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Abstract: Advanced controllers such as model predictive control are in use for a wide range
of application in the process industry. The potential utilization of such advanced predictive
controllers is far from exhausted. One barrier for more widespread implementation is the lack
of simple methodologies for advanced control design development which may be used by non
experts in control theory. This paper presents and illustrates the use of a simple methodology
to design an offset-free MPC based on ARX models. Hence a mechanistic process model is not
required. The forced circulation evaporator by Newell and Lee is used to illustrate the offset-free
MPC based on ARX models for a nonlinear multivariate process.
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1. INTRODUCTION

Model predictive control (MPC) has evolved to become
an industrial standard in advanced process control with a
steady increasing number of applications [15]. One main
reason for this success is the explicit use of a plant model to
predict future system behavior and determine the control
action by solving an optimization problem respecting the
actuator constraints. Obviously the closed loop perfor-
mance critically depends on the quality of the available
plant model. For continuous operation of process systems,
a linear model representation is often sufficient while sys-
tems dominated by a nonlinear transient operation may
require the use of nonlinear prediction models. While MPC
is becoming a mature control technology there are still
several domains where research is needed. One of the main
challenges for many applications is the development of
suitable models of the process system. Tuning of offset-
fee controllers, performance diagnostics for retuning or
remodeling, economical performance objective and very
large or nonlinear applications are other challenges that
keeps researcher and vendors of control system software
busy.

A wide range of process systems are often subjected to
unknown sustained disturbances. In such cases it is re-
quired that the MPC incorporates integrating modes to
render offset-free tracking. Methods for introducing such
integrating modes are given in Muske and Rawlings [9] and
Pannocchia and Rawlings [13]. One drawback from intro-
ducing integrating modes in the controller is that it leads
to a deliberate model plant mismatch which complicates
the tuning procedure. Through a number of recent pub-
lications, we have advocated for a methodology for offset
free ARX based linear MPC that is simple to implement
[2, 4, 3, 12, 5]. This methodology is based on estimation

of linear MISO models by standard convex optimization
tools, a simple noise model to ensure offset-free tracking
and a state space system formulation in innovation form.
The state space representation is convenient for closed loop
system analysis and tuning. So far studies have only been
performed based on linear process systems.

The purpose of the paper is therefore twofold:

- To illustrate the proposed offset-free MPC methodol-
ogy for a realistic nonlinear process example.

- To show by simple means how advanced control can
be realized for the process industry.

This paper starts in Section 2 with an introduction to
MPC based on ARX models and a formulation of the con-
trol problem. Then the case study is briefly motivated and
introduced in Section 3. In Section 4 linear models for the
MPC are identified and finally closed loop simulations are
presented in Section 5. Section 6 provides the conclusions.

2. ARX-BASED MPC FOR MIMO SYSTEMS

In this section, we derive a state space representation
for an unconstrained MPC based on MISO ARX-models
modified with a filtered integrated white noise stochastic
model. First, we represent the MISO ARX model as a state
space model in innovation form. Subsequently, we use this
state space model in innovation form to derive the filter
equation and the MPC control problem.

2.1 State Space Model in Innovation Form

The discrete time MISO ARX model with time index k

Ai(q
−1)yi,k = Bi(q

−1)uk + εi,k i = 1, . . . , ny (1)

with yi,k ∈ R, εi,k ∈ R for i = 1, . . . , ny and uk ∈
R

nu , has been used in a number of MPC applications.
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The advantage of this model parameterization is that
the parameters may be identified using standard system
identification techniques based on convex optimization. To
have offset-free control from the MPC based on this model,
the stochastic part of the model is modified to be a filtered
white noise process

εi,k =
1− αiq

−1

1− q−1
ei,k i = 1, . . . , ny (2)

where the coefficients αi are design parameters of the MPC
and ei,k ∼ Niid(0, Ree) with the covariance matrix Ree.

