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∗ Institute of Industrial and Control Engineering,
Technical University of Catalonia. Barcelona 08028, Spain.

{carlos.aldana, luis.basanez}@upc.edu.
∗∗Department of Computer Science, CUCEI,

University of Guadalajara. Guadalajara 44430, Mexico.
emmanuel.nuno@cucei.udg.mx.

Abstract: This paper proposes a distributed proportional plus damping (P+d) control
algorithm to solve the leader-follower problem in which a network of heterogeneous robots,
modeled in the operational space, has to be regulated at a given constant leader pose (position
and orientation). The leader pose is only available to a certain set of followers. A singularity-free
representation, unit-quaternions, is used to describe the robots orientation and the network is
represented by an undirected and connected interconnection graph. Furthermore, it is shown
that the controller is robust to interconnection variable time-delays. Experiments, with a network
of two 6-Degrees-of-Freedom (DoF) robots, are presented to illustrate the performance of the
proposed scheme.

1. INTRODUCTION

The operational space is a subspace of the Special Eu-
clidean space of dimension three, denoted SE(3). It is well-
known that the minimum number of coordinates required
to define the pose of an object in a three-dimensional
space is six: three for the position and three for the
orientation (attitude). Operational space control becomes
evident when cooperative tasks have to be described and
performed by multiple robot manipulators that could be
kinematically dissimilar (heterogeneous)(Liu and Chopra,
2012; Aldana et al., 2012). The practical applications of
multi-robot systems span different areas such as underwa-
ter and space exploration, hazardous environments (search
and rescue missions, military operations), and service
robotics (material handling, furniture assembly, etc.).

The consensus problem involves the design of algorithms
such that agents can reach an agreement on their states,
or on a common objective. This problem has been widely
studied for first and second-order linear time invariant
systems in the generalized coordinates space, that is the
case of linearized robots in the joint space. Some of the
proposed approaches include (Hu et al., 2013) where a
hybrid consensus control protocol is reported; (Sun, 2012)
that deals with uncertain topologies with interconnection
delays; (Abdessameud and Tayebi, 2013) that presents
a partial state feedback consensus controller; and (Nuño
et al., 2013) that use a proportional plus damping (P+d)
control algorithm to solve the leaderless consensus prob-
lem in the joint space. For a comprehensive study and
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further reference along this line, the reader may refer
to (Olfati-Saber and Murray, 2004). There are several
interesting papers dealing with Euler-Lagrange (EL) sys-
tems in the operational space, however most of them
only address the orientation part. Among these are (Liu
and Chopra, 2012) where an adaptive controller is pro-
posed to solve the leader-follower attitude-only consensus
problem in networks of heterogeneous robot manipulators;
(Abdessameud et al., 2012) that proposes synchroniza-
tion schemes to resolve the leader-follower and leaderless
problems for groups of rigid bodies in the presence of
communication delays; and (Ren, 2007) where three syn-
chronization cases for the attitude alignment of spacecrafts
are presented.

Compared to the previously cited consensus solutions, this
paper proposes a leader-follower consensus algorithm for
networks of robots modeled in the operational space that
takes into account the full pose of the robots and not
only the attitude. This control scheme can be employed in
non-identical heterogeneous robots with different Degrees
of Freedom (DoF). The proposed controller is a simple
distributed P+d algorithm that is model independent (in
the sense that it is not necessary to know the robot’s
inertia matrix or the Coriolis forces) and is robust to
interconnecting variable time-delays. Furthermore, com-
pare to other schemes that use singular minimum orienta-
tion representations, this work employs the singularity-free
unit-quaternions. Moreover, under the assumption that, at
least, one follower has a direct access to the leader pose,
it is shown that the proposed leader-follower controller
ensures the asymptotic convergence of the robots pose to
the constant leader pose and the asymptotic convergence
to zero of the linear and angular velocities. Finally, an
experimental validation of the leader-follower controller
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Fig. 1. Example of a robot network and the graph repre-
senting the interconnection

using a network composed of two 6-DoF robots is pre-
sented.

