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Abstract: Necessary and sufficient conditions for the positivity and reachability of fractional descriptor positive 

discrete-time linear systems are established. The minimum energy control problem for the descriptor positive systems 

with bounded inputs is formulated and solved. Sufficient conditions for the existence of solution to the minimum 

energy control problem are given. Procedure for computation of optimal input sequences and minimal value of the 

performance index is proposed. 

 

1. INTRODUCTION 

A dynamical system is called positive if its trajectory starting 

from any nonnegative initial state remains forever in the 

positive orthant for all nonnegative inputs. An overview of 

state of the art in positive theory is given in the monographs 

(Farina, Rinaldi, 2000; Kaczorek, 2001). Variety of models 

having positive behavior can be found in engineering, 

economics, social sciences, biology and medicine, etc..  

Mathematical fundamentals of the fractional calculus are 

given in the monographs (Oldham, Spanier, 1974; Ostalczyk, 

2008; Podlubny, 1999). The positive fractional linear systems 

have been investigated in (Kaczorek, 2008a, 2009c, 2011b, 

2012). Stability of fractional linear 1D discrete–time and 

continuous-time systems has been investigated in 

(Busłowicz, 2008; Dzieliński, Sierociuk, 2008; Kaczorek, 

2012) and of 2D fractional positive linear systems in 

(Kaczorek, 2009a). The notion of practical stability of 

positive fractional discrete-time linear systems has been 

introduced in (Kaczorek, 2008b). Controllability and 

observability of linear electrical circuits have been addressed 

in (Kaczorek, 2011a). Some recent interesting results in 

fractional systems theory and its applications can be found in 

(Dzieliński, et. all, 2009; Kaczorek, 2008c; Radwan, et. all, 

2009; Tenreiro Machado, et. all, 2006). The minimum energy 

control problem for standard linear systems has been 

formulated and solved by Klamka, 1991, 1983, 1976 and for 

2D linear systems with variable coefficient in (Kaczorek, 

Klamka, 1986). The controllability and minimum energy 

control problem of fractional discrete-time linear systems has 

been investigated by Klamka, 2010. The minimum energy 

control of fractional positive continuous-time linear systems 

has been addressed in (Kaczorek, 2013b) and of descriptor 

positive discrete-time linear systems in (Kaczorek, 2013a). 

Necessary and sufficient conditions for the minimum energy 

control of positive discrete-time systems with bounded inputs 

have been proposed in (Kaczorek, 2013c). 

In this paper necessary and sufficient conditions for the 

positivity and reachability of the fractional descriptor systems 

will be established and the minimum energy control problem 

with bounded inputs will be formulated and solved. 

The paper is organized as follows. In section 2 the reduction 

of the fractional descriptor linear systems by the use of the 

shuffle algorithm to equivalent standard system is addressed. 

In section 3 the solution to the standard equivalent fractional 

system is given and conditions for the positivity of the 

fractional descriptor system are established. Necessary and 

sufficient conditions for the reachability of the positive 

fractional descriptor systems are given in section 4. The 

minimum energy control problem with bounded inputs is 

formulated and solved in section 5. Concluding remarks are 

given in section 6. 

The following notation will be used: ℜ  - the set of real 

numbers, mn×
ℜ  - the set of mn ×  real matrices, 

mn×

+ℜ  - the 

set of mn ×  matrices with nonnegative entries and 
1×

++ ℜ=ℜ
nn

, 
T

x
 
- the transpose of the vector x, nI

 
- the 

nn ×  identity matrix. 

2. REDUCTION OF THE FRACTIONAL DESCRIPTOR 

SYSTEMS TO STANDARD SYSTEMS 

Consider the descriptor discrete-time linear system 
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is the α order fractional difference of the state vector, 
n

ix ℜ∈ , m
iu ℜ∈  are the state and input vectors and 

nn
AE

×
ℜ∈, , mnB ×

ℜ∈ .  

