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Abstract:
In this paper we discuss how model reduction affects the stability and computational complexity
of controllers for nanopositioning systems. A robust H∞ multiple-input multiple-output con-
troller is designed and implemented for the lateral stage of an atomic force microscope. A model-
based controller can often be of high order and may be difficult to run in real-time on hardware
with limited computational power. The resulting controller can be considered to be stiff, which
is characterized by a large spread of eigenvalues. Continuous-time systems running in real-time
are often solved using explicit Runge-Kutta (ERK) methods, which easily becomes unstable for
stiff systems. We show how small the time-step for a given controller needs to be for a selection
of ERK methods. We also consider how model reduction affects the computational complexity
of the controller, and show how the reduction can alter the placement of the eigenvalues and
thus the required step-size for implementability. We demonstrate that the original 18th-order
H∞ controller can be reduced to a 10th-order controller without any significant reduction in
performance or stability, which results in a 46.7% reduction in execution time, partly because
the order reduction enables the use of a simpler solver type.

Keywords: Model reduction; H-infinity control; Stability of numerical methods; Runge-Kutta
method; MIMO; Positioning systems.

1. INTRODUCTION

Atomic force microscopy (AFM) is a tool capable of study-
ing and manipulating matter down to the atomic scale.
This has made it one of the fundamental tools within
the field of nanotechnology. Control of the lateral stage
of an AFM has been shown to be challenging due to
several reasons, including non-linearities such as hystere-
sis and creep, lightly-damped vibration dynamics, and
large uncertainties. Some of these effects can be effectively
compensated for such as hysteresis (Eielsen et al., 2012;
Kaizuka and Siu, 1988; Croft et al., 2001). To handle the
resonant peaks of the lightly-damped vibration dynamics,
simpler control schemes such as damping and tracking
control can be employed (Eielsen et al., 2013; Aphale
et al., 2008; Fleming, 2010; Fleming et al., 2010). However,
higher order model-matching based techniques, such as
model reference control (MRC), linear quadratic control
(LQR) and H∞-control, can in principle allow for higher
bandwidth, and can therefore lead to better tracking per-
formance. Model-matching control, especially H∞-control,
has been widely employed in the nanopositioning literature
(Schitter et al., 2001; Salapaka et al., 2002; Salapaka and
Sebastian, 2003; Schitter and Stemmer, 2004; Ladjal et al.,
2009; Yong et al., 2010). These controllers tend to have
a high order, which in turn leads to high computational
complexity. Because of the large uncertainties and the non-

linearities it is also important to consider robustness in
nanopositioning applications. This topic has been studied
in Salapaka et al. (2002); Sebastian and Salapaka (2005);
Ladjal et al. (2009).

The majority of the literature on nanopositioning appears
to perform control design in the continuous time s-domain
as opposed to the discrete-time z-domain. Such controllers
can be described using continuous-time state-space models
which we will base our discussion on. For a real-time
implementation however, the model is solved at discrete
time-steps using a fixed step-size. Many popular solver
types are based on the family of explicit Runge-Kutta
(ERK) methods. These solvers become unstable if the
step-size is too large, and the maximum step-size depends
on the order of the solver used. At the same time, the
complexity of the controller running on hardware with
limited computational power puts a lower limit on the
step-size, because the hardware needs sufficient time to
perform the necessary calculations. Thus we have both a
lower and an upper limit on the step-size determined by
various factors. For a controller to be implementable we
need the limits to intersect. In this paper we will discuss
these factors and present some approaches to handle them.

To control a system with a high mechanical bandwidth,
we need to have high bandwidth for the control loop as
well. Thus, the step-size needs to be sufficiently small.
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On hardware with limited computational power, we often
need to simplify the model such that it becomes feasible.
The most widely used method to reduce the computational
complexity of a controller is to perform model reduction
on an already existing controller. Model reduction aims to
keep the input-output behavior as close as possible to the
original model while removing states from a state-space
representation of the controller. Model reduction has been
used extensively—some approaches perform reduction on
the plant model (Dong et al., 2007; Lee and Salapaka,
2009). Using a model-based approach, this results in a
controller with less complexity. Another approach is to
perform reduction after synthesis using a high-order model
plant (Schitter and Stemmer, 2004; Kuiper and Schitter,
2012). The topic of controller reduction is treated in
Anderson and Liu (1989); Anderson (1993) where it is
generally concluded that reduction should be performed
as a last step in the control design process. Even if the
system is already implementable, there is an advantage
of reducing the complexity, because we can then run the
system on a smaller step-size which reduces the overall
noise floor of the system (Lyons, 2010).