The following notation is used throughout the paper.
R := (−∞,∞), R>0 := (0,∞), R≥0 := [0,∞). |x| stands
for the standard Euclidean norm of vector x. Ik and Øk

represent, respectively, the identity and all-zeros matrices
of size k× k. 1k and 0k represent column vectors of size k
with all entries equal to one and to zero, respectively. The
spectrum of the square matrix A is denoted by σ(A) where
the minimum and the maximum of its spectrum is denoted
by σmin(A) and σmax(A), respectively. For any matrix A ∈
Rn×m, A>(AA>)−1 is its Moore-Penrose pseudo-inverse
matrix denoted by A†. For any function f : R≥0 → Rn,
the L∞-norm is defined as ‖f‖∞ := sup

t≥0
|f(t)|, L2-norm

as ‖f‖2 := (
∫∞

0
|f(t)|2dt)1/2. The L∞ and L2 spaces are

defined as the sets {f : R≥0 → Rn : ‖f‖∞ < ∞} and
{f : R≥0 → Rn : ‖f‖2 < ∞}, respectively. The argument
of all time dependent signals is omitted, e.g., x ≡ x(t),
except for those which are time-delayed, e.g., x(t− T (t)).
The subscript i ∈ N̄ := {1, ..., N}, where N is the number
of followers nodes of the network.

2. SYSTEM MODEL

The complete dynamical description of the system con-
tains two basic elements: i) the dynamics of the nodes
and; ii) the interconnection of the nodes. It is assumed
that each follower node contains a fully-actuated, revolute
joints robot manipulator and that the interconnection of
the network can be represented using graph theory. Fig. 1
shows an example of a robot network with a followers
network compose by three robots.

2.1 Dynamics of the nodes

Every ith-node is modeled as a ni-DoF robot manipulator,
where i ∈ N̄ . Its EL-equation of motion, in joint space, is
given by

M̄i(qi)q̈i + C̄i(qi, q̇i)q̇i + ḡi(qi) = τ i (1)

where qi, q̇i, q̈i ∈ Rni , are the joint positions, veloc-
ities and accelerations, respectively; M̄i(qi) ∈ Rni×ni

is the symmetric and positive definite inertia matrix;
C̄i(qi, q̇i) ∈ Rni×ni is the Coriolis and centrifugal effects
matrix, defined via the Christoffel symbols of the first
kind; ḡi(qi) ∈ Rni is the gravitational torques vector
and τ i ∈ Rni is the torque exerted by the actuators
(motors). Note that since the robots are heterogeneous

they can have different numbers of DoF, i.e., ni 6= nj ,
for j 6= i, and j ∈ N̄ . The pose of the ith-end-effector,
relative to a common reference frame, is denoted by the
vector xi ⊂ R7 and it contains the position vector pi ∈ R3

and the orientation unit-quaternion 1 ξi ∈ S3, such that

xi := [p>i , ξ
>
i ]>. See Fig. 1 for the location of the reference

frames and the pose vectors in an example scenario.

The relation between the joint velocities q̇i and the lin-
ear ṗi and angular ωi velocities of the ith-end-effector,
expressed also relative to a common reference frame, is
given by

υi =

[
ṗi
ωi

]
= Ji(qi)q̇i (2)

where υi ∈ R6 and Ji(qi) ∈ R6×ni is the geometric
Jacobian matrix. Using the principle of the virtual work,
the following relation between joint torque τ i and the
Cartesian forces fi is obtained

τ i = J>i (qi)fi, (3)

where fi ∈ R6, fi := [h>i ,m
>
i ]> and hi,mi ∈ R3

represent the Cartesian forces and moments, respectively.

Pre-multiplying (2) by the Jacobian pseudo-inverse J†i (qi)
and differentiating, yields

q̈i = J†i (qi)υ̇i + J̇†i (qi)υi. (4)

Expressions (2), (3) and (4) allows to transform (1) to its
corresponding operational space model, given by

Mi(qi)υ̇i + Ci(qi, q̇i)υi + gi(qi) = fi (5)

where Mi(qi) :=
(
J†i

)>
M̄i(qi)J

†
i , gi(qi) :=

(
J†i

)>
ḡi(qi),

Ci(qi, q̇i) :=
(
J†i

)> (
M̄i(qi)J̇

†
i + C̄i(qi, q̇i)J

†
i

)
.

