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Abstract: Repetitive processes are a class of two-dimensional systems that arise in the modeling
of physical examples and also the control systems theory developed for them has, in the case
of linear dynamics, been applied to design iterative learning control laws with experimental
verification. This paper gives new results on the stability of nonlinear differential repetitive
processes for applications where a linearized model is either very limited or not applicable. The
stability results are then applied to the design of iterative learning control laws in the presence
of uncertain parameters and to the same problem when random failures occur that are modeled
by a homogeneous Markov chain with a finite set of states. In both cases the computations
required are expressed as a finite set of linear matrix inequalities.
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1. INTRODUCTION

Many industrial processes make a series of sweeps, termed
passes, through a set of dynamics defined over a fixed
finite duration known as the pass length (Rogers et al.,
2007). Once each pass is complete the process resets to
the starting location ready for the start of the next pass.
The output on each pass is termed the pass profile and
acts as a forcing function on, and hence contributes to,
the dynamics of the next pass profile.

An industrial example described in (Rogers et al., 2007),
with references to the original modeling work, is long-
wall coal cutting where the pass profile is the height
of the stone/coal interface above some datum line and
the objective is to extract the maximum amount of coal
without penetrating the stone/coal boundary. The cutting
machine rests on the most recently produced pass profile
during the production of the next pass profile and therefore
this is an industrial repetitive process. The unique control
problem for these processes is oscillations in the pass
profiles generated that increase in amplitude from pass-
to-pass.
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If these oscillations occur in a particular mining operation
then productive work must halt in order to enable their
manual removal. The alternative is to use control action to
prevent their occurrence but the stabilization problem for
these processes cannot be solved using standard (or 1D)
systems theory/algorithms. In particular, to apply stan-
dard control laws it is necessary to ignore their inherent
2D systems structure, i.e., information propagation occurs
from pass-to-pass and along a given pass respectively and
the initial conditions are reset before the start of each new
pass.

To remove these deficiencies, a rigorous stability theory
has been developed (Rogers et al., 2007) based on an
abstract model of the dynamics in a Banach space setting
that includes a very large number of processes with linear
dynamics and a constant pass length as special cases. The
existence of this theory has also led to the emergence of
problem areas where using a repetitive process setting
for analysis has advantages. An example is classes of
Iterative Learning Control (ILC) laws where experimental
verification has been reported (H ladowski et al., 2010).
Another area is the analysis of OL-Nash games with a gas
pipeline application (Azevedo-Perdicoulis and Jank, 2012).

The literature on the control of repetitive processes and
other classes of 2D systems, is very largely based on a lin-
ear model of the dynamics. Comparatively much less work
has been reported on the stability of nonlinear multidi-
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mensional systems, see, e.g., Pakshin et al. (2011b); Kurek
(2012); Yeganefar et al. (2013) and references therein.
Further support for the development of a stability and
stabilization theory for nonlinear repetitive processes is
supplied by examples such as ILC applied to bead mor-
phology in laser metal deposition processes (Sammons
et al., 2013).

This paper begins by developing new results on the sta-
bility of differential nonlinear repetitive processes using
vector Lyapunov functions. These are then used to de-
velop new stability results for processes where failures
in operation can occur, which are modeled as random
switching. In particular, the failures are modeled by a
state-space model with jumps in the parameter values
and/or structure governed by a Markov chain with a finite
set of states, often termed Markovian jump systems or
systems with random structure (Mariton, 1990; Kats and
Martynyk, 2002). Finally, application to ILC design under
parameter uncertainty and information, or sensor, failures
is considered. All of the new results in this paper are Linear
Matrix Inequality (LMI) based.

