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Abstract: This paper aims to generalize the loop interaction measurement, relative normalized
gain array (RNGA), for multivariable systems regarding a class of reference inputs. In the
existing studies, RNGA loop pairing criterion is analyzed and widely utilized on the basis of
detailed assumption of step reference input. For multivariable systems under step, ramp and
other general types of set-point changes, the general loop pairing technique is put forward, and
the average residence time is calculated in terms of first order plus delay time and second order
plus delay time processes. The analysis results show RNGA based control-loop configuration is
independent of input signals, and available to multivariable systems for various reference inputs.
Several examples are employed to demonstrate the effectiveness and universality of the pairing
approach of this paper.
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1. INTRODUCTION

In multivariable control structure design, the key pro-
cedure, which is especially important for decentralized
control, is the control configuration selection or the input-
output pairing problem (Grosdidier and Morari (1986),
Chen and Seborg (2002), Khaki-Sedigh and Moaveni
(2009), Bao et al. (2007), Liu and Gao (2012), Wittenmark
and Salgado (2002)). An improper loop pairing of manipu-
lated variables and controlled variables may lead to closed-
loop instability or deteriorate closed-loop performance.
Therefore, ahead of the design of the controller, guidance
for the selection of control configuration will be benefited
to minimize interactions among control loops and achieve
better control performance. In the past years, various
techniques for control-loop configuration are available in
the literatures.

A commonly and widely recognized technique in industry
for selecting the best input-output pairing is the relative
gain array (RGA) method, which was originally presented
by Bristol (1966). Only considering steady state of the
process make it very simple in calculation for interaction
measurement. Yet not sensitive to time constants, delays
and even more importantly dynamic information, dynamic
RGA (DRGA) latter was introduced to use the transfer
function model at all frequencies to substitute the steady-
state gain matrix (Witcher and McAvoy (1977), Tung and
Edgar (1981)). To overcome the defection of assuming
perfect control at all frequency, Avoy et al. (2003) pro-
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posed an improved controller-dependent DRGA approach
with the known dynamic process model. Desiring to keep
the simplicity of RGA and take steady-state and dynamic
information of the process model into consideration, Xiong
et al. (2005) proposed a new concept of effective gain array
(ERGA) based control configuration for multivariable sys-
tems. And Naini et al. (2009) ameliorated ERGA method
with effective relative energy array (EREA).

Since the calculation of ERGA and EREA, to a great ex-
tent, relies on the critical frequency of the transfer function
of each loop, two ways defined the critical frequency will
generate different control structure configuration. He et al.
(2009) defined the relative normalized gain array (RNGA)
to provide a less calculating and optimal pairing decision
in practical applications, which describes the effects of pro-
cesses information in a more intuitional and comprehensive
way. However, RNGA loop pairing criterion proposed in
He et al. (2009) was limited to multivariable systems under
step reference input, which makes RNGA based control
configuration only suitable for industrial processes under
step inputs. However, other set-point changes appear even
more often than step changes in industrial practice. There-
fore, it is important to put forward a general loop pairing
technique available to multivariable systems for various
reference inputs, in order to avoid adverse effects caused
by abrupt step changes.

Based on the aforementioned motivation, in this paper,
we generalize RNGA pairing criterion to multivariable
systems subject to a class of reference inputs. To be
specific, we will present a general loop pairing technique for
multivariable systems under step, ramp and other general
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Fig. 1. Block diagram of decentralized control system

types of reference inputs. What is more, compared with
other interaction measurement methods, it is an optimal
loop pairing decision for not only step changes, but also
other types of reference inputs.

2. PRELIMINARIES

Consider the following decentralized control multivariable
system in Fig. 1. r, e, u and y are the vectors of set-points,
feedback errors, manipulated variables and controlled vari-
ables, respectively. C(s) represents a decentralized con-
troller, and G(s) is denoted as

G(s) =

⎡
⎢⎢⎣
g11(s) g12(s) · · · g1n(s)
g21(s) g22(s) · · · g2n(s)
· · · · · · . . .

...
gn1(s) gn2(s) · · · gnn(s)

⎤
⎥⎥⎦ (1)

Let

gij(s) = gij(0)ḡij(s), i, j = 1, 2, ..., n (2)

where gij(0) and ḡij(s) are the steady state gain and
the normalized transfer function of gij(s), respectively. To
take into account both steady-state gain and the dynamic
information of the plant, the normalized gain kN,ij for a
particular transfer function gij(s) is defined as

kN,ij =
gij (0)

τ̄ar,ij
(3)

where τ̄ar,ij is the average residence time of ḡij(s), which
is equal to the accumulation of the difference between
the expected and the real outputs of the process (Astrom
(1995)).