The operational space model (5) has the following well-
known properties (Spong et al., 2005):

P1. Mi(qi) is symmetric and there exist λmi , λMi > 0
such that 0 < λmiI6 ≤Mi(qi) ≤ λMiI6.

P2. The matrix Ṁi(qi)− 2Ci(qi, q̇i) is skew-symmetric.
P3. For all qi, q̇i,υi, there exists ηi ∈ R>0 such that
|Ci(qi, q̇i)υi| ≤ ηi|υi|2.

P4. If υi, υ̇i ∈ L∞ then d
dtCi(qi, q̇i) is a bounded opera-

tor.

Using the total energy function Ei(υi,qi) = Ki(υi) +
Ui(qi), where Ki is the kinetic energy given by

Ki(υi) =
1

2
υ>i Mi(qi)υi, (6)

and Ui is the gravity potential energy such that gi(qi) :=
∂Ui
∂qi

, it can be shown that (5) represents a passive map

from force fi to velocity υi.

2.2 Orientation in the SE(3)

A unit-quaternion ξi ∈ S3 can be split in two elements:
one scalar term ηi ∈ R and one vectorial term βi ∈ R3.

Thus ξi := [ηi,β
>
i ]> and, from the unit norm constraint,

η2
i + β>i βi = 1 (refer to (Chou, 1992) for a detailed list

of properties and operations involving unit-quaternions).

1 The set S3 ⊂ R4 represents an unitary sphere of dimension three
and it is defined as S3 := {ξ ∈ R4 : |ξ|2 = 1}.
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The unit-quaternion ξi can be easily obtained from the
direct kinematics function of each robot manipulator, via
the rotation matrix Ri ∈ SO(3) := {Ri ∈ R3×3 : R>i Ri =
I3,det(Ri) = 1} (Spurrier, 1978; Spong et al., 2005).

The orientation error, relative to the world frame, between
two different frames, Σi and Σj , can be described by

the rotation matrix R̃ij := RiR
>
j ∈ SO(3). The unit-

quaternion describing such orientation error is given by

ξ̃ij = ξi � ξ
∗
j =

[
η̃ij
β̃ij

]
=

[
ξ>i ξj

ηjβi − ηiβj − S(βi)βj

]
=

[
ηiηj + β>i βj
−U>(ξi)ξj

]
(7)

where� denotes the quaternion product, ξ∗(·) = [η(·),−β>(·)]>
is the quaternion conjugate, S(·) is the skew-symmetric
matrix operator 2 and U(ξi) is defined as

U(ξi) :=

[
−β>i

ηiI3 − S(βi)

]
. (8)

The relation between the time-derivative of the unit-
quaternion and the angular velocity, relative to the world
reference frame, is given by

ξ̇i =
1

2
U(ξi)ωi. (9)

Hence, defining Φ(ξi) := diag(I3,
1
2U>(ξi)), it holds that

ẋi = Φ>(ξi)υi. (10)

Using the normality condition, some straightforward cal-
culations show that β̃ij = 0 if and only if ξi = ±ξj . This,

in turn, implies that U>(ξi)ξj = 03. A key observation
is that ξi = ξj and ξi = −ξj represent the same physical
orientation. The following properties have been borrowed
from (Fjellstad, 1994) and are used throughout the rest of
the paper.

P5. For all ξi ∈ S3, U>(ξi)U(ξi) = I3. Hence,
rank(U(ξi)) = 3 and ker(U>(ξi)) =span(ξi).

P6. For all ξi ∈ S3 and ξ̇i ∈ R4, U̇(ξi) = U(ξ̇i).
P7. Since, for all ξi ∈ S3, |ξi| = 1 then U(ξi) is a bounded

operator.

2.3 Modeling the Interconnection

The interconnection of the N agents is modeled using the
Laplacian matrix L := [`ij ] ∈ RN×N , whose elements are
defined as

`ij =

{ ∑
j∈Ni

aij i = j

−aij i 6= j
(11)

where Ni is the set of agents transmitting information to
the ith robot, aij > 0 if j ∈ Ni and aij = 0 otherwise.