2. EXPONENTIAL STABILITY OF NONLINEAR
DIFFERENTIAL REPETITIVE PROCESSES

This paper considers differential nonlinear repetitive pro-
cesses with pass length T < ∞ described over 0 ≤ t ≤ T
by the state-space model

ẋk+1(t) = f1(xk+1(t), yk(t), t),

yk+1(t) = f2(xk+1(t), yk(t), t), (1)

where on pass k xk(t) is the n × 1 state vector, yk(t) is
the m× 1 pass profile vector and f1 and f2 are nonlinear
functions such that f1(0, 0, t) = 0 and f2(0, 0, t) = 0.
The boundary conditions, i.e, the pass state initial vector
sequence and the initial pass profile are assumed to be
known and of the form

xk+1(0) = dk+1, k ≥ 0,
y0(t) = f(t), 0 ≤ t ≤ T , y0(t) = 0, t > T ,

(2)

where the entries in the n × 1 vector dk+1 are known
constants, f(t) is an m×1 vector whose entries are known
functions of t, 0 ≤ t ≤ T . Moreover, if |q| denotes the norm
of a vector q, it is assumed that f(t) and dk+1 satisfy

|f(t)|2 ≤Mf , |dk+1|2 ≤ κdzkd , k = 0, 1, ... (3)

where Mf > 0 is a finite scalar and 0 < zd < 1 determines
the rate of convergence of the pass state initial vector
sequence.

Note 1. All references to the boundary conditions from
this point onwards will assume that they satisfy (3).

Note 2. The stability theory for repetitive processes is
defined in terms of the pass profile and the model and
the results of this and the next section extend directly to
the case when a current pass input is present.

Note 3. For ease of notation, the pass subscript k is
omitted where the meaning is obvious.

Define norm of the pass profile vector as

||yk|| =

√∫ T

0

|yk(t)|2dt. (4)

Definition 1. A differential nonlinear repetitive process
described by (1) and (2) is said to be pass profile expo-
nentially stable if

||yk|| ≤ κzk, 0 < z < 1, (5)

where κ depends on the pass length T and z, in general,
depends on zd.

The links between this definition of stability for nonlinear
differential repetitive processes and that for their linear
counterparts (Rogers et al., 2007) is given in Section 4.

To obtain conditions for pass profile exponential stability
of a process described by (1) and (2), a vector Lyapunov
function approach is used with candidate function

V (x, y) =

[
V1(xk+1(t))
V2(yk(t))

]
, (6)

where V1(x) > 0, x 6= 0, V2(y) > 0, y 6= 0, V1(0) =
0, V2(0) = 0 and the divergence operator of this function
along the trajectories of (1) is defined as

divV (xk+1(t), yk(t)) =
dV1(xk+1(t))

dt
+ ∆kV2(yk(t)), (7)

where ∆kV2(yk(t)) = V2(yk+1(t))− V2(yk(t)).

Theorem 2. Consider a differential nonlinear repetitive
process described by (1) and (2). Then pass profile ex-
ponential stability holds if there exist positive constants
c1, c2, c3 with c2 > c3 such that the function V of (6)
and its divergence along the trajectories of (1) satisfy

c1|x|2 ≤ V1(x) ≤ c2|x|2, (8)

c1|y|2 ≤ V2(y) ≤ c2|y|2, (9)

divV (x, y) ≤ −c3(|x|2 + |y|2). (10)

Proof. It follows from (8), (9) and (10) that

dV1(xk+1(t))

dt
+ λV1(xk+1(t))

+V2(yk+1(t))− ζV2(yk(t)) ≤ 0, (11)

where λ = c3
c2
, ζ = 1− c3

c2
∈ (0, 1). Solving inequality (11)

with respect to V1(xk+1(t)) gives

V1(xk+1(t)) ≤ V1(xk+1(0))e−λt

−
∫ t

0

e−λ(t−s)[V2(yk+1(s))− ζV2(yk(s))]ds. (12)

Introducing

Wk+1(t) = V1(xk+1(0))e−λt − V1(xk+1(t)),

Hk(t) =

∫ t

0

e−λ(t−s)V2(yk(s))ds.

enables (12) to be rewritten as

Hk+1(t) ≤ ζHk(t) +Wk+1(t). (13)