In this paper, we will base our discussion around a H∞
controller which is designed for the lateral positioning
of a commercial AFM. The controller is designed to be
robustly stable for a given description of plant uncertainty.
We will present equations for how to determine the solver
stability of a controller and the required maximum step-
size for a variety of ERK methods. Additionally, we
will show the effect of model reduction on the complex
controller and how this affects the solver stability and
computational complexity. This paper is based to some
extent on Ragazzon (2013).

The paper is organized as follows. In Section 2, the
experimental set-up is explained and an identified model of
the plant is found. In Section 3, we present the controller
design. In Section 4 we present solver stability, specifically
for some ERK methods. Section 5 describes the model
reduction of the controller. Section 6 gives experimental
results of closed-loop characteristics and execution time.
The results are discussed in Section 7. Finally, some
conclusions are drawn in Section 8.

2. SYSTEM IDENTIFICATION

2.1 Device Description

All experiments are done using a commercial AFM of the
type Park Systems XE-70. In this device, the sample is
placed on a parallel kinematic flexure scanner for motion
in the horizontal xy-plane. Motion along the vertical z-
axis is completely decoupled and not studied in this paper.
The signals from the AFM are routed to an electronic
processing and controller box. As well as having its own
controller circuits, it provides access to measurements from
the sensors. It can also receive external control signals for
manual control of the piezoelectric elements of the AFM.

A schematic overview of the setup is shown in Fig. 1. The
controllers are implemented in Simulink, and using the
Simulink Coder, the controllers can be run on a dedicated
computer running the xPC real-time operating system.
The xPC is fitted with analog-to-digital and digital-to-

analog converters. The signals from these are run through
anti-aliasing and reconstruction filters implemented as 2nd
order Butterworth low-pass filters with a bandwidth of
10 kHz—less than half the sample frequency.

For our purpose, we have overridden control of the piezo-
actuators in the x- and y-axes. These are connected to
a “PiezoDrive PDL200”, a linear voltage amplifier whose
inputs are considered the inputs of the system plant G(s).
The voltage output from the displacement sensors in the
x- and y-axes located on the AFM is used as the output
of the system.

Reconstruction
filter

Anti-aliasing
filter

u

y

r SR780
Signal analyzer

Lateral stage
of AFM

Voltage
amplifier

xPC
Real-time OS

PC
Simulink

Fig. 1. Block diagram of the experimental setup for the
closed-loop system. For the plant frequency response
the SR780 device is connected directly to u.

2.2 Frequency Response and Model Fit

The lateral positioning stage of the AFM is considered
to be dominantly linear, therefore the system can be
described by its frequency response. The system has two
inputs u1, u2, and two outputs y1, y2, along the x- and
y-axis respectively. The frequency response of the plant
G(s) was gathered using a Stanford SR780 frequency
analyzer using a white noise source signal. One of several
gathered frequency responses is plotted in Fig. 2 together
with the fitted models. The transfer functions were fitted
using the Matlab function tfest on the experimental
data. The diagonal elements of G(s) were approximated
by a third-degree transfer function, while the off-diagonal
elements were approximated by a second-degree function.
The identified nominal plant model is given by (1).

The exponential term represents the time-delay between
input and output. A time-delay will present itself as a
linear reduction of the phase as a function of frequency.
Thus, we may find the time-delay of the system between
input and output by investigating the phase plot of the
elements of Ĝ. By assuming that the change in phase
at lower frequencies is dominated by the time-delay, and
other sources of phase change is close to zero, we can
deduce that the time-delay is proportional to the slope
at the start of the phase plot. This is how we identified
the time-delay Td = 4.58× 10−4 s.

We can see that the phase starts at 180◦ which means that
the system has an inverse response, i.e. positive inputs
give negative outputs and vice versa. This is just the sign
convention of our raw data, and we decided not to change
it for simplicity.