It is assumed that 0det =E  and the pencil AEz −  is regular, 

i.e.  

0]det[ ≠− AEz                             (2.3) 

for some C∈z  (the field of complex numbers). 
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Substitution of (2.2) into (2.1) yields 

 

iiiiiii BuxEcxEcxEcxEcxAEx +−−−−−= +−−+ 01123121 ...α (2.4) 

 

where +∈ Zi  and αα EAA += . 

Theorem 2.1. If the pencil of the fractional descriptor system 

(2.1) is regular ((2.3) holds), then the system can be reduced 

by the use of the shuffle algorithm to the standard equivalent 

form 

 

qiqiiiiiii uBuBuBxAxAxAx ++−−+ +++++++= ...... 11000111 (2.5a) 

 

where  

 
nn

kA ×

+ℜ∈ , k = 0,1,…,i, 
mn

jB
×

+ℜ∈ , k = 0,1,…,q      (2.5b) 

 

and q is the number of the shuffles. 

Proof. The following elementary row operations will be used 

(Kaczorek, 1992, 2009b): 

1) Multiplication of the i-th row by a real number c. 

This operation will be denoted by ][ ciL × . 

2) Addition to the i-th row of the j-th row multiplied by 

a real number c. This operation will be denoted by 

][ cjiL ×+ . 

3) Interchange of the i-th and j-th rows. This operation 

will be denoted by ],[ jiL . 

Performing elementary row operations on the array 

 

BEcEcAE i 12 ... +−−α               (2.6) 

 

or equivalently on (2.4) we get 
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            (2.7) 

and 

 

iiiiii uBxcExcExcExAxE 1011231121111 ... +−−−−= +−−+ α ,(2.8a) 

ii uBxA 220 += α .                                                     (2.8b) 

 

Substituting in (2.8b) i by i+1 we obtain 

 

1212 ++ =− ii uBxAα                             (2.9) 

 

The equations (2.8a) and (2.9) can be written in the form 
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The array 
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can be obtained from (2.7) by performing a shuffle.  

If the matrix 








− 2

1

αA

E
 is nonsingular, then solving the 

equation (2.10) we obtain the standard system 
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If the matrix is singular then performing elementary row 

operations on (2.11) we obtain 
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0...00

'...'
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α +−−
        (2.13) 

 

where 2E  has full row rank and 12 rankrank EE ≥ .  

Substituting in 15330 +++= iii uBuBxAα  i by i+1 we obtain 

 

251313 +++ +=− iii uBuBxAα                     (2.14) 

The equations 

1421222212 '...' +++ ++−−−= iiiii uBuBcEcExAxE α  and 

(2.14) can be written as 
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The array 
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can be obtained from (2.13) by performing a shuffle. 

If 0det
3

2
≠









− αA

E
, we can find 1+ix  from (2.15) if not we 

repeat the procedure for (2.16). If the pencil is regular then 

after q steps we obtain a nonsingular matrix 








− +1q

q

A

E

α

and 

the desired equation (2.5). □ 

3. SOLUTION TO THE STANDARD EQUIVALENT 

SYSTEMS AND POSITIVITY OF THE FRACTIONAL 

DESCRIPTOR SYSTEMS 

To find the solution xi of the standard discrete-time linear 

system (2.5) we shall apply the Z-transform method. 

Let X(z) be the Z-transform (Z) of xi defined by 
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Taking into account that  
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and applying the Z-transform to the equation (2.5) we obtain 
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where ][)( iuzU Z=  and xj = 0, j = − 1,…, − k. 

Multiplying (3.3b) by z
-1

 and solving with respect to X(z) we 

obtain 
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Substitution of the expansion 
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into (3.4) yields 
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From definition of the inverse matrix we have 
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Comparison of the coefficients at the same powers of z
-k

,  

k = 0,1,… from (3.7) yields nI=Φ0 , iA=Φ1 ,  

112 −+Φ=Φ ii AA , 21123 −− +Φ+Φ=Φ iii AAA , … and in 

general  
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Applying the inverse Z-transform and the convolution 

theorem (Kaczorek, 2012) to (3.6) we obtain the desired 

solution 
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Therefore, the following theorem has been proved. 