Solving the inequality (13) gives

Hn(t) ≤ ζnH0(t) +

N∑
k=1

Wk(t)ζn−k (14)

or
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n∑
k=1

V1(xk(t))ζn−k +

∫ t

0

e−λ(t−s)V2(yn(s))ds

≤ e−λt
n∑
k=1

V1(xk(0))ζn−k

+ζn
∫ t

0

e−λ(t−s)V2(y0(s))ds. (15)

Also for the given boundary conditions

e−λt
n∑
k=1

V1(xk(0))ζn−k ≤ e−λt
c2κd
1− ζ̄

ζ̄n,

ζn
∫ t

0

e−λ(t−s)V2(y0(s)) ≤ ζnc2(1− e−λt)Mf ,

where ζ̄ =
√
ζ∗, ζ∗ = max{ζ, zd}, and from (15)

||yn||2 ≤ ζ̃n
c2
c1

(
κd

1− ζ̄
+ (eλT − 1)Mf

)
,

where ζ̃ = max{ζ, ζ̄}. It follows immediately from the last
inequality that (5) holds and the proof is complete.

3. STABILITY OF NONLINEAR DIFFERENTIAL
REPETITIVE PROCESS WITH FAILURES

This section extends the results of the previous section to
differential repetitive processes in the presence of failures.
The failures are modeled by a state-space model with
jumps in the parameter values and/or structure governed
by a Markov chain with a finite set of states, often
termed Markovian jump systems or systems with random
structure (Mariton, 1990; Kats and Martynyk, 2002).

Results on the development of control theory for Marko-
vian jump systems, which address issues such as stability,
optimal and robust control problems, in the 1D case can
be found in, e.g., (Costa et al., 2004) and the references
therein. In (Gao et al., 2004; Wu et al., 2008) the results
obtained for 1D Markovian jump systems are extended to
investigate the problems of state feedback stabilization and
H∞ control of 2D discrete-time Markovian jump systems
described by a Roesser model.

In (Pakshin et al., 2011a) a class of discrete linear repet-
itive processes with uncertain parameters and Markovian
jumps was considered. A parametric description of pass
profile based stabilizing control laws was developed using
linear quadratic regular theory, which led to the develop-
ment of LMI-based algorithms for the computation of the
control law matrices. In (Pakshin et al., 2012) the stability
theory for discrete linear repetitive processes developed
in (Pakshin et al., 2011a) was used as the basis for the
design of ILC laws for discrete linear systems with possible
failures.

All of these previous results assume a discrete state-space
model description of the dynamics, where for nonlinear
dynamics discretization is somewhat more involved than
in the linear case. Hence there is the need to consider
differential nonlinear dynamics, which is the subject of this
section, starting from the following state-space model

ẋk+1(t) = ϕ1(xk+1(t), yk(t), r(t)),

yk+1(t) = ϕ2(xk+1(t), yk(t), r(t)), (16)

where r(t) (t ≥ 0) is a Markov chain with discrete state-
space N = {1, . . . , ν} and transition probabilities are given
by

P(r(t+ τ) = j | r(t) = i)

=

{
πijτ + o(τ), if j 6= i,

1 + πiiτ + o(τ), if j = i,
(17)

i, j = 1, . . . , ν, πij > 0, πii = −
ν∑
i 6=j

πij and ϕ1 and ϕ2 are

nonlinear functions such that for all r ∈ N ϕ1(0, 0, r) =
0, ϕ2(0, 0, r) = 0. The rest of the notation is the same as
in (1) and the boundary conditions are given by (2).

Take the norm of pass profile vector as

||yk||E =

√
E[

∫ T

0

|yk(t)|2]dt. (18)

Then pass profile exponentially mean square (PPEM) sta-
bility of a differential repetitive process described by (16)
and (2) is defined as follows.

