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Abstract: Necessary and sufficient conditions for the positivity and reachability of fractional descriptor positive
discrete-time linear systems are established. The minimum energy control problem for the descriptor positive systems
with bounded inputs is formulated and solved. Sufficient conditions for the existence of solution to the minimum
energy control problem are given. Procedure for computation of optimal input sequences and minimal value of the

performance index is proposed.

1. INTRODUCTION

A dynamical system is called positive if its trajectory starting
from any nonnegative initial state remains forever in the
positive orthant for all nonnegative inputs. An overview of
state of the art in positive theory is given in the monographs
(Farina, Rinaldi, 2000; Kaczorek, 2001). Variety of models
having positive behavior can be found in engineering,
economics, social sciences, biology and medicine, etc..

Mathematical fundamentals of the fractional calculus are
given in the monographs (Oldham, Spanier, 1974; Ostalczyk,
2008; Podlubny, 1999). The positive fractional linear systems
have been investigated in (Kaczorek, 2008a, 2009¢, 2011b,
2012). Stability of fractional linear 1D discrete—time and
continuous-time  systems has been investigated in
(Bustowicz, 2008; Dzielinski, Sierociuk, 2008; Kaczorek,
2012) and of 2D fractional positive linear systems in
(Kaczorek, 2009a). The notion of practical stability of
positive fractional discrete-time linear systems has been
introduced in (Kaczorek, 2008b). Controllability and
observability of linear electrical circuits have been addressed
in (Kaczorek, 2011a). Some recent interesting results in
fractional systems theory and its applications can be found in
(Dazielinski, et. all, 2009; Kaczorek, 2008c; Radwan, et. all,
2009; Tenreiro Machado, et. all, 2006). The minimum energy
control problem for standard linear systems has been
formulated and solved by Klamka, 1991, 1983, 1976 and for
2D linear systems with variable coefficient in (Kaczorek,
Klamka, 1986). The controllability and minimum energy
control problem of fractional discrete-time linear systems has
been investigated by Klamka, 2010. The minimum energy
control of fractional positive continuous-time linear systems
has been addressed in (Kaczorek, 2013b) and of descriptor
positive discrete-time linear systems in (Kaczorek, 2013a).
Necessary and sufficient conditions for the minimum energy
control of positive discrete-time systems with bounded inputs
have been proposed in (Kaczorek, 2013c).

In this paper necessary and sufficient conditions for the
positivity and reachability of the fractional descriptor systems
will be established and the minimum energy control problem
with bounded inputs will be formulated and solved.
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The paper is organized as follows. In section 2 the reduction
of the fractional descriptor linear systems by the use of the
shuffle algorithm to equivalent standard system is addressed.
In section 3 the solution to the standard equivalent fractional
system is given and conditions for the positivity of the
fractional descriptor system are established. Necessary and
sufficient conditions for the reachability of the positive
fractional descriptor systems are given in section 4. The
minimum energy control problem with bounded inputs is
formulated and solved in section 5. Concluding remarks are
given in section 6.

The following notation will be used: R - the set of real
numbers, R™" - the set of nXxm real matrices, R - the
set of mxm matrices with nonnegative entries and
R? =R, x" - the transpose of the vector x, I, - the

nXn identity matrix.

2. REDUCTION OF THE FRACTIONAL DESCRIPTOR
SYSTEMS TO STANDARD SYSTEMS

Consider the descriptor discrete-time linear system
EAN*x,,,=Ax;+Bu;, 0O<a<1,ie Z, ={0]1,..} (2.1)

where

i (o
Axi= ey, c;= (—1)’( ]
j=0 J

1 :
[ij: a(a—1)..(a—j+]) for j=0

2.2
J ! for j=1.2,.. (2:2)

is the o order fractional difference of the state vector,
x,€R", u;e R™ are the state and input vectors and

E,Ac R™", Be R™",

It is assumed that det £ =0 and the pencil Ez— A is regular,
ie.

det[Ez—A]#0
for some ze C (the field of complex numbers).

