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Abstract: Robust Kalman filter (RKF) via l1 regression is a linear filter for non-Gaussian
measurement noise, and it can be formulated as a l1 optimization problem. Generally, the
optimization problem cannot be solved analytically, and some numerical iterative methods are
needed. This paper proposes a closed form solution of RKF via l1 regression by an approximation
of its optimal solution and it gives a fast algorithm. The approximated solution can be calculated
by upper and lower bounds of the optimal solution. Moreover, a bound of an estimation error
of the approximated solution can be analyzed. Some numerical simulations demonstrate the
effectiveness of the proposed algorithm.
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1. INTRODUCTION

Kalman filter (KF) is a well known global optimal es-
timation for linear systems under some conditions. The
condition is that an estimation error of an initial state and
all noises are distributed by normal distributions. However,
many real applications are contaminated by non-Gaussian
measurement noise. Especially, outlier is one of the ma-
jor non-Gaussian measurement noises and generated by
heavier tailed distributions than the normal distribution.
Hence, abnormal values, which are distant so much from
mean values of distributions, are unusually occurred. In
target tracking, an outlier is happened due to a reflection
noise and it is called clutter [Bilik and Tabrikian, 2010].
In UAV using visual feedback [Guenard, 2008], temporary
change of image contrast in background causes outliers in
position data. Also in UGV using GPS [Kurashiki et al.,
2010], radio disturbances due to some obstacles provide po-
sition data with outliers. For non-Gaussian measurement
noise, KF is a unbiased minimum variance estimator, but
not global optimal [Zanetti, 2012].

Many algorithms of KF for outliers have been proposed. A
major KF for non-Gaussian measurement noise including
outliers is a Gaussian sum filter [Sorenso and Alspach,
1971]. Gaussian sum filter can approximate arbitrary dis-
tributions by using a Gaussian mixture distribution, so it
can provide global optimal estimates. However, a computa-
tional cost of the method is very high. In contrast, applica-
tion of l1 regression to KF gives a robust estimation under
outliers and the method is called robust KF (RKF) via
l1 regression [Mattingley and Boyd, 2010, Kaneda et al.,
2013]. The method evaluates the outliers by l1 regression
and the regression generates some thresholds to truncates
the outliers Therefore, the method has little time delay to
reduce effects of the outliers. However, RKF via l1 regres-
sion needs to compute LMI and l1 optimization problem,

so the performance of the RKF depends on algorithms to
compute the problems in practice.

Many useful tools to compute LMI are existing. For ex-
ample, CVX [Mattingley and Boyd, 2010] and YALMIP
[Löfberg, 2004] are description languages of convex opti-
mization problems, and the languages can model LMI eas-
ily in MATLAB and the other softwares. SeDuMi [Sturm,
1999] and SDPT3 [Toh, et al., 1999] are solvers for opti-
mization problems and implement some algorithms, e.g.,
an interior point method is the most famous algorithm.
However, the algorithms need some numerical iterations in
general, so a convergence rate and accuracy of the solutions
depend on conditions of the iterations.

l1 optimization problems can be formulated as QP op-
timization problems, and CVX can model also the opti-
mization problems. Moreover, CVXGEN [Mattingley and
Boyd, 2012] can generate custom C codes of the QP
problems for online computations. Fast iterative shrinkage
thresholding algorithm (FISTA) are proposed as effective
computation methods for l1 optimization problems [Beck
and Marc, 2009]. However, similarly to computations of
LMI, these methods demand some iterative methods. Ho-
motopy method was also proposed and can compute a
solution in a closed form [Garrigues and Ghaoui, 2008],
but the method uses all past data.

In this paper, we derive upper and lower bounds of an op-
timal estimate of the RKF and compute an approximated
estimate using the bounds. In addition, the approximated
estimate is given by a closed form, so no iteration is needed
and it gives a fast computation.

This paper is organized as follows: In section 2, RKF
via l1 regression is introduced. In section 3, a closed
form solution of the RKF is proposed and the estimation
error of the algorithm is analyzed. In section 4, some
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numerical simulations demonstrate effectiveness of the
proposed algorithm. Conclusion is given in section 5.