Definition 3. A differential nonlinear repetitive process
described by (16), (17) and (2) is said to be PPEM stable
if there exist scalars κ > 0 and 0 < z < 1 such that

||yk||E ≤ κzk. (19)

To obtain conditions for PPEM stability, consider the
candidate Lyapunov vector function

V (xk+1(t), yk(t), r(t)) =

[
V1(xk+1(t), r(t))
V2(yk(t), r(t))

]
, (20)

where V1(x, r) > 0, x 6= 0, V2(y, r) > 0, y 6= 0, V1(0, r) =
0, V2(0, r) = 0

Introduce the operators D1 and D2 defined along the
trajectories of system (16):

D1V (ξ, η, i) = lim
∆t→0

1

∆t
E[V1(xk+1(t+ ∆t), r(t+ ∆t)

−V1(xk+1(t), r(t)) | xk+1(t) = ξ, yk(t) = η, r(t) = i],

D2V (ξ, η, i) = E[V2(yk+1(t), r(t))− V2(ηk, i) | xk+1(t)

= ξ, yk(t) = η, r(t) = i].

Also let V1(ξ, i) be differentiable in ξ for each i ∈ N and
hence, using (16) and (17), it follows immediately that

D1V (ξ, η, i) = ϕT1 (ξ, η, i)
∂V1(ξ, i)

∂ξ
+

ν∑
j=1

πi,jV1(ξ, j). (21)

Define the operator D as stochastic counterpart of diver-
gence operator of the previous section:

DV (ξ, η, i) = D1V (ξ, η, i) +D2V (ξ, η, i)) (22)

and the following theorem can be established.

Theorem 4. Consider a differential nonlinear repetitive
process described by (16), (17) and (2) and suppose that
there exist positive constants c1, c2, c3 with c2 > c3 such
that the function V along the trajectories of (16) and (17)
satisfies the inequalities

c1|ξ|2 ≤ V1(ξ, i) ≤ c2|ξ|2, (23)

c1|η|2 ≤ V2(η, i) ≤ c2|ξ|2, (24)

DV (ξ, η, i) ≤ −c3(|ξ|2 + |η|2), (25)

i ∈ N. Then PPEM stability holds.
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Proof. By the definition of the operator D1

E[V1(xk+1(t), r(t))− V1(xk+1(0), r(0))]

=

∫ t

0

E[D1V (xk+1(τ), yk(τ), r(τ))]dτ. (26)

Also rewrite (26) in differential form as

d

dt
E[V1(xk+1(t), r(t))] = E[D1V (xk+1(t), yk(t), r(t))]

and it follows from (25), given (23) and (24), that

d

dt
E[V1(xk+1(t), r(t))] + λE[V1(xk+1(t), r(t))]

+E[V2(yk+1(t), r(t))]− ζE[V2(yk(t), r(t))] ≤ 0, (27)

where λ = c3
c2
, ζ = 1 − c3

c2
∈ (0, 1). Solving the inequal-

ity (27) with respect to E[V1(xk+1(t), r(t))] gives

E[V1(xk+1(t), r(t))] ≤ E[V1(xk+1(0), r(0))e−λt]

−
∫ t

0

e−λ(t−s)E[V2(yk+1(s), r(s))]

−ζEV2(yk(s), r(s))]ds. (28)

Introducing the notation

Wk+1(t) = E[V1(xk+1(0), r(0))e−λt]− E[V1(xk+1(t), r(t))],

Hk(t) =

∫ t

0

e−λ(t−s)E[V2(yk(s), r(s))]ds.

enables (28) to be rewritten in the form (13) and the rest
of the proof is the same as for the theorem of the previous
section with obvious changes of notation.

4. ITERATIVE LEARNING CONTROL OF
UNCERTAIN LINEAR CONTINUOUS-TIME

SYSTEMS

In this section the stability results of the previous two
sections are applied to ILC law design for linear systems
described by the state-space model

ẋ(t) =A(δ)x(t) +B(δ)u(t),

y(t) =Cx(t), (29)

where x ∈ Rn is the state vector, u ∈ Rm is the input
vector, y ∈ Rp is the output vector and δ ∈ RN is
the vector of uncertain time-invariant parameters. The
uncertainty associated with the dynamics is assumed to
be of the affine parallelotopic type with variations around
a central nominal model defined by the matrices (A,B)
along the axes (Aj , Bj) of the form