Similar to passivity-based (energy-shaping) synchroniza-
tion (Sarlette et al., 2009) and in order to ensure that the
interconnection forces are generated by the gradient of a
potential function, the following assumption is used in this
paper:

2 For any a,b ∈ R3, S(a)b = a × b. Some well known properties
of the skew-symmetric matrix operator, S(·), used throughout the
paper are: S(a)> = S(−a) = −S(a) and S(a)a = 03.

A1. The interconnection graph is undirected and con-
nected.

With regards to the interconnection time-delays it is
assumed that

A2. The information exchange, from the j-th robot to the
i-th robot, is subject to a variable time-delay Tji(t) with
a known upper-bound ∗Tji. Hence, it holds that 0 ≤
Tji(t) ≤ ∗Tji < ∞. Additionally, the time–derivatives

Ṫji(t) are bounded.

If Assumptions A1 and A2 hold, then the interconnection
graph exhibits the following properties (Olfati-Saber and
Murray, 2004): a) L is symmetric and hence L>1N = 0N ,
b) The spectrum of L satisfies σ(L) ≥ 0, and σm(L) = 0
has multiplicity one. Further, rank(L) = N−1, and c) For
any z ∈ RN ,z>Lz = 1

2

∑
i∈N̄

∑
j∈Ni

aij(zi − zj)2 ≥ 0.

The Laplacian matrix models the followers interconnection
and, in this work, a diagonal matrix B ∈ RN×N is used
to model the leader-follower interconnections. This paper
has the following assumption for these interconnections:

A3. At least one of the N follower robots has direct access
to the leader’s constant pose x`, i.e., there exists at
least one directed edge from the leader to any of the
N followers.

Assumptions A1 and A3 ensure that the leader pose is
globally reachable from any of the N follower nodes, i.e.,
there exists a path from the leader to any ith follower
robot. The following lemma provides an interesting prop-
erty of the composed Laplacian matrix L` := L + B that
will be used in the proof of the main result and has been
borrowed from Chapter 1, Lemma 1.6 of (Cao and Ren,
2011).

Lemma 1. (Cao and Ren, 2011) Consider a non-negative
diagonal matrix B := diag(b1`, . . . , bN`) ∈ RN×N and
suppose that, at least, one bi` is strictly positive, i.e.,
there exists some bi` > 0. Assume that A1 holds, then
the matrix L` = L + B is symmetric, positive definite and
of full rank. �

3. LEADER-FOLLOWER CONSENSUS

3.1 Problem Statement

In this paper is considered a network of N kinematically
different EL-systems in the operational space of the form
(5). It is assumed that the interconnection graph fulfills
Assumptions A1 and A2. The control objective is to
design distributed control laws fi, such that the network of
N followers has to be regulated at a given constant leader
pose x` := [p>` , ξ

>
` ]> ⊂ R7, provided that the leader pose

is only available to a certain set of followers (A3). Hence,
for all i ∈ N̄ ,

lim
t→∞

|υi(t)| = 0, lim
t→∞

xi(t) = x`. (12)

3.2 Proposed Solution

The solution to the leader-follower consensus problem is
established with the following operational space propor-
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tional plus damping injection controller

fi = −kibi`Φ(ξi)(xi−x`)−ki
∑
j∈Ni

aijΦ(ξi)eij−diυi+gi(qi)

(13)
where ki, di ∈ R>0 are the controller gains, bi` > 0 if the
leader pose x` is available to the ith robot manipulator
and bi` = 0, otherwise. The interconnection error eij , for
any pair of robots (i, j), is given by

eij = xi − xj(t− Tji(t)). (14)

The closed-loop system (5) and (13) is

υ̇i = −M−1
i (qi)

[
Ci(qi, q̇i)υi+diυi+kibi`Φ(ξi)(xi−x`)

+ ki
∑
j∈Ni

aijΦ(ξi)eij

]
. (15)

It should be mentioned that, although ξi = ξ` and ξi =
−ξ` represent the same physical orientation, the closed-
loop system (15) has two possible equilibria. Proposition 2
formally states this fact and Proposition 3 shows that
ξi = −ξ` corresponds to an unstable equilibrium point.