The representation of the MIMO system from these MISO
systems is not unique. One straightforward representation
leading to a compact notation is

A(q−1)yk = B(q−1)uk +
(

I − Iq−1
)−1

(I −Aq−1)ek (3)

with A(q−1) = diag([A1(q
−1); . . . ; Any

(q−1)]), B(q−1) =

[B1(q
−1); . . . ;Bny

(q−1)], and A = diag([α1; . . . ;αny
]).

This model can be represented as an ARMAX model

Ā(q−1)yk = B̄(q−1)uk + C̄(q−1)ek (4)

with

Ā(q−1) = (I − Iq−1)A(q−1) (5a)

B̄(q−1) = (I − Iq−1)B(q−1) (5b)

C̄(q−1) = I −Aq−1 (5c)

Denote the coefficients of Ā(q−1) and B̄(q−1) as

Ā(q−1) = I + Ā1q
−1 + Ā2q

−2 + ...+ Ānq
−n (6a)

B̄(q−1) = B̄1q
−1 + B̄2q

−2 + ...+ B̄nq
−n (6b)

Then the system (1)-(2) may be represented as a state
space model in innovation form [6]. I.e. perfect correlation
between measurement and process noise.

xk+1 = Âxk + B̂uk + K̂ek (7a)

yk = Ĉxk + ek (7b)

with the state space matrices (Â, B̂, K̂, Ĉ) realized in
observer canonical form

Â =













−Ā1 I 0 · · · 0
−Ā2 0 I · · · 0
...

...
...
. . .

...
−Ān−1 0 0 · · · I
−Ān 0 0 · · · 0













B̂ =













B̄1

B̄2

...
B̄n−1

B̄n













K̂ =













A− Ā1

−Ā2

...
−Ān−1

−Ān













Ĉ = [ I 0 0 · · · 0 ]

2.2 The MPC Control Problem

The filtered state estimation and the one-step prediction
may for state space models in innovation form (7) be
combined to give the following expressions for computation
of the innovation, ek:

x̂k|k−1 = Âx̂k−1|k−2 + B̂uk−1 + K̂ek−1 (8a)

ŷk|k−1 = Ĉx̂k|k−1 (8b)

ek = yk − ŷk|k−1 (8c)

Initially, x̂0|−1 is known and the one-step prediction (8a)
is not needed. Knowing the innovation, ek, the predictions
in the state space model in innovation form may be
represented as

x̂k+1|k = Âx̂k|k−1 + B̂ûk|k + K̂ek (9a)

x̂k+1+j|k = Âx̂k+j|k + B̂ûk+j|k, j = 1, . . . , N − 1 (9b)

ŷk+j|k = Ĉx̂k+j|k, j = 1, . . . , N (9c)

It is important to notice the term K̂ek in (9a) due to the
innovation form. This term is important for derivation of
the optimal control law and is often ignored [4]. Let the
objective of the MPC be

φ =
1

2

N−1
∑

j=0

‖ŷk+j+1|k − rk+j+1|k‖
2
Q + ‖∆ûk+j|k‖

2
S (10)

in which the second term, ‖∆ûk+j|j‖
2
S , is a regulariza-

tion term. We assume the reference parameterization,
{

rk+j|k

}N

j=1
= {rk, . . . , rk}. The tuning parameters in this

objective function are the matrices Q and S which may
be diagonal matrices. Box constraints may be formulated
for the sequence of ûk+j|k and ∆ûk+j|k. The unconstrained
MPC can be represented as the convex quadratic optimiza-
tion problem with the solution given in Jørgensen et al.
[4] and a tuning algorithm based on this formulation is
presented in Olesen et al. [11, 12].