A(δ) = A+

N∑
j=1

δjAj , B(δ) = B +

N∑
j=1

δjBj . (30)

where N is the dimension of the uncertainty vector. Each
δj in (29) and (30) is assumed to be bounded in an interval

δj ≤ δj ≤ δj . (31)

The set of uncertainties is denoted by ∆ and the finite set
of extremal values, or vertices, is

∆v =
{
δ = ( δ1 . . . δN ) : δj ∈ {δj , δj}

}
. (32)

To formulate the ILC problem, let the integer k denote the
pass, termed trial in most of the ILC literature, number

and uk(t), xk(t) and yk(t) the input, state and output
vectors, respectively, at instant 0 ≤ t ≤ T < ∞, where
T denotes the pass length. Then the dynamics of the
uncontrolled system are described by

ẋk(t) =A(δ)xk(t) +B(δ)uk(t),

yk(t) =Cxk(t). (33)

with assumed boundary conditions

y0(t) = 0, 0 ≤ t ≤ T, xk(0) = x0, k = 0, 1, ... (34)

Also let yref (t) denote the supplied reference vector over
0 ≤ t ≤ T, where each entry in yref (t) is assumed to be
differentiable. Then ek(t) = yref (t) − yk(t) is the error
on pass k and the objective of constructing a sequence
of input functions such that the performance achieved
is gradually improving with each successive pass can be
expressed as a convergence condition on the input and
error, i.e.,

lim
k→∞

|ek(t)| = 0, lim
k→∞

|uk(t)− u∞(t)| = 0. (35)

A commonly used ILC law is to select the input on the
current pass as that used on the previous pass plus a
correction. In this work the ILC law on pass k+1 is of the
form

uk+1(t) = uk(t) + ∆uk+1(t), (36)

where ∆uk+1(t) is the correction term to be designed.
The novel feature of ILC is all information generated on a
completed pass is available for use in the computation of
∆uk+1(t). This allows the use of temporal information that
is non-causal in the standard sense provided it is generated
and stored from a previous pass.

To write the ILC dynamics as a differential linear repet-
itive process, introduce, for analysis purposes only, the
vector

υ̇k+1(t) = xk+1(t)− xk(t), (37)

and also

ek+1(t)− ek(t) = −CA(δ)

∫ t

0

(xk+1(τ)− xk(τ))dτ

−CB(δ)

∫ t

0

(uk+1(τ)− uk(τ))dτ. (38)

Then the ILC dynamics can be written as a differential
linear repetitive process with uncertainty of the form

υ̇k+1(t) =A(δ)υk+1(t) +B(δ)

∫ t

0

∆uk+1(τ)dτ, (39)

ek+1(t) =−CA(δ)υk+1(t) + ek(t)

−CB(δ)

∫ t

0

∆uk+1(τ)dτ.

Consider the case when

∆uk+1(t) = F1υ̇k+1(t) + F2ėk(t). (40)

Then if (40) guarantees pass profile exponential stability
of (39), it follows from Theorem 2 that the ILC law is
convergent in the sense of (35). Also the result of applying
(40) to (39) can be written as
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υ̇k+1 = [A(δ) +B(δ)F1]υk+1(t)

+B(δ)F2ek(t), (41)

ek+1(t) = [−CA(δ)− CB(δ)F1]υk+1(t)

+ [I − CB(δ)F2]ek.

and to construct stabilizing control law matrices F1 and
F2 Theorem 2 is used.

Chose the candidate vector Lyapunov function as (6) with
V1(υk+1(t)) = υTk+1(t)P1υk+1(t), V2(ek(t)) = eTk (t)P2ek(t),
where P1 and P2 are compatibly dimensioned symmetric
positive definite matrices, denoted by > 0 from this point
onwards. Moreover, the divergence of the function (6) must
satisfy (10). Calculating the divergence of this function
along the trajectories of (41) gives the following sufficient
conditions for pass profile exponential stability

P1 > 0, P2 > 0, ATc (δ)P 1,0 + P 1,0Ac(δ)

+ATc (δ)P 0,1Ac(δ)− P 0,1 < 0, δ ∈∆, (42)

where P 1,0 = diag{P1 0, P 0,1} = diag{0 P2}, Ac(δ)

=

[
A(δ) +B(δ)F1 B(δ)F2

−CA(δ)− CB(δ)F1 I − CB(δ)F2

]
.