Notation A vector is represented as a bold character and
its element is as a subscript i. However, when variables and
functions depend on time k, the time dependent functions
are also expressed as a subscript k. For example, when a
vector x depends on time k, the vector and its i-th element
are expressed as xk and xk,i, respectively.

A derivative of an absolute function is defined as the
following sub-gradient:

∂|xi|
∂xi

:∈

{ {1} xi > 0
[− 1, 1] xi = 0
{−1} xi < 0

.

It means that ∂|xi|/∂xi = 1 for xi > 0 and ∂|xi|/∂xi = −1
for xi < 0.

2. ROBUST KALMAN FILTER VIA L1 REGRESSION

2.1 Formula

Let xk ∈ Rn and yk ∈ Rm be a state and measurement at
time k, respectively. We consider the following linear time
invariant system:

xk = Axk−1 +wk, yk = Cxk + vk + zk. (1)

where A ∈ Rn×n and C ∈ Rm×n are known matrices
of system and measurement, respectively. wk ∈ Rn is a
system noise at time k, and vk, zk ∈ Rm are a Gaussian
noise and outlier in a measurement at time k, respectively.

We assume that wk and vk are mutually independent.
Let P ∈ Rn be a covariance matrix of a state estimation
error, and let Q ∈ Rn×n and R ∈ Rm×m denote covariance
matrices of wk and vk, respectively. Given Q, R, and an
initial value of P , i.e., P0|0, prediction and correction laws
of RKF via l1 regression are expressed as

Predict:

{
x̂k|k−1 = Ax̂k−1|k−1,
Pk|k−1 = APk−1|k−1A

T +Q,
(2)

Correct:


L = Pk|k−1C

T (CPk|k−1C
T +R)−1,

ek = yk − Cx̂k|k−1,
x̂k|k = x̂k|k−1 + L(ek − z∗

k),
Pk|k = (I − LC)Pk|k−1,

(3)

where z∗
k is given by a solution of the following optimiza-

tion problem with l1 regression:

z∗
k = argmin

zk

(ek − zk)
T
W (ek − zk) +

m∑
i=1

λi |zk,i| ,(4)

where W is the following positive definite matrix:

W = (I − CL)TR−1(I − CL) + LTP−1
k|k−1L

=
(
CPk|k−1C

T +R
)−1

. (5)

λ = [λ1, · · · , λm]T ∈ Rm is a regularization parameter,
and it can be designed by the covariance matrices, Q and
R, systematically [Kaneda et al., 2013].

Generally, the optimization problem (4) requires itera-
tive computation methods like an interior point method.

However, a convergence rate and accuracy of solutions
depend on conditions of the iterative methods. For ex-
ample, accuracy of a gradient method depends on its step
size. And also, solutions rely on stop conditions in any
algorithms. Parameters in iterative algorithms need to be
tuned for each applications and the tuning is heuristic in
general. In this paper, we propose a new algorithm without
iterations by an approximation of the optimal solution,
and we analyze a performance of the algorithm.

2.2 Condition to design regularization parameters of RKF

In Eq. (4), a first order necessary condition of an optimal-
ity condition derives the following inclusions:

(
2W (ek − z∗

k)
)
i
∈


{λi} z∗k,i > 0
[− λi, λi] z

∗
k,i = 0

{−λi} z∗k,i < 0
, (6)

where (·)i means i-th element of a vector. Eq. (4) is
a convex optimization problem, so the condition is also
sufficient. Note that Eq. (4) can be solved analytically if
W is scalar or a diagonal matrix.

Assume that measurements include no outliers, i.e., zk =
0, Let e∗k := ek|zk=0, Eq. (6) gives the following inclusion:(

2We∗k
)
i
∈ [− λi, λi]. (7)

Let a sub-gradient of |zk,i| be ηi ∈ [−1, 1]. Eq. (7) can be
rewritten as

[ λ1η1 · · · λmηm ]
T
= 2We∗k. (8)

Since ηi can be randomly selected, it can be regarded as a
stochastic variable without a loss of generality. Addition-
ally, a selection of ηi is independent of other variables. Note
that e∗k is a prediction error considering only Gaussian
noise as a measurement noise. A covariance matrix of e∗k,
i.e., Σe∗ , is given by

Σe∗ = E[e∗ke
∗
k
T ] = CPk|k−1C

T +R. (9)

Note that W−1 = CPk|k−1C
T + R, E[η2i ] ≤ 1, and

E[ηiηj ] = 0 (i ̸= j). Eq. (8) gives the following inequality:

diag(λ2
1, · · · , λ2

m)≥ diag(λ2
1E[η21 ], · · · , λ2

mE[η2m])

= 4WE
[
e∗k (e

∗
k)

T
]
W = 4W, (10)

where diag(·) is a diagonal matrix. Therefore, Eq. (10) is
a condition of the regularization parameter λ.