We can observe that the off-diagonal elements of G(s) are
relatively small compared to the diagonal elements. This
indicates that the two axes are physically well decoupled,
and the system is thus well suited for independent control
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G(s) = e−4.58e-04s

 −5924s2 − 1.709e07s− 9.878e10

s3 + 4703s2 + 1.82e07s+ 7.806e10

−0.04567s2 + 69.72s− 6.043e04

s2 + 104.5s+ 2.29e07
−0.04705s2 + 89.17s− 1.253e05

s2 + 134.1s+ 2.288e07

−8708s2 + 2.618e07s− 9.214e11

s3 + 3.865e04s2 + 4.379e07s+ 9.44e11

 (1)
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Fig. 2. Experimental frequency response for both axes including cross-terms Ĝ(ω), and corresponding model fit G(s).

of the axes where the cross-coupling is not considered.
However, we will treat the system as a single multiple-
input multiple-output (MIMO) plant and design a single
controller rather than two independent controllers of lower
order such that our design strategy and analysis is appli-
cable in more general cases.

2.3 Robust Stability and Uncertainty Weighting

Since the system has large uncertainties and inaccuracies
in the estimated model, we need to make sure it is robustly
stable for a specified set of perturbations of the plant. We
chose to model the uncertainties as multiplicative output
uncertainty. The perturbed plant is described as

Gp = (I + ∆W )G (2)

where ∆ is the uncertainty variable with ‖∆‖∞ ≤ 1 and
W is a specified weighting transfer function. The block-
diagram of the feedback system is shown in Fig. 3.

For a given controllerK the robust stability (RS) condition
for the described set of perturbations is (Skogestad and
Postlethwaite, 2007)

RS ⇔ ‖WT‖∞ < 1 (3)

where T , (I + GK)−1GK is the complementary sensi-
tivity function. Similarly we have the sensitivity function
S , (I +GK)−1.

To find a suitable W that fits the uncertainties in our
system, we can record a set of plant frequency responses
Ĝ ∈ Π. Robust stability can be guaranteed for at least all
of these responses by finding a W such that |W (jω)| >
Ŵ (ω) where (Skogestad and Postlethwaite, 2007)

Ŵ (ω) , max
Ĝ∈Π

σ̄
((
Ĝ(ω)−G(jω)

)
G−1(jω)

)
(4)

and σ̄(·) is the maximum singular value. Other equations
exist for different perturbation descriptions such as input
multiplicative uncertainty or additive uncertainty.

We recorded three sets of frequency responses at different
set-points and input amplitudes, and fitted the calculated
Ŵ by the transfer function

W (s) = 3.8254
(s+ 210)(s+ 1850)

(s+ 2400)(s+ 3200)
(5)

which is plotted together with Ŵ in Fig. 4.

3. CONTROLLER DESIGN

This Section will present the design of the H∞ controller.
We will explain the choice of weightings for the mixed-
sensitivity problem used to synthesize the controller based
on the identified model G.

The H∞ mixed sensitivity problem can be formulated as
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min
K

N(K) =

∥∥∥∥∥ W1S
W2T
W3KS

∥∥∥∥∥
∞

(6)

where the transfer functions W1, W2, and W3 are user-
defined weightings.

The sensitivity function S is the closed-loop transfer
function from r to e , y−r. We want this to be as small as
possible within the desired bandwidth for effective control.
Thus, W1 was chosen as a first-order filter with large gains
at low frequencies and low gains at high frequencies.

The complementary sensitivity function T is the closed-
loop transfer function from r to y. We would like this to
be close to unity within the desired bandwidth for good
tracking behavior. For higher frequencies we would like it
to be as small as possible to attenuate measurement noise.
Thus W2 is chosen to be small at low frequencies and large
at high frequencies. Since WT is a measurement of the
robust stability we have chosen W2 = W to shape the
system such that it becomes more easily robustly stable.

Finally, we have the weighting W3. In fact, KS is the
closed-loop transfer function from r to u, so it describes
the control effort for a given reference signal. We want to
reduce high frequencies in the control signal u in order
to reduce the energy usage by the controller. Thus W3

is chosen as a high-pass filter. The resulting weighting
functions are summarized in Table 1.