If the value of δ is fixed, these conditions are the same those
for the stability along the pass property of differential
linear repetitive processes (Rogers et al., 2007). Also (42)
can be reduced to finite set of LMI’s by first using the
Schur’s complement formula to rewrite (42) in the form[
ATc1(δ)P + PAc1(δ)− P 0,1 ATc2(δ)P

PAc2(δ) −P

]
< 0, P > 0, δ ∈∆,

where P = diag{P1 P2},

Ac2(δ) =

[
0 0

−CA(δ)− CB(δ)F1 I − CB(δ)F2

]
,

Ac1(δ) =

[
A(δ) +B(δ)F1 B(δ)F2

0 0

]
.

DefineX1 = P−1
1 , X2 = P−1

2 , Y1 = F1X1 and Y2 = F2X2.
Then routine calculations give the following LMI with
respect to these new variables

D11(δ) D12(δ) 0 D14(δ)
D12(δ)T −X2 0 D24(δ)

0 0 −X1 0
D14(δ)T D24(δ)T 0 −X2

 < 0. (43)

X1 > 0, X2 > 0, δ ∈∆,

where D11(δ) = A(δ)X1 +B(δ)Y1 + (A(δ)X1 +B(δ)Y1)T ,
D12(δ) = B(δ)Y2, D14(δ) = [−CA(δ)X1 − CB(δ)Y1]T ,
D24(δ) = (X2 − CB(δ)Y2)T .

Theorem 5. Suppose that an ILC law of the form (36)
and (40) is applied to a system described by (33) and (34).
Suppose also that the LMI’s of (43) with δ ∈ ∆ are
feasible. Then the resulting system with F1 = Y1X

−1
1

and F2 = Y2X
−1
2 satisfies the ILC convergence conditions

of (35).

Introduce
ϑk+1(t) = xk+1(t)− xk(t) (44)

and suppose that ∆uk+1(t) in the ILC law (36) is replaced
by

∆uk+1(t) =K1ϑk+1(t) +K2ek(t), (45)

Then such a control law avoids the need to work with
derivative information and hence the possibility of noise
corruption is reduced. Also using (36) and (44) the result-
ing controlled dynamics can be written as

ϑ̇k+1 = [A(δ) +B(δ)K1]ϑk+1(t) +B(δ)K2ek(t), (46)

ek+1(t) = −Cϑk+1(t) + ek,

where

Ac(δ) =

[
A(δ) +B(δ)K1 B(δ)K2

−C I

]
.

This system is not stable along the pass (Rogers et al.,
2007) and also the weaker property of asymptotic stability
does not hold (this property requires that all eigenvalues
of the bottom right sub-matrix have modulus strictly
less than unity) Hence ILC error convergence cannot be
achieved, but if the update law is formed using (40)
Theorem 5 guarantees ILC convergence.

5. ITERATIVE LEARNING CONTROL OF
UNCERTAIN LINEAR SYSTEMS WITH SENSOR

FAILURES

Consider the system (29) under possible information or
sensor failures. In this case the output equation in this
state-space model becomes

y(t) = C(r(t))x(t), (47)

where r(t) is a Markov chain with a finite set of states
N = {1, . . . , ν} corresponding to the number of possible
failures with transition probabilities given by

P[r(t+ 1) = j|r(t) = i] = πij . (48)

The dynamics of a system obtained by applying an ILC law
of the form (36) to a system with state dynamics described
by (29) and output equation (47), under the conditions and
notation previously defined, are described by

ẋk(t) =A(δ)xk(t) +B(δ)uk(t),

yk(t) =C(r(t))xk(t). (49)

Moreover, the stochastic nature of r(t) requires the follow-
ing modified definition of ILC convergence.