Proposition 2. If Assumptions A1 and A3 hold, then the
closed-loop system (15) has the following two different
equilibrium points, for all i ∈ N̄ ,

(υi,pi, ξi) = (06,p`, ξ`) (16)

and
(υi,pi, ξi) = (06,p`,−ξ`). (17)

�

Proof. The possible equilibria of (15), clearly satisfy υi =
06 and bi`ei`+

∑
j∈Ni

aijeij = 06, which in turn implies that

bi`(pi − p`) +
∑
j∈Ni

aij(pi − pj(t− Tji(t))) = 03,(18)

−bi`U>(ξi)ξ` −
∑
j∈Ni

aijU
>(ξi)ξj(t− Tji(t)) = 03.(19)

Now, pj(t − Tji(t)) = pj −
∫ t
t−Tji(t)

ṗj(σ)dσ and, at the

equilibrium,
∫ t
t−Tji(t)

ṗj(σ)dσ = 03. This last, together

with p := [p>1 , . . . ,p
>
N ]>, allows to write (18) as

(B` ⊗ I3)(p− (1N ⊗ p`)) + (L⊗ I3)p = 03N

and thus, since L1N = 0N , (L`⊗I3)(p−(1N⊗p`)) = 03N ,
where B` and L` are defined in Lemma 1 and ⊗ is the
standard Kronecker product. Further, Lemma 1 and the
Kronecker product properties ensure that rank(L`⊗ I3) =
3N ; thus, for all i ∈ N̄ , pi = p` is the only solution to
(18).

Similarly, ξj(t − Tji(t)) = ξj −
∫ t
t−Tji(t)

ξ̇j(σ)dσ and, at

the equilibrium,
∫ t
t−Tji(t)

ξ̇j(σ)dσ = 04. Thus, (19) can be

written as

−bi`U>(ξi)ξ` −
∑
j∈Ni

aijU
>(ξi)ξj = 03.

Adding the term bi`U
>(ξi)ξi +

∑
j∈Ni

aijU
>(ξi)ξi to the

previous equation, with the fact that U>(ξi)ξi = 03,
yields

bi`U
>(ξi)(ξi − ξ`) +

∑
j∈Ni

aijU
>(ξi)(ξi − ξj) = 03. (20)

Defining ξ := [ξ>1 , . . . , ξ
>
N ]> and Ū := diag(U(ξ1), . . . ,U(ξN ))

∈ R4N×3N , (20) can be written as

Ū> [(B` ⊗ I4)(ξ − (1N ⊗ ξ`)) + (L⊗ I4)ξ] = 03N

Using L1N = 0N , this last equations is equivalent to

Ū>(L` ⊗ I4)(ξ − (1N ⊗ ξ`)) = 03N

Finally, since (L` ⊗ I4) is of full rank then the trivial
solution ξ = 1N ⊗ ξ` satisfies this equation. However, the
fact that rank(Ū) = 3N and P5 ensure that ξi = ±ξ`, for
all i ∈ N̄ .

At this point the main result of this work can be stated.

Proposition 3. Under Assumptions A1, A2 and A3, con-
troller (13) solves the leader-follower consensus problem
provided that, for any αi, αj > 0, damping di satisfies

2di > ki`iiαi + ki
∑
j∈Ni

aji

∗T 2
ji

αj
, ∀i ∈ N̄ . (21)

Furthermore, the equilibrium (17) is unstable and the equi-
librium (16) is asymptotically stable everywhere except at
(06,p`,−ξ`). �

Proof. The closed-loop system (15) exhibits the following
(scaled) energy

Vi :=
1

ki
Ki(υi) +

bi`
2
|xi−x`|2 +

1

4

∑
j∈Ni

aij |xi−xj |2 (22)

where Ki has been defined in (6). Note that Vi is positive
definite and radially unbounded with regards to υi, |xi −
x`| and |xi − xj |, for all i ∈ N̄ and j ∈ Ni.
Using (10), Property (P2) and the fact that ẋ` = 07 ensure

that V̇i, evaluated along (15), is given by

V̇i =− di
ki
|υi|2 −

∑
j∈Ni

aij

[
ẋ>i eij −

1

2
(ẋi − ẋj)

>(xi − xj)

]

=− di
ki
|υi|2 −

∑
j∈Ni

aijẋ
>
i

∫ t

t−Tji(t)

ẋj(σ)dσ−

− 1

2

∑
j∈Ni

aij(ẋi + ẋj)
>(xi − xj)