A sparse solution, i.e., z∗k,i = 0, can be often obtained if
λi is large. λ should be determined in a small residual of
both sides of Eq. (10). One of the solutions is given by the
following semi-definite programming (SDP):

min
λ2
1,··· ,λ2

m

λ2
1 + · · ·+ λ2

m

s.t. diag(λ2
1, · · · , λ2

m) ≥ 4W. (11)

Claim 1. An assumption of z∗
k = 0 derives Eq. (7).

However, a dual problem of Eq. (4) can result in the same
inclusion without the assumption [Kaneda et al., 2013].

Claim 2. In general, Eq. (4) cannot be solved analytically,
and some iterative methods are needed. Also in Eq. (11),
iterative methods are required to solve the LMI.
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3. FAST ALGORITHM OF ROBUST KALMAN
FILTER BY A CLOSED FORM SOLUTION

3.1 Derivation

Let ẑ∗
k be an approximated solution of z∗

k. This section
shows that use of upper and lower bounds of z∗

k provides
the approximation of solution ẑ∗

k, and ẑ∗
k can be written

in a closed form.

It is assumed that the regularization parameter is given
by the following inequality:

Λ ≥
√
W, Λ = diag(λ1, · · · , λm), (12)

where
√
W

(√
W

)T

= W . Suppose that
√
W is computed

by Cholesky decomposition, so
√
W becomes a lower

triangle matrix. The first order necessary condition of an
optimality condition can be rewritten as

W (ek − z∗
k) =

1

2
Λ
∂||z∗

k||1
∂z∗

k

.

∴
(
∂||z∗

k||1
∂z∗

k

)T

W (ek − z∗
k) =

1

2

(
∂||z∗

k||1
∂z∗

k

)T

Λ
∂||z∗

k||1
∂z∗

k

.

Therefore, the following inequality is satisfied:((√
W

)T ∂||z∗
k||1

∂z∗
k

)T

×
((√

W
)T

(ek − z∗
k)−

∂||z∗
k||1

∂z∗
k

)
≥ 0, (13)

where
(√

W
)T

is an upper triangle matrix and repre-

sented by the following equation:

(√
W

)T

=


w11 w12 · · · w1m

0 w22
. . . w2m

...
. . .

. . .
...

0 · · · 0 wmm

 . (14)

A sufficient condition for Eq. (13) is as follows:
((√

W
)T ∂||z∗

k,i||1
∂z∗

k,i

)
i

≥ 0,((√
W

)T

(ek − z∗
k)−

∂||z∗
k||1

∂z∗
k

)
i

≥ 0,
(15)

or 
((√

W
)T ∂||z∗

k,i||1
∂z∗

k,i

)
i

≤ 0,((√
W

)T

(ek − z∗
k)−

∂||z∗
k||1

∂z∗
k

)
i

≤ 0.
(16)

First, consider a case of i = m. Assuming that diagonal
elements of Eq. (14) are selected to be positive, conditions
(15) and (16) result in the following inequalities:

z∗k,m ≤ ek,m − 1

wmm

∂|z∗k,m|
z∗k,m

,
∂|z∗k,m|
z∗k,m

≥ 0, (17)

z∗k,m ≥ ek,m − 1

wmm

∂|z∗k,m|
z∗k,m

,
∂|z∗k,m|
z∗k,m

≤ 0. (18)

Right hand sides of the inequalities can be interpreted
as computations of upper and lower bounds of z∗k,m. Let
z̄∗k,m ≥ 0 and z∗k,m ≤ 0 be the upper and lower bounds
of z∗k,m, respectively. Assuming that signs of the upper
and lower bounds are equal to one of the optimal solution,
these bounds can be calculated by the following equations,
respectively:

z̄∗k,m =

{
ek,m − 1

wmm
ek,m > 1

wmm

0 otherwise
, (19)

z∗k,m =

{
ek,m + 1

wmm
ek,m < − 1

wmm

0 otherwise
. (20)