2.3)
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Substitution of (2.2) into (2.1) yields

Ex, =Ax; —Ecyx;_, —Ecyx;_y —...— Ec;xy — Ec; .1 xy + Bu; (2.4)

where ie Z, and A, =A+E«x.

Theorem 2.1. If the pencil of the fractional descriptor system
(2.1) is regular ((2.3) holds), then the system can be reduced
by the use of the shuffle algorithm to the standard equivalent
form

Xy = Z,»x[ +Z,»_1xl»_1 +...+ Zoxo +l_30ui +Elu[+l +...+Equi+q (2.52)
where
A€ RV k=0,1,...i, B,e R  k=01,...qg (2.5b)

and g is the number of the shuffles.
Proof. The following elementary row operations will be used
(Kaczorek, 1992, 2009b):
1) Multiplication of the i-th row by a real number c.
This operation will be denoted by L[iXxc].

2) Addition to the i-th row of the j-th row multiplied by
a real number c. This operation will be denoted by
Lli+ jxc].

3) Interchange of the i-th and j-th rows. This operation
will be denoted by L[, j].

Performing elementary row operations on the array

E A, -Ec, -Ec;,, B (2.6)
or equivalently on (2.4) we get
E A -Ec —Ec; B
1 Sal 162 1Gi+1 - Bi 2.7)
0 A, 0 0 B,
and
Ex; . =Ayx —Ecox;_ —Ecix;_y —...— Ejc; 1 %o + Bju; ,(2.8a)
O = Aazxi + Bzui . (2.8b)
Substituting in (2.8b) i by i+1 we obtain
—AgaXis1 = Byt (2.9)

The equations (2.8a) and (2.9) can be written in the form

E A -E
~ Ay 0 0

E 3 0 (2.10)
T A PR gl R g W
0 0 B,
The array
E, Ay —Eicy -Ec¢iy B 0 2.11)
- az O 0 oo O 0 Bz

can be obtained from (2.7) by performing a shuffle.
E
If the matrix { ! } is nonsingular, then solving the
~Ha2

equation (2.10) we obtain the standard system

|:Aal:|x _{_Eﬂ’z}c "
-1 i i1 T
E 0 0
Xy =
- LA j n —Eciy n B, n 0
X U : U
0 0 0 i B2 i+l

(24
If the matrix is singular then performing elementary row
operations on (2.11) we obtain

(2.12)

E, Ay —Exy —Exciyy B3 By

(2.13)
0 Aa3 0 “en 0 33 BS

where E, has full row rank and rank E, > rank E; .

Substituting in 0= A,;x; + Byu; + Bsu;,, i by i+1 we obtain

—Ag3Xip = Byt + Bs; o (2.14)
The equations
szH_l = A'Q’Z .xl' - E2C2 e E2Ci+1 + B'2 M[ + B4ui+1 and
(2.14) can be written as
E A —-E
g Xyl = a2 X+ 22 Xt
- Ay 0 0
E B B (2.15)
—LEoCin 2 4
u; + U, + u
I e e o e P
The array
E A’ —-E,c —E,c; B, B, O
2 a2 262 2€Cit+1 2 Dy (2.16)
- AO[3 0 0 ee 0 0 B3 BS

can be obtained from (2.13) by performing a shuffle.
E,

If det
—A

}tO, we can find x;,;, from (2.15) if not we
a3

repeat the procedure for (2.16). If the pencil is regular then

E
1 }and

after ¢ steps we obtain a nonsingular matrix
_Aaq+1

the desired equation (2.5). o

3. SOLUTION TO THE STANDARD EQUIVALENT
SYSTEMS AND POSITIVITY OF THE FRACTIONAL
DESCRIPTOR SYSTEMS

To find the solution x; of the standard discrete-time linear
system (2.5) we shall apply the Z-transform method.
Let X(z) be the Z-transform (2) of x; defined by
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Zlx1=> %z (3.1

i=0

Taking into account that
-p ‘

Zlx_ =" X () +z7" ijz_/ ,p=12,... (3.2a)

j=

p-1

Zlx, 1= 2" X)) 52" p=12.... (3.2b)

=0

and applying the Z-transform to the equation (2.5) we obtain

i q
Zlx 1= D A ZIx 1+ ) B, Zlu;, ;] (3.3a)
k=0 j=0
and

i 9 j-1
X(D)-29=D A7 X()+) B jz‘{U(z) —Zu,z_l} (3.3b)
k=0 =0

j=0
where U(z)=Z[y;] and x;=0,j=-1,...,— k.