The synthesis problem was solved using the Matlab func-
tion mixsyn. This resulted in a controller with 18 states.
For the sake of comparison later on, we also designed a
similar controller using independent axis design, i.e. one
H∞ controller for each axis (denoted H∞ SISO), as well
as a simple PID controller. The bandwidth of all three
controllers as well as the robustness properties and model
order is given in Table 2. The table shows that the closed-
loop system is robustly stable because ‖WT‖∞ < 1 for
both of the H∞ controllers. This is not the case for the
PID-controller, thus we can not guarantee this controller
to be stable for all perturbations of the system.

The bandwidth of theH∞ controllers were severely limited
by the time-delay of the system. Higher bandwidth re-
sulted in bad performance in the closed-loop system which
was seen as large spikes in σ̄(S) and σ̄(T ).

Table 1. Summary of weighting transfer functions

W1(s)
0.8333s+ 439.8

s+ 0.04398

W2(s) 3.8254
(s+ 210)(s+ 1850)

(s+ 2400)(s+ 3200)

W3(s) 0.8333
s

s+ 439.8

Table 2. Bandwidth and robustness comparison of
the three controllers, where ωBS is the bandwidth in
terms of S and ωBT is the bandwidth in terms of T .

ωBS [Hz] ωBT [Hz] ‖WT‖∞ Model order

PID 58.0 93.1 1.073 4th-order

H∞ SISO 75.6 96.4 0.9938 14th-order

H∞ MIMO 69.8 98.6 0.6717 18th-order

4. SOLVER STABILITY

We will consider the case where a controller is represented
by a continuous-time state-space model. A real-time imple-
mentation of such a model will use a solver to perform the
necessary integration steps at fixed discrete time intervals,
denoted by the step-size h. In this section we will see
that the solver stability depends on the eigenvalues of the
controller, the step-size, as well as the solver type.

Let us consider the scalar test system

ẏ = λy (7)

which is applied to a solver taking the discrete state yn to
the next time step yn+1 with step-size h,

yn+1 = Φ(hλ)yn (8)

= [Φ(hλ)]
n
y0 (9)

where Φ(hλ) is called the stability function. It is evident
that (9) is stable, i.e. |yn| ≤ c <∞ ∀n ≥ 0, if and only if

|Φ(hλ)| ≤ 1 (10)

All solvers we will consider have such a stability function,
and the region of stability, i.e. the region of the complex
plane where (10) is satisfied, varies between each solver
type.

4.1 Runge-Kutta Methods

The family of explicit Runge-Kutta (ERK) methods can
be written as

yn+1 = yn +

s∑
i=1

biki (11)

where s describes the number of stages of the Runge-Kutta
method and

k1 = hf(tn, yn)

k2 = hf(tn + c2h, yn + a21k1)

k3 = hf(tn + c3h, yn + a31k1 + a32k2)

...

ks = hf(tn + csh, yn + as1k1 + as2k2 + · · ·+ as,s−1ks−1)

where the coefficients aij , bi, and ci are elements of A,
b, and c respectively, which are specified by a given ERK
solver.
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4.2 Stability of Explicit Runge-Kutta Methods

The stability function of ERK methods are given by
(Egeland and Gravdahl, 2002)

Φ(z) = det(I − zA+ z1bT ) (12)

where 1 is a column vector of unit elements. An ERK
method is said to be of order p if the error between the
computed solution and the exact solution starting at initial
time is bounded by O(hp). The stability function of an
ERK method of order p = s can be simplified to (Hairer
and Wanner, 1996)

Φ(z) = 1 + z + · · ·+ zp

p!
(13)

which is only possible for methods of order up to 4. Higher
order ERK methods need more stages s than the order
p. We have plotted the stability region of a selection of
ERK methods in Fig. 5. Specifically the region of erk1-
erk4 with p = s, Dormand-Prince 5 (erk5) and Dormand-
Prince 8 (erk8). The last two with coefficients taken from
Dormand and Prince (1980); Prince and Dormand (1981).
The stability functions of these methods are reckoned to
be the same as for the fixed-step solver methods available
in Simulink.