Eq. (19) and (20) are 0 in a common domain. An estimate
of z∗k,m, i.e., ẑ∗k,m, is defined as

ẑ∗k,m = z̄∗k,m + z∗k,m

=


ek,m − 1

wmm
ek,m > 1

wmm

0 otherwise
ek,m + 1

wmm
ek,m < − 1

wmm

. (21)

Assume that elements from i+1 to m are calculated. The
condition (15) provides the following condition for i-th
elements:

∂|z∗
k,i|

z∗
k,i

≥ − 1
wii

∑m
j=i+1 wij

∂|ẑ∗
k,j |

ẑ∗
k,j

,

z∗k,i ≤ e′k,i − 1
wii

∂|z∗
k,i|

z∗
k,i

,

e′k,i = ek,i +
1

wii

∑m
j=i+1 wij(ek,j − ẑ∗k,j).

(22)

In the same way as i = m, Eq. (22) means a calculation
of an upper bound of z∗k,i, i.e., z̄

∗
k,i ≥ 0. Note that z̄∗k,i > 0

gives
∂|z̄∗

k,i|
z̄∗
k,i

= 1. Assuming that signs of z∗k,i and z̄∗k,i are

same, z̄∗k,i can be computed by

if − 1

wii

m∑
j=i+1

wij

∂|ẑ∗k,j |
ẑ∗k,j

≤ 1

then z̄∗k,i =

{
e′k,i − 1

wii
e′k,i >

1
wii

0 otherwise

else z̄∗k,i = 0. (23)

where, for convenience, z̄∗k,i = 0 if the condition (15) is not

satisfied. Similarly, note that
∂|z∗

k,i|
z∗
k,i

= −1 for z∗k,i < 0, z∗k,i
is given by

if − 1

wii

m∑
j=i+1

wij

∂|ẑ∗k,j |
ẑ∗k,j

≥ −1

then z∗k,i =

{
e′k,i +

1
wii

e′k,i < − 1
wii

0 otherwise

else z∗k,i = 0. (24)

Also in the case, Eq. (23) and (24) become 0 in a common
domain. Therefore, ẑ∗k,i is defined as

ẑ∗k,i = z̄∗k,i + z∗k,i. (25)

Algorithm 1 shows a fast algorithm of the RKF by a closed
form computation.
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Algorithm 1 Fast algorithm of measurement update of
robust Kalman filter via l1 regression at time k

1: ek = yk − Cx̂k|k−1

2: W = (CPk|k−1C
T +R)−1

3: compute
(√

W
)T

using Cholesky decomposition,

where wij is an element of
(√

W
)T

4: ẑ∗k,m = max(|ek,m| − 1
wmm

, 0) sign(ek,m)
5: for i = m− 1 down to 1 do

6: e′k,i = ek,i − 1
wii

∑m
j=i+1 σij

∂|ẑ∗
k,j |

∂ẑ∗
k,j

.

7: if − 1
wii

∑m
j=i+1 wij

∂|ẑ∗
k,j |

ẑ∗
k,j

> 1 then

8: z̄∗k,i = 0
9: else

10: z̄∗k,i = max
(
e′k,i − 1

wii
, 0
)

11: end if
12: if − 1

wii

∑m
j=i+1 wij

∂|ẑ∗
k,j |

ẑ∗
k,j

< −1 then

13: z∗k,i = 0
14: else

15: z∗k,i = min
(
e′k,i +

1
wii

, 0
)

16: end if
17: ẑ∗k,i = z̄∗k,i + z∗k,i.
18: end for
19: L = Pk|k−1C

TW
20: x̂k|k = x̂k|k−1 + L(ek − ẑ∗

k)
21: Pk|k = (I − LC)Pk|k−1

3.2 Analysis of an Estimation Error of Outliers and
Innovation of RKF

In order to show a performance of the proposed algorithm,
an estimation error of the solution is analyzed. Moreover,
an innovation of the RKF using the algorithm is also
analyzed.

