the closed-loop system is robust for fault
estimation error as well as the exogenous disturbance.
Simulation results show that the proposed method can
enhance the performance of fault estimation and accom-
modation obviously.
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