Similar to the definition of RGA Bristol (1966), by replac-
ing the steady-state gain matrix with the normalized gain
matrix with elements kN,ij , relative normalized gain array
(RNGA) can be calculated by

Φ = KN ⊗K−T
N (4)

where ⊗ is the Hadamard product and KN = [kN,ij ]n×n =

G(0) � Tar, G(0) is the steady-state gain matrix of G(s),
Tar = [τar,ij ]n×n and � indicates element-by-element
division.

Once RNGA is obtained, the best loop pairing can be
conformed by selecting pairing loop elements in RNGA
closest to one in the premise of all paired RGA elements are
positive.The more loop pairing elements in RNGA close to
one means the smaller interaction with other loop. Another
important Niederlinski Index (Niederlinski (1971)) should
be ensured to be positive simultaneously, which provides a
necessary stability condition for the already paired system.
Above procedures for loop pairing are called RGA-NI-
RNGA rules. However, the average residence time for

RNGA in He et al. (2009) is specified to step inputs, which
makes the control configuration rule is merely applicable
for multivariable processes just responded to step inputs
in practice. In the following section, we will generalize this
pairing criterion to the processes responded to inputs of
ramp and other general types of set-point changes.

3. RNGA FOR DIFFERENT SET-POINT CHANGES

To analyze and design the control system conveniently,
most processes in practice are frequently modeled as the
lower order models, such as the first order plus delay time
(FOPDT) and the second order plus delay time (SOPDT).
This section derives the normalized gains of FOPDT and
SOPDT for multivariable process subject to step, ramp
and other general types of set-point changes.

3.1 Step Changes

Literature (He et al. (2009)) has calculated the normalized
gains of FOPDT and SOPDT under step changes. How-
ever, the normalized gain of critical damping (ζ = 1) for
SOPDT is omitted. Here for the sake of completeness, we
obtain the normalized gain for critical damping.

The transfer function of SOPDT process is given as

g(s) =
k

as2 + bs+ 1
e−θs = k

ω2
n

s2 + 2ζωns+ ω2
n

e−θs (5)

where a = 1
/
ω2
n and b = 2ζ/ωn.

When ζ = 1, the transient transfer function given in
equation (5) can be rewritten as

Ȳ (s) = ḡ(s)r(s) =
ω2
n

s(s2 + 2ωns+ ω2
n)

e−θs

=
e−θs

s
+

−e−θs

s+ ωn
+

−ωne
−θs

(s+ ωn)2

(6)

Then, from the inverse Laplace transform, step response
of ḡ(s) is as follows:

ȳ(t) =

{
0 0 ≤ t < θ

1−e−ωn(t−θ)−ωn(t− θ)e−ωn(t−θ) θ ≤ t < ∞ (7)

Subsequently, the average residence time τ̄ar can be ob-
tained as

τ̄ar =

∞∫
0

[r(t)− ȳ(t)]dt

=

θ∫
0

1dt+

∞∫
θ

e−ωn(t−θ) + ωn(t− θ)e−ωn(t−θ)dt

= θ + 1/ωn + 1/ωn = θ + 2ζ/ωn

(8)

Thus, the normalized gain of SOPDT at ζ=1 is

kN = k/(2ζ/ωn + θ) = k/(θ + b) (9)

which is in accordance with the case of ζ >1 and 0< ζ< 1.
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3.2 Ramp Changes

Let the set-point be the following ramp signal:

r(t) =

{
at, 0 ≤ t < T
aT, T ≤ t < ∞ (10)

Here, the slope of the ramp signal is a, which alternatively
takes a positive or negative real value for the time being. T
is the time duration for the ramp signal to increase original
constant value into the final one. Decomposing r(t) into
two parts, i. e., r1(t) and r2(t).

r(t) = r1(t) + r2(t) (11)

where r1(t) = a t, 0≤ t<∞ , r2=

{
0, 0≤ t <T
a (t−T ) , T ≤ t <∞ .