Multiplying (3.3b) by z' and solving with respect to X(z) we
obtain

[ ! q _ -1
X@:P_Zﬁﬂﬂm}h+ZW¢%MFZWq}
k=0 =0

j=0
34
Substitution of the expansion
i 1.
{zn—ZAi_kz-“””} =Yo7 G)
k=0 j=0

into (3.4) yields

X(2)= icb,z‘f'

J=0

q J-1
X + Zsz‘H[U(Z)—Zulz_lﬂ . (3.6)
=0 1=0

From definition of the inverse matrix we have
{1,, -y in_kz‘“‘“)} S e
k=0 j=0
= [zq)fz_j]{ln - Z‘Xi—kl_(kﬂ)} =1,
j=0

(3.7)
k=0

Comparison of the coefficients at the same powers of z*,
k = 01,.. from (3.7) d,=1,, D =A,
D, =AD + A, Py=AD, +A D A, ...
general

yields

and in

¢k:E©kd+E4©b2+m+E%H©0k:12 (3.8)
= O A+ DA et DoA ;

Applying the inverse Z-transform and the convolution
theorem (Kaczorek, 2012) to (3.6) we obtain the desired
solution

k=0 j=0

i1 9 _
x; =q>,.x0+2q>,._k_l[23juj+k} ieZ,. (3.9)

Therefore, the following theorem has been proved.
Theorem 3.1. The solution of the equation (2.5) has the form
(3.9) where the matrices ®, are given by (3.8).

Definition 3.1. The fractional discrete system (2.1) is called
(internally) positive if x; € R} for every consistent x,e R}
and all inputs u, € R, ie Z, .

Theorem 3.2. The fractional descriptor system (2.1) is

positive if and only if the matrices of the equivalent standard
system (2.5) satisfy the conditions

Ace KT, k=0...i and B;e RT", j=0l...q.(3.10)

Proof. 1t is well-known that the state vector of the descriptor
system (2.1) and the equivalent standard system (2.5) is the
same. By Definition 3.1 the descriptor system (2.1) is
positive if and only if the standard system (2.5) is positive.

From (3.9) it follows that x; € R, i€ Z, if the conditions
(3.10) are met and x,e€ R}, u;€ R . Necessity of the

condition (3.10) follow the fact that x;e€ R} for every

consistent x,€ R and arbitrary u; € R, ie Z, (Kaczorek,

2012). o

4. REACHABILITY OF THE POSITIVE FRACTIONAL
DESCRIPTOR SYSTEMS

Consider the positive fractional descriptor discrete-time
system (2.1). The positive descriptor system (2.1) is called
reachable in n steps if and only if the equivalent standard
system (2.5) is reachable in n steps.

Definition 4.1. The positive system (2.5) is called reachable

in n steps if for any given x,e€ R’ there exists an input

sequence u, € R} for k = 0,1,....n + g — 1 that steers the
state of the system from x, =0 to x, € R ,ie. x,=x;.

Theorem 4.1. The positive system (2.5) is reachable in n
steps if and only if the reachability matrix

R,=[®,. B, ®,,B cI)n—q—ZEq—l q)n—q—IEq]e R
4.1

h=({+2)m, contains n linearly independent monomial

columns.