4.3 Linear System

The stability properties of ERK methods applied to a
scalar test system has been determined. Now we will con-
sider the linear system of ordinary differential equations

ẏ = Ay (14)

where A is an n×n diagonalizable matrix with eigenvalues
λ1, . . . , λn. It can be shown that the origin of this system
is numerically stable if and only if all the eigenvalues λi
satisfy (10) individually for a given solver method. This is
a standard result in the literature on numerical methods,
see e.g. Ascher and Petzold (1998).

In other words, if all the eigenvalues of A are within the
region of stability for a given solver at a specific step-size
h, then the solver applied to (14) is stable. This gives us
a tool to find the required maximum step-size for a given
controller and solver.

5. CONTROL ORDER REDUCTION

5.1 Model Reduction Theory

There exist several methods to perform model reduction
(Obinata and Anderson, 2001). The most widely used
method is possibly balanced residualization. Here the
controller is first transformed to a balanced realization
where the model states are ordered by decreasing Hankel
singular values to form a state-space model (A,B,C,D).
The last states are removed and the system is transformed
such thatA11 A12 B1

A21 A22 B2

C1 C2 D

⇒ [
A11 −A12A

−1
22 A21 B1 −A21A

−1
22 B2

C1 − C2A
−1
22 A21 D − C2A

−1
22 B2

]

The DC-gain of the system is maintained using this
method, at some cost to the accuracy in the faster modes.
Other methods include the truncation method which is

−6 −4 −2 0 2
−6

−4

−2

0

2

4

6

Re(z)

Im
(z

)

erk1

λ(K) · h1
λ(K10) · h1

|Φ(z)| ≤ 1

erk2

erk3

erk4

erk5

erk8

Fig. 5. Stability region of several ERK methods of order
1-5 and 8. Magenta circles: Eigenvalues of the full
order controller K scaled by the maximum step-size
achieving stability for erk8. Yellow X’s: Eigenvalues
of the reduced 10th-order controller K10 scaled by the
same step-size. Note that K10 is stable for erk5.

more accurate at high frequencies at the cost of poor accu-
racy at low frequencies, as well as the optimal Hankel norm
method and methods using linear matrix inequalities.

5.2 Results of Controller Reduction

The designed controller K was first transformed to a
balanced realization using the Matlab command balreal.
We then performed model reduction on K by model resid-
ualization to several new controllers Kr of order 2 to order
17. This was done in Matlab with the command modred.
The closed-loop H∞ error norm on T − Tr, where Tr is
the complementary sensitivity of the reduced controller,
for each reduced controller is shown in Fig. 6a. We can see
that there are significant drops specifically between order
4–5, 9–10, and 16–17. The error changes relatively little in-
between these drops. Since we would like a controller with
as low order as possible while maintaining the performance
characteristics, we are inclined to select one of the orders
after such a drop, i.e. 5, 10, or 17. The robustness norm
is shown in Fig. 6b where we can see that only controller
order 10 and higher are robustly stable with ‖WTr‖∞ < 1.
The previous discussion clearly favors choosing the 10th-
order controller as it provides robust stability with little
error. This choice is further reinforced by considering the
simulated step responses as shown in Fig. 7. The 10th-
order controller gives nearly indistinguishable results to
the original controller, while the 8th-order controller show
some oscillatory behavior. The 7th-order model is not
internally stable, so we clearly want to avoid it.

5.3 Eigenvalues and Maximum Step-Size

We have previously seen that the stability of an explicit
Runge-Kutta method applied to a state-space model de-
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Fig. 6. Reduced controller order properties. (a) Closed-
loop error ‖T − Tr‖∞. (b) Robustness ‖WTr‖∞,
must be < 1 for robust stability (marked red).
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Fig. 7. Simulated step-response in reference signal on the
x-axis for various reduced controllers. Shows output
from both x- and y-axes.

pends on the eigenvalues of the A-matrix and the step-
size. Thus, for a given controller we can find the maximum
step-size needed for stability. The maximum step-size for
controller K was found to be 54.62µs using the erk8 solver.
The eigenvalues scaled by step-size can be seen in Fig. 5
(magenta circles) which are seen to lie within the stability
region of erk8. It is not stable for erk5 as the eigenvalues
are outside the stability region for this solver. The eigen-
values of the reduced controller K10 has also been plotted
(yellow x’s) for the same step-size and we can see how the
controller reduction has affected the eigenvalues. We can
see that they have become smaller which has resulted in
the controller becoming stable even for the erk5 solver. So
not only does model reduction reduce the computational
complexity of the controller, but it can also enable us to
use a simpler solver type or alternatively a larger step-size.