Definition 6. A system described by (49) is said to be
convergent if for all 0 ≤ t ≤ T

E[|ek(t)|2] = E[|yref (t)− yk(t)|2]→ 0, k →∞ (50)

and
E[|uk(t)− u∞(t)|2]→ 0, k →∞. (51)

Using (37) and (38) the dynamics with the ILC law applied
can be written as

υ̇k+1(t) =A(δ)υk+1(t) +B(δ)∆uk+1(t), (52)

ek+1(t) =−C(r(t))A(δ)υk+1(t) + ek(t)

−C(r(t))B(δ)∆uk+1(t). (53)

Consider also the case when

∆uk+1(t) = F1(i)υ̇k+1(t) + F2(i)ėk(t), if r(t) = i.(54)

Then if (54) guarantees PPEM stability of (52) it follows
from Theorem 4 that this ILC law is convergent.
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To construct stabilizing control law matrices F1(i) and
F2(i), i ∈ N, the stability conditions of Theorem 4 are
employed. Chose the candidate vector Lyapunov function
as (20) with V1(υk+1(t), r(t)) = υTk+1(t)P1(r(t))υk+1(t),

V2(ek(t), r(t)) = eTk (t)P2(r(t))ek(t), with P1 > 0, P2 > 0.
Also the stochastic divergence operator D of the function
(20) in this case must satisfy (25). Calculating this oper-
ator along the trajectories of a system described by (52)
and (54) gives the following sufficient conditions for PPEM
stability

P (i) = diag{P1(i) P2(i)} > 0, ATc1(δ, i)P (i) +

P (i)Ac1(δ, i) +

ν∑
j=1

πijI
1,0P (j)I1,0 − I0,1P (i)I0,1

+ATc2(δ, i)P (i)Ac2(δ, i) < 0, i ∈ N, δ ∈∆, (55)

where

I1,0 =

[
I 0
0 0

]
, I0,1 =

[
0 0
0 I

]
.

On setting X(i) = P−1(i), Y (i) = F1(i)X1(i), Y2(i) =
F2(i)X2(i), routine calculations and convexity properties
give the following coupled set of LMI with respect to these
variables  S11(δ, i) S12(δ, i) S13(i)

ST12(δ, i) −X(i) 0
ST13(i) 0 S33(i)

 < 0,

X(i) > 0, δ ∈∆v, i ∈ N, (56)

where S11(δ, i) =

[
Ac11(δ, i) B(δ)Y1(i)

(B(δ)Y1(i))T −X2(i)

]
, S12(δ, i) =[

0 0
Ac12(δ, i) Ac22(δ, i)

]T
, Ac11(δ, i) = A(δ)X(i)+B(δ)Y1(i)

+ (A(δ)X(i) + B(δ)Y1(i))T + πiiX1(i), Ac12(δ, i) =
−C(i)A(δ)X1(i)− C(i)B(δ)Y1(i), Ac22(δ, i) = X2(i)

− C(i)B(δ)Y2(i), S13(i) = [π
1
2
i1X(i)I1,0 . . . π

1
2
i i−1X(i)I1,0

π
1
2
i i+1X(i)I1,0 . . . π

1
2
iνX(i)I1,0], S33(i) = diag[−X(1) . . .

−X(i− 1) −X(i+ 1) . . .−X(ν)] and the following result
has been established.

Theorem 7. Consider the ILC dynamics described by (49)
and (54) and suppose that the LMI’s (56) with δ ∈
∆v, i ∈ N, are feasible and set F1(i) = Y1(i)X−1

1 (i)
and F2(i) = Y2(i)X−1

2 (i), i ∈ N. Then ILC convergence
occurs.

6. CONCLUSIONS

The vast majority of the existing control and systems
theory for repetitive processes, a distinct class of 2D linear
systems with applications areas and control problems that
cannot be solved by either 1D systems theory or that
for other classes of 2D systems, assumes linear dynamics.
This paper has produced new results on the stability of
differential nonlinear repetitive processes with potential
applications areas. To demonstrate their role for the latter,
they have been applied to ILC design, including the case
when failures may arise. These results provide a basis for
further research to fully exploit their potential.
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