Proof. Using (3.9) for i = n and x, =0 we obtain
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= [q)n—q—IEq cI)n—q—ZEq—l

where R, is defined by (4.1).
From (4.2) it follows that there exists an input sequence

u, € Ry for k =0,1,...,i + ¢ if and only if the matrix (4.1)

contains rn linearly independent monomial columns. O

Remark 4.1. Assuming zero the components of the input
sequence that do not correspond to the chosen linear
independent monomial columns we obtain different input

sequence which steers the state vector from x,=0 to
5. MINIMUM ENERGY CONTROL PROBLEM

Consider the fractional descriptor positive system (2.1)
reduced to the form (2.5). In section 4 it was shown that if the
positive system is reachable then there exist many input
sequences that steer the state of the system from x, =0 to

the given final state x, € R’ . Among these input sequences

we are looking for sequence u, € R} fork=0,1,....n + g-1
that minimizes the performance index

h=1
I(u) = ZuiTQui

i=0

S.D

where Qe R is a symmetric positive defined matrix such
that

Qe R (5.2)

and & = n + q is the number of steps in which the state of the
system is transferred from x, =0 to the given final state
xpeRY.

The minimum energy control problem for the fractional
descriptor positive discrete-time linear systems (2.1) with

bounded inputs can be stated as follows.
Given the matrices E, A, B of the descriptor positive system

(2.1), a, the final state x, € R’ and the matrix Qe RY" of

the performance index (5.1) satisfying the condition (5.2),
find a sequence of inputs u, € R} for k = 0,1,....h — 1
satisfying

u, <U (Ue RY isgiven) fork=0,1,...,h—1 (5.3)

that steers the state of the system from x, =0 to x, € R}

and minimizes the performance index (5.1).

To solve the problem we define the matrix

W, =R,0;'R] € R"" (5.4)
where R, € R is defined by (4.1) and
0, =blockdiag[Q7"....,0 ' ]e RImxhm — (5.5)

The matrix (5.4) is non-singular if the positive system is
reachable in A steps.

For a given x, € R’} we may define the input sequence

Up_q

)
i, =| "7 =0 RiW, x, (5.6)

A

Uy

where Q,;l, W, and R, are defined by (5.5), (5.4) and (4.1),

respectively.

Lemma 5.1. If the system (2.5) is reachable and all columns
of the matrix (4.1) are monomial and the matrix Q is diagonal
then

W, 'x, e RY (5.7)
for any x, e R} .

Proof. If the assumptions are satisfied then the matrix
W, =R,0,'Rl is diagonal and W,'e R™" since the
diagonal entries of W, are positive. Therefore, the condition
(5.7) is met for any x, e R} . 0

Lemma 5.2. If the system (2.5) is reachable and all columns
of the matrix (4.1) are monomial and the matrix Q is diagonal
then the input sequence (5.6) steers the positive system from

Xp=0to x, e R}.

Proof. Using the solution of the equation (2.5) for x, =0 and
i = h and (5.6) we obtain
x, = Ryity = RO, ' RAW, 'x, = x; (5.8)

since W), = RhQ,ZlR; holds. o
Lemma 5.3. If the diagonal matrix Q is the scalar matrix

Q = diag[q,,....q;1€ R (5.9)

then the input sequence (5.6) is independent of Q and is given
by
~ _ pT T1-1 qm
i, =Ry, [R,R; ] )cfegi+ (5.10)
forany x, e R} .
Proof. If (5.9) holds then from (5.4) we have
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1
W, =—R,Rl € R™"
9

(.11

and

W' =q[R,R[ T e R, (5.12)

In this case the input sequence (5.6) is given by

. _ _ 1 _ _
iy =0 Ry Wy 'x, =;RZ GlR,RI T x; =Ry [R,R} ' x, (5.13)
1

forany x, e R} .0

Theorem 5.1. Let the fractional descriptor positive system
(2.1) be reachable in & steps and the conditions (5.2) and
(5.7) be satisfied. Moreover, let

Upy

7= “h:‘z e R (5.14)

Uy

be an input sequence satisfying (5.3) that steers the state of
the system from x, =0 to x, € R’ . Then the input sequence
(5.6) satisfying (5.3) also steers the state of the system from
X =0 to x,€ R} and minimizes the performance index

(5.1, ie.