The maximum step-size for a variety of controllers and
solver types are shown in Table 3. Note that the maximum
step-size does not strictly increase with lower model-
orders, since the model residualization method used does
not necessarily reduce the eigenvalues.

6. EXPERIMENTAL RESULTS

Experiments were performed for two reasons. The first was
to see how well the reduced order controllers performed

Table 3. Maximum step-size for a given explicit
Runge-Kutta (ERK) method for the various reduced
controllers as well as some simpler controllers. Larger
values are generally better because they are stable at

higher step-sizes.

Order
hmax [µs]

erk1 erk2 erk3 erk4 erk5 erk8

7 (unst.) 32.18 71.33 95.74 100.8 127.2 203.6

8 58.37 58.37 73.34 81.29 96.51 150.8

9 37.54 37.54 47.17 52.28 62.07 96.99

10 33.61 33.61 42.22 46.8 55.56 86.82

11 39.70 39.7 49.87 55.28 65.63 102.5

12 24.96 32.66 41.03 45.48 54.00 84.37

13 2.821 21.55 27.07 30.01 35.63 55.67

14 2.818 19.11 24.01 26.62 31.60 49.38

15 2.843 21.73 27.30 30.26 35.92 56.13

16 2.948 22.64 28.44 31.53 37.43 58.48

17 2.918 21.18 26.61 29.49 35.01 54.71

18 (full) 2.910 21.14 26.56 29.45 34.96 54.62

PID 80.00 80.00 100.5 111.4 132.3 206.7

H∞SISO 21.45 21.45 26.95 29.87 35.46 55.41

compared to the simulations. The second was to record
the average task execution time (TET)—the time it takes
the hardware to perform calculations from one time-step
to the next. This can be considered a measurement of
the computational complexity of the controller, and is a
lower limit on the step-size. Any lower than this and the
hardware will not be able to meet its deadline and stop its
execution.

The experiments were performed in the setup shown in
Fig. 1. The closed loop frequency response and step-
response of the original controller K compared to the
reduced controllers K10 and K8 is given in Fig. 8. The
average TET for the various controllers and solver types
are given in Table 4. The system was run with step-size
h = 40µs, and only the modes that are stable at this
step-size were tested. That is, the modes in Table 3 where
hmax ≥ 40µs.

7. DISCUSSION

7.1 Model Reduction and Computational Complexity

From the model reduction it is seen that the original 18th-
order controller can be reduced to a 10th-order model
with no noticeable difference in the experimental step-
response or closed-loop frequency response as seen in Fig.
8. Additionally, it was shown to maintain robust stability,
thus it is a very viable controller choice. In terms of the
impact on computational complexity, there is a 25.5%
reduction – from 20.11 to 14.99µs – if the erk8 solver is
used for both controllers.

From Table 3 we can see that the 10th-order controller can
run using the erk3 solver at a step-size of h = 40µs, while
the full 18th-order H∞ MIMO controller needs erk8 for
stability at this step-size. By choosing erk3 for the 10th-
order controller we can see from Table 4 that this reduces
the execution time to 10.71µs, or a 46.7% reduction from
the original controller.
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Fig. 8. Experimental frequency response and step response comparison for selected reduced order controllers.

Table 4. Average task execution time (TET) with dif-
ferent controller model order and solver types which
gives an indication on the computational complexity.
Step-size h = 40µs. Dash (-) unstable, not tested.

Order
Average TET [µs]

erk1 erk2 erk3 erk5 erk8

≤7 - - - - -

8 - 10.25 10.43 11.10 13.64

9 - - 10.55 11.43 14.26

10 - - 10.71 11.64 14.99

11 - - 10.89 11.91 15.79

12 - - 11.07 12.36 16.79

13 - - - - 17.68

14 - - - - 18.82

15 - - - - 19.61

16 - - - - 20.91

17 - - - - 22.61

18 - - - - 20.11

PID - 9.95 9.98 10.13 11.12

H∞SISO - - - - 14.58

It is also interesting to note that the execution time does
not strictly decrease with increased controller order, e.g.
the 17th to 18th-order controller. By inspecting the state-
space model of each of these controllers, we notice that the
18th-order controller has a lot more zero-valued elements.
We speculate that the compiler simplifies the arithmetic
on these elements.