3. THE NEWELL AND LEE EVAPORATOR

The case study used in this manuscript is the Newell
and Lee forced circulation evaporator model [10]. This
nonlinear, multi loop process is a very convenient exam-
ple for illustration and benchmarking of process control
technologies and has been used in numerous textbooks
and articles [7, 14, 17, 1]. The process and the process
variables are depicted in Fig. 1 and the model equations
will briefly be presented in the following subsection. The
evaporator model by Newell and Lee is representative for
a number of industrial evaporation processes. Evaporation
is found in sugar and paper mills as well as in a range of
food and pharmaceutical industries [8]. In these processes,
some solvent (typically water) is removed to concentrate
a stream before drying or crystallization.

The principle in the evaporation process is separation
by evaporation from a liquid mixture where at least one
component is not volatile. The evaporation chamber is
designed as a heat exchanger where latent heat from
condensation of steam is used to heat up and evaporate
a fraction of the circulating process stream. The gas and
liquid phase from the evaporator is separated and the gas
is condensed before leaving the system. A fraction of the
liquid is taken out as product before the remaining fraction
is mixed with fresh feed and fed to the evaporator again.
Due to the material loop created by the forced circulation
of the liquid stream, the dynamic coupling of the system
is known to be strong and disturbances anywhere in the
system can propagate throughout the process.

3.1 The model equations

As illustrated in Fig. 1, the model for the forced circulation
evaporator can be divided into four parts: The separator,
the evaporator, the steam jacked and the condenser. The
equations are in the following given as in [10] and the
reader is referred to this text for more details on the
modeling. The following nomenclature will be used: Fi,
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Fig. 1. The evaporator system from [10]

Xi, T i refers to flow rates, composition and temperature
of stream i. Li, Pi and Qi are levels, pressures and duties
in unit i.

The separator A total mass balance around the separa-
tor gives

ρA
dL2

dt
= F1− F4− F2 (11)

where ρ is the liquid density and A is the cross sectional
area of the separator and ρA is assumed to be 20 kg/m.

The evaporator The evaporator itself is modelled by the
following 5 equations:

M
dX2

dt
= F1X1− F2X2 (12)

C
dP2

dt
= F4− F5 (13)

T2 = 0.5616P2 + 0.3126X2 + 48.43 (14)

T3 = 0.507P2 + 55.0 (15)

F4 =
Q100− F1Cp(T2− T1)

λ
(16)

where M is a constant liquid hold up in the evaporator
of 20 kg. Cp and λ are the heat capacity and the latent
heat of evaporation of the process liquid which is assumed
constant at 0.07 kW/K(kg/min) and 38.5 kW/(kg/min) respec-
tively. The constant C = 4 kg/kPa is used to convert a mass
of vapor into a pressure in the vessel.

The steam jacked The steam side of the evaporator is
model with three algebraic equations as the dynamics are
assumed to be very fast

T100 = 0.1538P100 + 90.0 (17)

Q100 = 0.16(F1 + F3)(T100− T2) (18)

F100 =
Q100

λs
(19)

where λs = 36.6 kW/(kg/min) is the latent heat for steam.
The term 0.16(F1 + F3) correlates the flow to the evapo-
rator to the overall heat transfer coefficient times the area,
UA1, at the given process conditions.

The condenser The condenser is also modelled as a set
of algebraic equations

Q200 =
UA2(T3− T200)

1 + UA2/(2CpF200)
(20)

T201 = T200 +
Q200

F200Cp
(21)

F5 =
Q200

λ
(22)

where UA2 = 6.84 kW/K is the overall heat transfer
coefficient times the area and the heat of evaporation λ
is 38.5 kW/(kg/min).

Operational conditions The evaporator model has 8
degrees of freedom which can be classified as manipulated
variables, u, and disturbance variables, d. The states of
the system, x, is seen from the differential equations in
the model and these are all measured. These three process
variables are the desired control variable of the system.
This gives the following general system description of the
model.

dx

dt
= f(x, u, d), x(t = 0) = xss (23a)

where

x = [L2 X2 P2]
T

(23b)

u = [F2 P100 F200]
T

(23c)

d = [F1 T1 X1 F3 T200]
T

(23d)

and xss is the steady state solution for the nominal oper-
ation. Table 1 lists the system variables for the nominal
system.