Theorem 3.1. The solution of the equation (2.5) has the form 

(3.9) where the matrices kΦ  are given by (3.8). 

Definition 3.1. The fractional discrete system (2.1) is called 

(internally) positive if n
ix +ℜ∈  for every consistent nx +ℜ∈0  

and all inputs m
iu +ℜ∈ , +∈ Zi . 

Theorem 3.2. The fractional descriptor system (2.1) is 

positive if and only if the matrices of the equivalent standard 

system (2.5) satisfy the conditions 

 

ikA nn
k ,...,1,0, =ℜ∈

×

+  and qjB
mn

j ,...,1,0, =ℜ∈
×

+ . (3.10) 

 

Proof. It is well-known that the state vector of the descriptor 

system (2.1) and the equivalent standard system (2.5) is the 

same. By Definition 3.1 the descriptor system (2.1) is 

positive if and only if the standard system (2.5) is positive. 

From (3.9) it follows that n
ix +ℜ∈ , +∈ Zi  if the conditions 

(3.10) are met and nx +ℜ∈0 , m
iu +ℜ∈ . Necessity of the 

condition (3.10) follow the fact that n
ix +ℜ∈  for every 

consistent nx +ℜ∈0  and arbitrary m
iu +ℜ∈ , +∈ Zi  (Kaczorek, 

2012). □ 

4. REACHABILITY OF THE POSITIVE FRACTIONAL 

DESCRIPTOR SYSTEMS 

Consider the positive fractional descriptor discrete-time 

system (2.1). The positive descriptor system (2.1) is called 

reachable in n steps if and only if the equivalent standard 

system (2.5) is reachable in n steps. 

Definition 4.1. The positive system (2.5) is called reachable 

in n steps if for any given 
n

fx +ℜ∈  there exists an input 

sequence m
ku +ℜ∈  for k = 0,1,…,n + q – 1 that steers the 

state of the system from 00 =x  to 
n

fx +ℜ∈ , i.e. fn xx = . 

Theorem 4.1. The positive system (2.5) is reachable in n 

steps if and only if the reachability matrix  

 
hn

qqnqqnnnh BBBBR
×

−−−−−−− ℜ∈ΦΦΦΦ= ]...[ 1121201

          (4.1) 

mih )2( += , contains n linearly independent monomial 

columns. 

Proof. Using (3.9) for i = n and 00 =x  we obtain 
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where Rn is defined by (4.1). 

From (4.2) it follows that there exists an input sequence 
m

ku +ℜ∈  for k = 0,1,…,i + q if and only if the matrix (4.1) 

contains n linearly independent monomial columns. □ 

Remark 4.1. Assuming zero the components of the input 

sequence that do not correspond to the chosen linear 

independent monomial columns we obtain different input 

sequence which steers the state vector from 00 =x  to 

fn xx = . 

5. MINIMUM ENERGY CONTROL PROBLEM 

Consider the fractional descriptor positive system (2.1) 

reduced to the form (2.5). In section 4 it was shown that if the 

positive system is reachable then there exist many input 

sequences that steer the state of the system from 00 =x  to 

the given final state 
n

fx +ℜ∈ . Among these input sequences 

we are looking for sequence m
ku +ℜ∈  for k = 0,1,…,n + q – 1 

that minimizes the performance index 
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where mmQ ×

+ℜ∈  is a symmetric positive defined matrix such 

that 
mmQ ×

+

−
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and h = n + q is the number of steps in which the state of the 

system is transferred from 00 =x  to the given final state 

n
fx +ℜ∈ . 

The minimum energy control problem for the fractional 

descriptor positive discrete-time linear systems (2.1) with 

bounded inputs can be stated as follows.  