Adding and subtracting the term x>i ẋi and doing some
algebra, yields

(ẋi + ẋj)
>(xi − xj) =ẋ>i (xi − xj)− x>i (ẋi − ẋj) + x>i ẋi

− x>j ẋj

=ẋ>i (xi − xj)− x>i (ẋi − ẋj) + ρi − ρj
where the scalar ρ(·) is defined as ρ(·) := x>(·)ẋ(·). Now,

using (11) and since
∑
i∈N̄

∑
j∈Ni

aij(ρi − ρj) = 1>NLρ = 0, it

is straightforward to show that∑
i∈N̄

∑
j∈Ni

aij(ẋi+ẋj)
>(xi−xj) = x>

(
(L> − L)⊗ I7

)
ẋ = 0

where ρ := [ρ1, . . . , ρN ]> ∈ RN and x := [x>1 , . . . ,x
>
N ]>,

ẋ := [ẋ>1 , . . . , ẋ
>
1 ]> ∈ R7N . Hence, taking V =

∑
i∈N̄
Vi it

holds that

V̇ = −
∑
i∈N̄

di
ki
|υi|2 +

∑
j∈Ni

aijẋ
>
i

∫ t

t−Tji(t)

ẋj(σ)dσ



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6677



Since V does not qualify as a Lyapunov Function, i.e.,
V̇ < 0, in the same spirit as in (Nuño et al., 2013), it

is possible to integrate V̇ from 0 to t and then apply
Lemma 1 in (Nuño et al., 2009) to the double integral
terms. Furthermore, from (9), it can be inferred that

4|ξ̇i|2 = |ωi|2 thus, using |υi|2 = |ẋi|2 + 3|ξ̇i|2, yields

V(t)− V(0) =−
∑
i∈N̄

di
ki

[∫ t

0

|ẋi(θ)|2dθ + 3

∫ t

0

|ξ̇i(θ)|2dθ
]

−
∑
i∈N̄

∑
j∈Ni

aij

∫ t

0

ẋ>i (θ)

∫ θ

θ−Tji(θ)

ẋj(σ)dσdθ,

and, for any αi > 0 and i ∈ N̄ ,

V(t)− V(0) ≤−
∑
i∈N̄

di
ki

(
‖ẋi‖22 + 3‖ξ̇i‖22

)
+
∑
i∈N̄

∑
j∈Ni

aij

(
αi
2
‖ẋi‖22 +

∗T 2
ji

2αj
‖ẋj‖22

)
.

Moreover, recalling that `ii =
∑
j∈Ni

aij then it holds that

V(t)− V(0) ≤−
∑
i∈N̄

3di
ki
‖ξ̇i‖22 +

∑
i∈N̄

∑
j∈Ni

aij

∗T 2
ji

2αj
‖ẋj‖22

−
∑
i∈N̄

∑
j∈Ni

aij

(
di
ki`ii

− αi
2

)
‖ẋi‖22,

which can be further written as

V(t) +
∑
i∈N̄

3di
ki
‖ξ̇i‖22 + 1>NΨ

[
‖ẋ1‖22, . . . , ‖ẋN‖22

]> ≤ V(0)

where

Ψ =


d1
k1
− `11α1

2 −a12
∗T 2

21

2α1
· · · −a1N

∗T 2
N1

2α1

−a21
∗T 2

12

2α2

d2
k2
− `22α2

2 · · · −a2N
∗T 2

N2

2α2

...
...

. . .
...

−aN1
∗T 2

1N

2αN
−aN2

∗T 2
2N

2αN
· · · dNkN −

`NNαN

2

 .
Clearly, if di is set according to (21) then there exists

µ ∈ RN , defined as µ := Ψ>1N , such that µi > 0, for
all i ∈ N̄ . Hence

V(t) +
∑
i∈N̄

(
3di
ki
‖ξ̇i‖22 + µi‖ẋi‖22

)
≤ V(0).