Assume that the following condition is satisfied for esti-
mated outliers ẑ∗

k:

−1 ≤ − 1

wii

m∑
j=i+1

wij

∂|ẑ∗k,j |
ẑ∗k,j

≤ 1, ∀ẑ∗i . (26)

Eq. (25) can be simplified as

ẑ∗k,i =


e′k,i − 1

wii
e′k,i >

1
wii

0, otherwise
e′k,i +

1
wii

e′k,i < − 1
wii

. (27)

Eq. (27) is equivalent to a solution of the following equa-
tion: (√

W
)T

(ek − ẑ∗
k) =

∂||ẑ∗
k||1

∂ẑ∗
k

. (28)

For an estimation error of outliers, Eq. (1) and (28) yield
the following equation:

ẑ∗
k − zk = −

(√
W

)−T ∂||ẑ∗
k||1

∂ẑ∗
k

+ C(xk − x̂k|k−1) + vk.

Note that
∂||ẑ∗

k||1
∂ẑ∗

k
is a vector consisting of sub-gradients.

This means that each element of the vector can be inter-

preted as mutually independent stochastic variables which

are in [−1, 1]. From E

[
∂||ẑ∗

k||1
∂ẑ∗

k

(
∂||ẑ∗

k||1
∂ẑ∗

k

)T
]
≤ I and Eq.

(5), a covariance matrix of an estimation error of outliers
is given by

E
[
(ẑ∗

k − zk)(ẑ
∗
k − zk)

T
]

≤
(√

W
)−T (√

W
)−1

+ CPk|k−1C
T +R

= W−1 + CPk|k−1C
T +R

= 2
(
CPk|k−1C

T +R
)
. (29)

Moreover, for an innovation of the RKF, Eq. (28) yields

ek − ẑ∗
k =

(√
W

)−T ∂||ẑ∗
k||1

∂ẑ∗
k

.

Therefore, its covariance matrix is given by

E
[
(ek − ẑ∗

k)(ek − ẑ∗
k)

T
]

≤
(√

W
)−T (√

W
)−1

= CPk|k−1C
T +R. (30)

Claim 3. Note that Eq. (27) is an approximated solution,
not optimal, again. However, a covariance matrix of an
estimation error of ẑ∗

k is bounded by Eq. (29) under the
condition (26).

Claim 4. The proposed algorithm assumes that
√
W is a

triangle matrix. If
√
W is not a symmetric matrix, Eq. (12)

cannot necessarily satisfy the condition of the regulariza-
tion parameter (10). However, the proposed algorithm can
provide the performance given by Eq. (30) if the condition
(26) is satisfied. This means that the covariance matrix of
an innovation of the RKF is bounded by that of standard
KF without outliers. The fact shows that the performance
of the RKF computed by the proposed algorithm becomes
ideal one in some meanings.

Claim 5. The covariance matrices are satisfied only under
the condition (26). In other words, the condition (26) can
judge whether the proposed algorithm is good or not.

3.3 Analysis of a State Estimation Error

Eq. (1) and (3) yield the following equation:

xk − x̂k|k = xk − x̂k|k−1 − L(ek − ẑ∗
k)

= (I − LC)(xk − x̂k|k−1)− Lvk − L (zk − ẑ∗
k) ,

where ẑ∗
k is used in Eq. (3) instead of z∗

k. Both in KF
and the RKF, Eq. (3) updates a covariance matrix of a
state estimation error. However, under outliers, an actual
updated covariance matrix of a state estimation error is
given by

Pk|k =E
[
(xk − x̂k|k)(xk − x̂k|k)

T
]

= (I − LC)Pk|k−1

+ LE
[
(zk − ẑ∗

k)(zk − ẑ∗
k)

T
]
LT . (31)

In the standard KF, ẑ∗
k = 0, so the actual covariance

matrix under outliers depends on a second moment of zk.
For example, if zk is distributed by a distribution whose
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second moment is infinite, like a Cauchy distribution[Idan
and Speyer, 2010], the updated covariance matrix Pk|k
should be infinite in ideal, but it results in no update of a
state. On the other hand, in the RKF using the proposed
algorithm, Eq. (31) satisfies the following inequality and
bounded:

Pk|k ≤ (I − LC)Pk|k−1 + 2LCPk|k−1

= (I + LC)Pk|k−1. (32)

In the RKF using the proposed algorithm, the updated
covariance matrix of a state estimation error can be
selected among solutions satisfying Eq. (32). The update
law (3) is one of the solutions.