Given the matrices E, A, B of the descriptor positive system 

(2.1), α, the final state 
n

fx +ℜ∈  and the matrix nnQ ×

+ℜ∈  of 

the performance index (5.1) satisfying the condition (5.2), 

find a sequence of inputs m
ku +ℜ∈  for k = 0,1,…,h – 1 

satisfying  

 

Uuk ≤  ( mU +ℜ∈  is given) for k = 0,1,…,h – 1    (5.3) 

 

that steers the state of the system from 00 =x  to 
n

fx +ℜ∈  

and minimizes the performance index (5.1). 

To solve the problem we define the matrix 
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+ℜ∈  is defined by (4.1) and 
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The matrix (5.4) is non-singular if the positive system is 

reachable in h steps. 

For a given 
n

fx +ℜ∈  we may define the input sequence 
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where 1−

hQ , hW  and hR  are defined by (5.5), (5.4) and (4.1), 

respectively. 

Lemma 5.1. If the system (2.5) is reachable and all columns 

of the matrix (4.1) are monomial and the matrix Q is diagonal 

then 
n

fh xW +

−
ℜ∈

1
                          (5.7) 

for any 
n

fx +ℜ∈ . 

Proof. If the assumptions are satisfied then the matrix 
T
hhhh RQRW 1−

=  is diagonal and nn
hW ×

+

−
ℜ∈

1  since the 

diagonal entries of Wq are positive. Therefore, the condition 

(5.7) is met for any 
n

fx +ℜ∈ . □ 

Lemma 5.2. If the system (2.5) is reachable and all columns 

of the matrix (4.1) are monomial and the matrix Q is diagonal 

then the input sequence (5.6) steers the positive system from 

00 =x  to 
n

fx +ℜ∈ . 

 

Proof. Using the solution of the equation (2.5) for 00 =x  and 

i = h and (5.6) we obtain 

 

ffh
T
hhhhhh xxWRQRuRx ===
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since T
hhhh RQRW 1−

=  holds. □ 

Lemma 5.3. If the diagonal matrix Q is the scalar matrix 

 
mmqqQ ×

+ℜ∈= ],...,[diag 11                    (5.9) 

 

then the input sequence (5.6) is independent of Q and is given 

by 
qm

f
T
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T
hh xRRRu +

−
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1
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for any 
n

fx +ℜ∈ . 

Proof. If (5.9) holds then from (5.4) we have 
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for any 
n

fx +ℜ∈ . □ 

Theorem 5.1. Let the fractional descriptor positive system 

(2.1) be reachable in h steps and the conditions (5.2) and 

(5.7) be satisfied. Moreover, let 
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M
                        (5.14) 

 

be an input sequence satisfying (5.3) that steers the state of 

the system from 00 =x  to 
n

fx +ℜ∈ . Then the input sequence 

(5.6) satisfying (5.3) also steers the state of the system from 

00 =x  to 
n

fx +ℜ∈  and minimizes the performance index 

(5.1), i.e. 

)()ˆ( uIuI ≤ .                           (5.15) 

 

The minimal value of the performance index (5.1) is given by 

 

fh
T
f xWxuI

1
)ˆ(

−
= .                         (5.16) 

 

Proof. If the conditions (5.2) and (5.7) are met and the 

system is reachable in h steps then the input sequence (5.6) is 

well defined and hmu +ℜ∈ˆ . We shall show that the input 

sequence (5.6) satisfying (5.3) steers the state of the system 

from 00 =x  to 
n

fx +ℜ∈ . Using (4.2) and (5.6) we obtain 

 

ffh
T
hhhhh xxWRQRuRx ===

−− 11ˆ             (5.17) 

 

since by (5.4) h
T
hhh WRQR =

−1 . Hence uRuRx hhf == ˆ  or 

 

0]ˆ[ =− uuRh .                             (5.18) 

 

The transposition of (5.18) yields 

 

0]ˆ[ =−
T
h

T Ruu .                            (5.19) 

 

Postmultiplying the equality (5.19) by fh xW
1−

 we obtain 

 

0]ˆ[
1

=−
−

fh
T
h

T
xWRuu .                    (5.20) 

 

From (5.6) we have fh
T
hh xWRuQ

1ˆ −
= . Substitution of this 

equality into (5.20) yields 

 

0ˆ]ˆ[ =− uQuu h
T                             (5.21) 

 

where hmhm
h QQQ ×

+ℜ∈= ],...,[ blockdiag . 