The Laplace transform of r(t) is

r(s) = r1(s) + r2(s) =
a

s2
+

−a

s2
e−Ts (12)

3.2.1 Normalized Gain of FOPDT Model

Give the FOPDT transfer function as

g(s) =
k

τs+ 1
e−θs (13)

From equations (12) and (13), we reach the Laplace
transform of the output response of ḡ(s) as

Ȳ (s) =
a

τ

(
e−θs

s2(s+ 1/τ)
− e−(θ+T )s

s2(s+ 1/τ)

)
(14)

The inverse Laplace transform of Ȳ (s) is

ȳ(t) =⎧⎨
⎩

0, 0 ≤ t < θ

a(τe−((t−θ)/τ) + t− θ − τ), θ ≤ t < θ + T

a(τe−(t−θ)/τ − τe−(t−θ−T )/τ+ T ), θ+ T ≤ t< ∞
(15)

It needs to discuss two cases of θ ≤ T and θ > T . For
θ ≤ T , it has

r(t)− ȳ(t) =⎧⎪⎪⎨
⎪⎪⎩

at, 0 ≤ t < θ

a(−τe−((t−θ)/τ) + θ + τ), θ ≤ t < T

a(−τe−((t−θ)/τ) + θ + τ + T − t), T ≤ t < θ + T

a(−τe−((t−θ)/τ) + τe−((t−θ−T )/τ)), θ+ T ≤ t <∞

(16)

then,

τ̄ar =

∞∫
0

[r(t)− ȳ(t)]dt

=

θ∫
0

atdt+

T∫
θ

a(−τe−((t−θ)/τ) + θ + τ)dt+

θ+T∫
T

a(−τe−((t−θ)/τ) + θ + τ + T − t)dt+

∞∫
θ+T

a(−τe−((t−θ)/τ) + τe−((t−θ−T )/τ))dt

= aT (θ + τ)

(17)

For θ > T , the following equation holds

r(t)− ȳ(t) =⎧⎪⎪⎨
⎪⎪⎩

at, 0 ≤ t < T
aT, T ≤ t < θ

a(−τe−((t−θ)/τ) + θ + τ + T − t), θ ≤ t < θ + T

a(−τe−((t−θ)/τ) + τe−((t−θ−T )/τ)), θ+ T ≤ t <∞

(18)

then,

τ̄ar =

∞∫
0

[r(t)− ȳ(t)]dt =

T∫
0

atdt+

θ∫
T

aTdt+

θ+T∫
θ

a(−τe−((t−θ)/τ) + θ + τ + T − t)dt+

∞∫
θ+T

a(−τe−((t−θ)/τ) + τe−((t−θ−T )/τ))dt

= aT (θ + τ)

(19)

From equation 2, the normalized gain of FOPDT under
ramp input is calculated as

kN = k/(aT (θ + τ)) (20)

3.2.2 Normalized Gain of SOPDT Model

From equations (5) and (12), the Laplace transform of the
output response for SOPDT reaches

Ȳ (s) =
ω2
ne

−θs

s2(s2 + 2ζωns+ ω2
n)

− ω2
ne

−(θ+T )s

s2(s2 + 2ζωns+ ω2
n)

(21)

Consider two cases: θ ≤ T and θ > T , and when 0 < ζ < 1,
ζ = 1 and ζ > 1, the normalized gain of SOPDT under
ramp input is calculated as

τ̄ar = aT (θ + 2ζ/ωn) (22)

From the results derived by the conditions of θ ≤ T and
θ > T , the normalized gain of SOPDT under ramp input
is given as

kN = k/(aT (2ζ/ωn + θ)) = k/(aT (b+ θ)) (23)

Hence, RNGA of multivariable system with elements of
FOPDT or SOPDT under ramp inputs is

Φ = KN ⊗K−T
N = (1/(aT ) · K̄N )⊗ (aT · K̄−T

N )
= K̄N ⊗ K̄−T

N

(24)

where K̄N is the matrix with elements being k/(τ + θ) or
k/(b+ θ).

Remark 1 : From equation (24) it can be seen that the
obtained RNGA is only related with steady-state gain,
time constant and time delay of FOPDT and SOPDT,
i.e. the parameters of model rather than input signal.

3.3 A General-type Changes

Suppose the set-point r(t) changes in a general-type path
from one steady value to another, which is shown in Fig. 2.
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Fig. 2. Decomposition of general type of set-point changes

Approximate the general type change to a series of ramp
signals, which is written in the form of

r(t) ≈ r1(t) + r2(t) + · · ·+ rn(t) (25)

where ri(t) =

{
0, 0 ≤ t < ti−1

ai(t− ti−1), ti−1 ≤ t < ti
ai(ti − ti−1), ti ≤ t < ∞

From equation (25), it is ready to obtain the average
residence time.