It will be assumed in this manuscript that the true system,
i.e. the nonlinear simulation model, is monitored by a
control system which logs data for all three states every
minute. Each discrete time measurement, yk, of the states
is the current state value for the process variable, xk,
corrupted by Gaussian distributed noise, i.e.

yk = xk + vk, (24a)

Table 1. Nominal steady state process condi-
tions for the evaporator system.

Variable Description Value Unit

F1 Feed flowrate 10.0 kg/min

F2 Product flowrate 2.0 kg/min

F3 Criculating flowrate 50.0 kg/min

F4 Vapor flowrate 8.0 kg/min

F5 Condensate flowrate 8.0 kg/min

X1 Feed composition 5.0 %
X2 Product composition 25.0 %
T1 Feed temperature 40.0 ◦C
T2 Product temperature 84.6 ◦C
T3 Circulating temperature 80.6 ◦C
L2 Separator level 1.0 m
P2 Operating pressure 50.5 kPa
F100 Steam flowrate 9.3 kg/min

T100 Steam temperature 119.9 ◦C
P100 Steam pressure 194.7 kPa
Q100 Heater duty 339.0 kW
F200 Cooling water flowrate 208.0 kg/min

T200 Cooling water inlet temp. 25.0 ◦C
T201 Cooling water outlet temp. 46.1 ◦C
Q200 Condenser duty 307.9 kW
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where

vk ∈ Niid





[

0
0
0

]

,





0.12 0 0
0 0.152 0
0 0 0.252







 (24b)

4. IDENTIFICATION OF A LINEAR MODEL

In the book introducing the evaporator model, Newell and
Lee [10] also gives a linear state space model of the system.
This linear model is obtained from Taylor series expansion
of the nonlinear model around the nominal steady state.
In this manuscript it is assumed that the true system
model is unknown for the design of the controller. Hence
a linear system description of the general model (23) need
to be provided by other means than linearization of a
mechanistic model. Therefore sets of MISO models will
be found using open loop system identification and data
from simulation of the true system model.

4.1 Open loop simulations

Unfortunately, the process cannot be operated in open
loop as the level in separator is an integrating process.
Hence, this variable need to be controlled and a discrete
time implementation of a PI control loop is added to the
simulation using F2 to control L2. This level is assumed
constrained in the interval 0-2 m by the equipment. The
transfer function for this open loop system was found
simulating a step in F2 for a short time and realizing
that the process gain was -0.15 m/(kg/min) from the system
response. The PI controller is tuned using the SIMC tuning
rules with a desired closed loop time constant of τc = 5
min leading to a control gain Kc = −1.33 kg/(min·m) and
a integral time τI = 20 min [16].

An experiment is made to generate data for the system
identification of the ARX models for the transfer func-
tions between the inputs {P100, F200} and the outputs
{X2, P2}. The two inputs are perturbed simultaneously
for 300 min around the nominal values using PRBS signals.
The signal is allowed to vary 20% for P100 and 25% for
F200 and both signals are designed with a clock period of
10 samples. The inputs and outputs form the experiment
are shown in Fig. 2. The PI controller to stabilize the
level L2 is in automatic during the experiment. The input-
output data from the experiment is divided in 2 series. 2/3
is used for estimation and 1/3 for validation. MISO ARX
models are estimated from the data series, one at a time
for each output. The parameters are presented in Table 2
together with the 95% confidence limits of the estimates.
The model order was fixed to 2 and the numerator polyno-
mials have only one coefficient and a delay of two samples.
This model structure was found testing a range of model
orders in terms for their ability to fit the validation data
and considering correlation analysis of the residuals. From
the 95% confidence limits, it is in general seen that all
estimates are significant. The only exception is b2 for the
dynamics between F200 to X2 which could in principle
be set equal to zero if it was not the only coefficient
in the numerator. One step ahead and pure simulation
prediction of the response for the validation data showed a
91.88% and 45.69% fit for the output X2 respectively and
77.55% and 17.11% for P2. The quality of the fits and the

Table 2. ARX parameter estimates and their
95% confidence limits

I/O Par Estimate low lim. upper lim.