From (5.21) it follows that 

 

]ˆ[]ˆ[ˆˆ uuQuuuQuuQu h
T

h
T

h
T

−−+=        (5.22) 

 

since by (5.21) uQuuQuuQu h
T

h
T

h
T ˆˆˆˆ == . 

From (5.22) it follows that (5.15) holds since 

0]ˆ[]ˆ[ ≥−− uuQuu h
T . To find the minimal value of the 

performance index (5.1) we substitute (5.6) into (5.1) and we 

obtain 

 

fh
T
ffh

T
hhhh

T
f

fh
T
hhh

T
fh

T
hhh

T
h

i

i
T
i

xWxxWRQRWx

xWRQQxWRQuQuuQuuI

1111

1111
1

0

][][ˆˆˆˆ)ˆ(

−−−−

−−−−
−

=

==

===∑

                 (5.23) 

since by (5.4) n
T
hhhh IRQRW =

−− 11 . □ 

Theorem 5.2. Let the matrix Q have the form (5.9) and the 

assumptions of Theorem 5.1 be satisfied.  Then the minimum 

energy control problem with bounded inputs has a solution if 

the last m columns of the input sequence vector (5.6) satisfy 

the condition 

 
m

f
TT

qm UxBBBu +

−
ℜ∈<=

1
]['ˆ                (5.24a) 

where 
mqn

qBBBB
)1(

10 ]...[
+×

+ℜ∈= .           (5.24b) 

 

Proof. If the matrix Q has the form (3.8) then by Lemma 5.3 

the input sequence is given by (5.10) for any 
n

fx +ℜ∈ . From 

the structure of Rq and (5.10) it follows that the last m 

components of the input sequence vector qû  is given by 

 

f
TT

qm xBBBu
1

]['ˆ
−

= .                     (5.25) 

 

Therefore, the minimum energy control problem with 

bounded inputs has a solution if the condition (5.3) is 

satisfied. □ 

The optimal input sequence (5.6) and the minimal value of 

the performance index (5.16) can be computed by the use of 

the following procedure. 

Procedure 5.1. 
Step 1. Knowing the matrices A, B, Q and using (3.8) and 

(4.1) compute the matrices Rh and Wh for a chosen h 

such that the matrix Rh contains at least n linearly 

independent monomial columns and check the 

condition (5.24). If this condition is satisfied then go 

to step 2. 
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Step 2. Using (5.6) find the input sequence m
ku +ℜ∈   

k = 0,1,…,h – 1 satisfying the condition (5.3). If the 

condition (5.3) is not satisfied increase h by one and 

repeat the computation for i + 1. If the matrix Wh is 

diagonal after some number of steps we obtain the 

desired input sequence satisfying the condition (5.3). 

Step 3. Using (5.16) compute the minimal value of the 

performance index )ˆ(uI . 

6. CONCLUDING REMARKS 

Necessary and sufficient conditions for the positivity and 

reachability of fractional descriptor positive discrete-time 

linear systems have been established (Theorem 2.1and 

Theorem 4.1). The transformation of the fractional descriptor 

system to equivalent standard system by the use of the shuffle 

algorithm has been addressed. The minimum energy control 

problem for the fractional descriptor positive systems has 

been formulated and solved (Theorem 5.1). A procedure for 

computation of optimal input sequences and minimal value of 

the performance index has been proposed (Procedure 5.1). 

An open problem is an extension of these considerations to 

fractional positive descriptor 2D continuous-discrete linear 

systems. 
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