1) < IG@). (5.15)

The minimal value of the performance index (5.1) is given by

1) =xpW, 'x; . (5.16)

Proof. If the conditions (5.2) and (5.7) are met and the
system is reachable in 4 steps then the input sequence (5.6) is

well defined and die R!™. We shall show that the input
sequence (5.6) satisfying (5.3) steers the state of the system
from x, =0 to xXp € R’ . Using (4.2) and (5.6) we obtain

X, =Ry = R,0,'RIW, 'x; =x; (5.17)

since by (5.4) R,0;,'R] =W, Hence X;=Ryi=Ryu or

R,[i-ul=0. (5.18)
The transposition of (5.18) yields
-ul"Rl =0. (5.19)

Postmultiplying the equality (5.19) by Wh_lx ¢ Wwe obtain

[i—ul RyW, 'x, =0. (5.20)

From (5.6) we have Qi =R, Wh_le . Substitution of this
equality into (5.20) yields

li-ul"Q,i=0 (5.21)
where Q, = blockdiag[Q,...,Q]e R .
From (5.21) it follows that
u' Qi =i Qi+ —-al Q,lu—il  (5.22)
since by (5.21) u’ Q=0 Qi =" Qi .
From (5.22) it follows that (5.15) holds since

[ﬁ—ﬁ]TQh[ﬁ—ﬁ]ZO. To find the minimal value of the

performance index (5.1) we substitute (5.6) into (5.1) and we
obtain

h-1
1@) =) 4] Qi =" Qi =10, Ry Wy, 'x 117 0,10, RE W, 'x ]
i=0
=x{W, 'R0, RIW, xp = xfw,x,
(5.23)
since by (5.4) W, 'R,0; 'R} =1, .0

Theorem 5.2. Let the matrix Q have the form (5.9) and the
assumptions of Theorem 5.1 be satisfied. Then the minimum
energy control problem with bounded inputs has a solution if
the last m columns of the input sequence vector (5.6) satisfy
the condition

', =B][BB''x;, <Ue R} (5.24a)

where
B= [Eo El

B,]e Ry (5.24b)

Proof. If the matrix Q has the form (3.8) then by Lemma 5.3
the input sequence is given by (5.10) for any x, € R’ . From

the structure of R, and (5.10) it follows that the last m
components of the input sequence vector ﬁq is given by

i, =B][BB 1" x,. (5.25)
Therefore, the minimum energy control problem with
bounded inputs has a solution if the condition (5.3) is
satisfied. O

The optimal input sequence (5.6) and the minimal value of

the performance index (5.16) can be computed by the use of

the following procedure.

Procedure 5.1.

Step 1. Knowing the matrices A, B, Q and using (3.8) and
(4.1) compute the matrices R;, and W), for a chosen &
such that the matrix R, contains at least n linearly
independent monomial columns and check the
condition (5.24). If this condition is satisfied then go
to step 2.
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Step 2. Using (5.6) find the input sequence u; € RY
k =0,1,....,h — 1 satisfying the condition (5.3). If the
condition (5.3) is not satisfied increase 4 by one and
repeat the computation for i + 1. If the matrix W, is
diagonal after some number of steps we obtain the
desired input sequence satisfying the condition (5.3).
Using (5.16) compute the minimal value of the
performance index (i) .

Step 3.

6. CONCLUDING REMARKS

Necessary and sufficient conditions for the positivity and
reachability of fractional descriptor positive discrete-time
linear systems have been established (Theorem 2.land
Theorem 4.1). The transformation of the fractional descriptor
system to equivalent standard system by the use of the shuffle
algorithm has been addressed. The minimum energy control
problem for the fractional descriptor positive systems has
been formulated and solved (Theorem 5.1). A procedure for
computation of optimal input sequences and minimal value of
the performance index has been proposed (Procedure 5.1).
An open problem is an extension of these considerations to
fractional positive descriptor 2D continuous-discrete linear
systems.
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