7.2 Eigenvalues and Stability

As we have seen, the eigenvalues of the controller are one
of the decisive factors for stability of an applied ERK
method. Hence, it is important to consider how controller
reduction changes the eigenvalues, especially for a fast and
stiff system such as our lateral positioning platform of an
AFM. The eigenvalues of our controller tended to become
smaller in size with reduced orders, but this need not be
the case. One should be careful when performing model
reduction and always verify that the eigenvalues are within
the stable region of the solver considered.

We have also seen how increased solver order increases
the stability region, but at the same time it increases

the execution time. This will ultimately be a trade-off
between moving the lower limit (due to computation time)
and the upper limit (for stability) of the step-size, as
illustrated in Fig. 9. Halving the step-size usually doubles
the computational complexity (per unit of time), while
increasing the solver order is harder to predict, but will
generally depend on the controller order.

Note that we have not considered the accuracy of the solver
methods. This is because we have assumed that the system
is stiff, and stiff systems are characterized by becoming
unstable before accuracy issues arise.

7.3 Robustness

The H∞ norm of the sensitivity function S is a good
measurement of robustness. It can be seen in Fig. 8 that
the 8th order controller has worse characteristics in this
regard, while the 10th order controller is almost identical
to the original 18th order controller. This was as expected
from the analysis during the controller design process.
The sensitivity function is also the closed-loop response
from disturbances at the output to the measured output.
We can see that the system is extra sensitive to such
disturbances in the 200-400 Hz range, which corresponds
to the two smaller unmodeled resonant peaks along the x-
and y-axis as can be seen in Fig. 2.

We have not treated discrete-time controllers in this paper.
Such controllers can be obtained either through discrete-
time controller design or continuous-to-discrete-time con-
version methods. The comparison of such controllers to
the results presented here is a topic for further studies.

Minimum step-size Maximum step-size

Feasible step-size region UnstableHardware overload

Simpler controller (lower order)
Less complex solver method

More powerful hardware

Smaller eigenvalues
More complex solver method

Fig. 9. Illustration of the trade-off between various factors
for a real-time controller implementation.
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8. CONCLUSION

In this paper we study some practical issues for a controller
running in real-time. Since the capability of hardware is
limited in terms of computational performance, a complex
controller can become difficult to implement with a step-
size small enough for stability. We have shown how to
determine the maximum step-size a controller requires for
numerical stability. Additionally, we discuss the effect of
model reduction on stability, performance, and computa-
tional complexity.

In order to discuss these topics, a robustly stable H∞
controller was designed for a nanopositioning device. We
showed that the numerical stability of an explicit Runge-
Kutta method is determined by the eigenvalues of the con-
troller. Model reduction was performed on the controller
and the reduced controllers were compared in terms of
performance and stability both in simulations and exper-
iments which showed that the 18th-order controller could
be reduced to a 10th-order model without any significant
reduction in performance or stability. After the reduction
process, the largest eigenvalues were reduced in size. So
not only does the controller become computationally less
complex, but the reduction process also allowed for larger
step-sizes or alternatively simpler solver methods. Thus,
both the lower and upper limit for implementability illus-
trated in Fig. 9 could be moved by controller reduction.

To summarize our points, we suggest the following imple-
mentation procedure in order to make a good solver choice
and find a feasible step-size:

(1) Design a controller and perform model reduction.
(2) Find the maximum step-size providing stability for

one or more chosen ERK methods such that (10) is
satisfied for all eigenvalues of the controller.

(3) An initial solver choice can be taken as the one which
provides the best maximum step-size to computa-
tional complexity ratio. A rough estimate of the com-
putational complexity can be found by simulations.

(4) Run the controller at slightly below the maximum
step-size, and reduce the step-size until the hardware
is unable to perform the required calculations in time.

(5) If no feasible step-size was found, one can reduce
additional states or try another ERK method.

If this procedure was unsuccessful, one could try to design
a controller with simpler structure or consider upgrading
the hardware for more computational power.
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