X2 a1 -1.706 -1.779 -1.632
a2 0.7285 0.6574 0.7997

P100 b2 0.003475 0.002529 0.004422
F200 b2 -0.0004217 -0.0010983 0.0002549

σ 0.3182

P2 a1 -0.6863 -0.8276 -0.5450
a2 -0.2811 -0.4183 -0.1439

P100 b2 0.01044 0.00842 0.01246
F200 b2 -0.001579 -0.002592 -0.000566

σ 0.4113

confidence limits reported here are reasonable since simple
linear models are estimated for a nonlinear process system.
This model will be accepted for the MPC controller.

5. CLOSED LOOP SIMULATION

Given the estimated parameters for the dynamics between
the inputs {P100, F200} and the outputs {X2, P2} a state
space model in innovation form is constructed as described
in section 2. The model is expanded with a noise model (2)
to ensure offset free control and the tuning parameters αi

are all chosen to 0.7 as recommended in Huusom et al. [3].
An MPC controller is constructed using the state space
model. It is made with a prediction and control horizon
of 60 samples and the tuning matrices in the objective
function are

Q =

[

1/X2set 0
0 1/P2set

]

, S =

[

5/P100nom 0
0 5/F200nom

]

(25)

I.e. all inputs and outputs are considered with approxi-
mately equal importance. Constraints on the manipulated
variables are not needed in the MPC of this paper, hence
it is equivalent to a finite horizon LQG.

Positive step changes are simulated in three of the po-
tential five disturbance variables, {F1, X1, T200}, and the
responses are shown in Fig. 3. It is clearly seen that the
control system consisting of both the MPC and the PI
loops is able to achieve offset free tracking of all the con-
trolled variables. An acceptable closed loop performance is
achieved despite the sustained unmeasured disturbances
and the reduced order linear models used for the MPC.
The PI controller further maintains the level L2 within
the physical constraints of the gas/liquid separator unit.

5.1 Discussion

Using the proposed controller, all controlled variables do
not have steady state offsets. The controller is designed
using standard system identification tools, a simple noise
model, and a combination of PI and MPC technology.
The tuning used here has been the standard choices for
the noise model, a reasonable long prediction and control
horizon and approximately equal penalties to inputs and
control moves in the MPC cost function. Additional fine
tuning can be used to further improve the performance
of the resulting control system. However, the purpose of
this paper is to illustrate how an offset free ARX based
MPC design methodology can be applied to multivariate
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Fig. 2. Open loop data generation for system identification. PRBS perturbations are made in P100 and F200, while
F2 is given by a PI controller to stabilize L2.

nonlinear processes. And for this purpose, further fine
tuning is not needed.

Another control design option would be to allow the MPC
to vary the level in the separator by changing the set point
to the PI controller between the constraints and thereby
increase the degrees of freedom to reject disturbances.

6. CONCLUSION

The methodology for offset-free MPC design using identi-
fied MISO ARX models has been applied for the nonlinear
process example of the Newell and Lee forced circulation
evaporator model. The control system consists of a MIMO
MPC and a SISO PI loop due to the integration mode of
the gas-liquid separator. The overall performance of the
controller provides an acceptable closed loop performance
and offset-free tracking of all controlled variables based
on standard choices for the tuning. The paper illustrates
how an advanced control system for a realistic nonlinear
multivariate process can be designed.
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(a) +10 % step in F1.
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(b) +10 % step in X1.
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(c) +10 % step in T200.

Fig. 3. Closed loop simulation with step changes in some disturbance parameters. The L2 → F2 loop is control by the
PI controller and the {P100, F200} → {X2, P2} loop is controlled using the MPC.
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