τ̄ar =

∞∫
0

[r(t)− ȳ(t)]dt ≈
∞∫
0

[r1(t)− ȳ1(t)]dt+

∞∫
0

[r2(t)− ȳ2(t)]dt+ · · ·+
∞∫
0

[rn(t)− ȳn(t)]dt

= (a1(t1 − t0) + · · ·+ an(tn − tn−1))T (τ + θ)

(26)

The normalized gain of FOPDT derived from above equa-
tion is

kN = k/((a1(t1 − t0) + · · ·+ an(tn − tn−1)) · (τ + θ)) (27)

Analogously, that of SOPDT is

kN = k/((a1(t1 − t0) + · · ·+ an(tn − tn−1)) · (b+ θ)) (28)

Thus, RNGA of multivariable system with elements of
FOPDT or SOPDT under general-type inputs is

Φ =
(
1/(a1(t1 − t0) + · · ·+ an(t1 − t0)) · K̄N

)⊗(
(a1(t1 − t0) + · · ·+ an(t1 − t0)) · K̄−T

N

)
= K̄N ⊗ K̄−T

N

(29)

Remark 2 : Equation (29) gives the evidence that RNGA is
derived as k/(τ + θ) of FOPDT and k/(b+ θ) of SOPDT
for processes in case of responses being steps, ramps and
general-types of set-points. Further, the analysis results
demonstrate that RNGA based control configuration is
independent of various reference inputs, and only related
to the parameters of process model. From Luo et al. (2012),
the conception of RNGA generalized by this paper is
also applicable to non-square multivarialbe processes with
unequal number of inputs and outputs.

4. CASE STUDY

4.1 Example 1

Consider a two-input and two-output process (He et al.
(2009)),

G(s) =

⎡
⎢⎣

5e−s

100s+ 1

e−4s

10s+ 1
−5e−4s

10s+ 1

5e−s

100s+ 1

⎤
⎥⎦

The RGA value is obtained as

Λ=

[
0.8333 0.1667
0.1667 0.8333

]

From the result of RGA, diagonal pairing is preferred for
Example 1.

According to equation (29), RNGA is easily calculated as

Φ = K̄N ⊗ K̄−T
N

=

[
5/101 1/14
−5/14 5/101

]
⊗

[
5/101 1/14
−5/14 5/101

]−T

=

[
0.0877 0.9123
0.9123 0.0877

]

From the RGA-NI-RNGA rules, the off-diagonal values
in the RNGA matrix are close to one, which means the
pairing y1 − u2/y2 − u1 is the preferred one with smaller
interactions between each loop. In ERGA method (Xiong
et al. (2005)), if the critical frequency is determined
by the frequency where the phase of frequency response
is negative π, ERGA method selects diagonal pairing,
which has been listed in literature (He et al. (2009)).
Controller settings of diagonal and off-diagonal designed
by the decentralized IMC-PID controller tuning methods
(He et al. (2005)) are given in Table 1 with the controller
taking the form of Ci = kPi(1 + 1/τIis).

To illustrate which is the optimal pairing of diagonal
and off-diagonal scenarios, references of all control loops
change one-by-one using signals of ramp and triangle wave.
The integral absolute error (IAE) is used to evaluate the
control performance.

IAE =

∞∫
0

|e(t)| dt =
∞∫
0

|r(t)− y(t)| dt

The ramp and triangle wave response curves and IAE
values are shown in Fig. 3, Fig. 4 and Table 2, respectively,
which show that the pairing y1 − u2/y2 − u1 results in
superior overall closed-loop performance. That is to say
RNGA method is also an optimal loop pairing decision for
system under references of ramp and other general types.

Table 1. Controller settings for Example 1

Loop RGA, ERGA RNGA
kPi τIi kPi τIi

1 0.5 100 1.25 10
2 0.5 100 -0.25 10

4.2 Example 2

Consider a three-input and three-output process (He et al.
(2009)) with transfer function matrix given as

G(s) =

⎡
⎢⎢⎢⎢⎢⎣

e−9s

6s2 + 17s+ 1

−9e−5s

s2 + 4s+ 1

13e−3s

3s2 + 35s+ 1
−5e−13s

2s2 + 19s+ 1

8e−2s

s2 + 33s+ 1

7e−5s

s2 + 3s+ 1
−16e−3s

s2 + 5s+ 1

3e−7s

s2 + 14s+ 1

e−11s

3s2 + 25s+ 1

⎤
⎥⎥⎥⎥⎥⎦
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Table 2. IAE values of diagonal and off-diagonal for decentralized control of Example 1