Therefore, ẋi ∈ L2 and V ∈ L∞. This last implies that
υi, |xi − x`|, |xi − xj | ∈ L∞, for all i ∈ N̄ and j ∈ Ni. All
these bounded signals together with Property (P3) and
the fact that |ξi| = 1 ensure, from the closed-loop system
(15), that υ̇ ∈ L∞. Additionally, from (9), ẋi ∈ L2 implies
that υi ∈ L2. Barbǎlat’s Lemma with υi ∈ L∞ ∩ L2 and
υ̇i ∈ L∞ supports the fact that lim

t→∞
υi(t) = 06, which in

turn implies from (9) that lim
t→∞

ẋi(t) = 07.

Boundedness of υ̇i, υi, |xi − x`| and |xi − xj |, together
with Property (P4), imply that υ̇i is uniformly continuous.
Moreover, since

lim
t→∞

∫ t

0

υ̇i(σ)dσ = lim
t→∞

υi(t)− υi(0) = −υi(0),

then lim
t→∞

υ̇i(t) = 06.

Fig. 2. Experimental validation setup.

Invoking Proposition 2 it holds that, when lim
t→∞

υi(t) =

lim
t→∞

υ̇i(t) = 06, the closed-loop system (15) has only two

possible equilibrium points, namely (16) and (17). Using
(22) it is shown that (16) corresponds to a minimum
energy point and since V(t) is a decreasing function,
i.e., V(t) ≤ V(0), any perturbation from (17) will drive
the system to (16). Hence, (υi,pi, ξi) = (06,p`, ξ`) is
asymptotically stable everywhere except at the unstable
equilibrium point (17). This concludes the proof.

4. EXPERIMENTAL VALIDATION

The experimental setup is shown in the Fig. 2, and it
is composed of two robots with 6-DoF, one PHANTOM
Premium 1.5 High Force R© and one PHANTOM Premium
1.5 R© with their control computers interconnected through
a local area network. These robots are commercially avail-
able from Geomagic R©. The controllers have been pro-
grammed using Matlab version 7.11 and Simulink version
7.6. The communications between Simulink and the robots
make use of a custom library, called PhanTorque 6Dof 3 .
This library allows to directly set the torques of the 6-DoF
in the PHANTOM Premium models, and it also returns
the transformation matrix of the robots end-effector. The
data transmission of the robots’ pose is done through UDP
ports and, to emulate a transcontinental communication,
a couple of artificially induced delays have been added
(Salvo Rossi et al., 2006). The gravitational torque vectors
and the estimated values of the two Premium devices, can
be found in (Aldana et al., 2013). The Jacobian matrix is
detailed in (Rodriguez and Basañez, 2005).

The two PHANTOM robots define the followers network
and the leader constant pose is sent only to Node 1, thus
N̄ := {1, 2}, b1` = 1 and b2` = 0. The resulting leader-
follower interconnection can be seen in the Fig. 2. The
interconnection weights are set to: a12 = a21 = 0.6, the
proportional and damping injection gains are fixed to:
k1=10, d1=1.4, k2=7, d2=1.25, and the upper bounds
of the induced variable time delays are: ∗T21=0.19s and
∗T12=0.25s. Setting α1=0.3, α2=0.35 ensures that (21)
holds. Despite the initial poses differences and the variable
time-delays in the interconnection, both robot poses (x1

and x2) asymptotically reach the leader pose (x`) as can be
seen In the Fig. 3 and the Fig. 4. Furthermore, from Fig. 5,
it can be observed that pose errors asymptotically converge
to zero. These experimental results verify the theoretical
results of Proposition 3.

3 The libraries are publicly available at http://sir.upc.edu/wikis/
roblab/index.php/Projects/PhanTorqueLibraries
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Fig. 3. Robots’ position.
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Fig. 5. Pose errors.

5. CONCLUSION

This paper presents a controller that solves the leader-
follower operational space consensus problem in networks
composed of multiple robot manipulators. It is proved
that, with a simple decentralized proportional plus damp-
ing controller and sufficiently large damping the network
asymptotically reach a consensus pose at the given leader
pose. Both, the dynamics and the controller are defined in
the operational space using unit quaternions to represent
the orientation. Furthermore, it is shown that the con-
troller is robust to interconnection variable time-delays.
Experiments, with a network of two 6-DoF robot manip-
ulators, are shown to support the theoretical results of
this paper. Future research avenues span the development
of adaptive controllers for the estimation of the gravity
terms.
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