Loop IAE (Ramps) IAE (Triangle waves)
RGA, ERGA RNGA RGA, ERGA RNGA

1 166.8828 40.5037 65.9784 19.9256 152.6552 53.8929 107.8009 28.786
2 201.874 165.905 100.905 65.9843 268.4837 153.007 143.283 108.335
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0 100 200 300 400 500 600 700 800
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6
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Set−point
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Fig. 3. Simulation results of different pairing for ramp
inputs
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Fig. 4. Simulation results of different pairing for triangle
wave inputs

The obtained RGA is given as

Λ=

[−0.0054 0.3981 0.6073
−0.0992 0.6912 0.4080
1.1046 −0.0893 −0.0153

]

In the light of the above result, RGA-NI loop pairing
criterion gives off-diagonal pairing as the best one.

The RNGA is obtained as

0 500 1000 1500 2000 2500 3000
0

5

10

15

Time [sec]

y1 Set−point
RGA
RNGA

0 500 1000 1500 2000 2500 3000
−10

0

10

20

Time [sec]

y2 Set−point
RGA
RNGA

0 500 1000 1500 2000 2500 3000
−10

0

10

20

Time [sec]

y3

Set−point
RGA
RNGA

Fig. 5. Simulation results of different pairing for ramp
inputs

Φ = K̄N ⊗ K̄−T
N

=

[
1/26 −9/9 13/38
−5/32 8/35 7/8
−16/8 3/21 1/36

]
⊗
[

1/26 −9/9 13/38
−5/32 8/35 7/8
−16/8 3/21 1/36

]−T

=

[−0.0024 0.9237 0.0787
−0.0063 0.0829 0.9235
1.0088 −0.0066 −0.0022

]

From RGA-NI-RNGA based loop pairing rules, the pairing
y1−u2/y2−u3/y3−u1 should be the best for decentralized
control. Decentralized controllers for cases of RNGA and
RGA pairing are calculated respectively using the IMC-
PID design procedure (He et al. (2005)) with the controller
taking the form of Ci = kPi(1 + 1/τIis + τDis). The
designed controller settings are shown in Table 3.

Table 3. Controller settings for Example 2

Loop RGA RNGA
kPi τIi τDi kPi τIi τDi

1 0.0292 35.0 0.0857 -0.0363 4.0 0.2500
2 0.0142 33.0 0.0303 0.0346 3.0 0.3333
3 -0.0515 5.00 0.2000 -0.0518 5.0 0.2000

Response curves for set-point changes of ramp and triangle
wave depicted in Fig. 5 and 6 and IAE values listed
in Table 4 show that the overall performance of RNGA
pairing is significantly better than that of RGA pairing.
Once again, the results expound RNGA based control con-
figuration is an optimal loop pairing decision in practical
applications.
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Table 4. IAE values of RGA and RNGA pairing for decentralized control of Example 2

Loop IAE (Ramps) IAE (Triangle waves)
RGA RNGA RGA RNGA

1 821.1 688.1 187.7 110.1 142.6 44 978.4 372.6 103.8 213.3 273.1 81
2 1019.4 1989.5 679.5 63.2 110.3 27.3 555.2 1376.8 453.7 121.8 213.6 53.3
3 6.6 19.1 66.9 15.3 27.4 68.6 4.6 13.2 121 29.8 51.8 127.4

0 500 1000 1500 2000 2500 3000
−10

0

10

20

Time [sec]

y1
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0 500 1000 1500 2000 2500 3000
−10
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Fig. 6. Simulation results of different pairing for triangle
wave inputs

5. CONCLUSIONS

In this paper, a RNGA based loop pairing criterion is
analyzed for interaction measurement, which can be well
applied to multivariable systems with different reference
inputs such as step, ramp and other general types. Both
the steady-state and transient information of the process
transfer function are investigated to calculate the interac-
tions between each loop. The effectiveness of the method
is demonstrated by several examples, which show that the
proposed systematical RNGA based loop pairing criteri-
on not only gives more accurate interaction assessment
compared to other existing interaction measurement tech-
niques, but also works for general types of reference inputs.
Considering most processes in practice are frequently mod-
eled as lower order models, the RNGA method generalized
by this paper is only suitable for multivaraible systems
with entries of either FOPDT or SOPDT. Future work
will generalize RNGA pairing criterion to multivaraible
systems with general process model subject to a class of
reference inputs.
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