4. SIMULATION

4.1 Problem Statement

We consider a state estimation problem of two-wheel
vehicle shown in Fig. 1 under outliers [Kaneda et al., 2013].
Let m and J be a mass of the vehicle and moment of
inertia about the center of gravity, respectively. Let f and
τθ denote a driving force in the direction of motion and

steering torque, respectively. Assuming q = [ x θ y ]
T
and

τ = [ f τθ ]
T
, a dynamic model of the vehicle is given by[

m 0 0
0 J 0
0 0 m

]
q̈ =

[
cos θ 0
0 1

sin θ 0

]
τ .

The vehicle satisfies the following velocity constraint:

ẋ sin θ − ẏ cos θ = 0.

A model used in the estimation is the following constant
acceleration model:

xk = Aaxk−1 +wk,

where xk = [xk, ẋk, yk, ẏk, θk, θ̇k]
T ∈ R6 is a state of the

vehicle at time k. Aa and wk are given by

Aa = diag(A, A, A), wk =
[
GTax GTay GTaθ

]T
,

where A =

[
1 ∆t
0 1

]
and G =

[
∆t2

2
∆t

]T
. ∆t is a sampling

time, and ax, ay, and aθ are accelerations of xk, yk, and
θk, respectively. Assume that ax, ay, and aθ are mutually
independent. Let σax , σay , and σaθ

be standard deviations

Fig. 1. Model of two-wheeled vehicle with non-holonomic
constraint.

of ax, ay, and aθ, respectively. A covariance matrix of wk,
i.e., Q is given by

Q = E[wkw
T
k ] = diag(σ2

ax
GGT , σ2

ay
GGT , σ2

aθ
GGT ).

4.2 Noise Model

Two cases of distributions are considered as outliers, i.e.,
Cauchy and Gaussian mixture distributions. Cauchy dis-
tribution is often used to represent impulsive unexpected
values of sensors [Idan and Speyer, 2010]. Gaussian mix-
ture distribution is also used to express unusual outliers,
e.g., clutter of radar tracking systems [Bilik and Tabrikian,
2010]. Cauchy and Gaussian mixture distributions, pc(x)
and pg(x), are given by the following equations, respec-
tively:

pc(x) =
1

π

δ

δ2 + (x− x0)2
,

pg(x) = (1− ε)Nx(0,Σ
2
1) + εNx(0,Σ

2
2),

where x0 is a center and δ is a width of Cauchy distri-
bution. ε is a random variable distributed by Bernoulli
distribution whose probability is p. Nx(µ,Σ

2) is a normal
distribution whose mean is µ and covariance matrix is Σ2.

4.3 Conditions

An initial value of the vehicle is x0 = [2.5 1.0 0.0]T , and
parameters of the vehicle are m = 1.0 and J = 0.1. Torque
inputs are determined appropriately.

A nominal measurement noise is Gaussian white noise
whose mean is 0 and covariance matrix R is given by

R =

[
0.29 0.30 0.36
0.30 0.53 0.30
0.36 0.30 0.49

]
.

In use of the Cauchy distribution, Cauchy noise is added
to the nominal measurement noise. Its parameters are
x0 = 0 and δ = 5 × 10−2. In use of the Gaussian
mixture distribution, p = 0.3, Nx(0,Σ

2
1) is a distribution

of the nominal measurement noise, and Nx(0,Σ
2
2) is a

distribution whose standard deviation is 20 times more
than that of the nominal measurement noise.

Parameters of the RKF are P0|0 = I, σ2
ax

= σ2
ay

= 1.0 ×
104, and σ2

aθ
= 5.0×10. A covariance matrix of the nominal

measurement noise assumes to be known.

MATLAB is used to compute the simulation. A CPU of a
computer used in the simulation is Xeon X5550 (2.66GHz)
and memory is 3GB. The proposed algorithm is compared
with four methods, i.e., CVX, CVXGEN, FISTA and
use of only diagonal elements of W . Since the RKF can
compute its solution analytically ifW is a diagonal matrix,
use of only diagonal elements results in a fast computation.
CVXGEN generates C code of QP optimization problems
in CVX, and the compiled code is used in MATLAB to
accelerate a computation. A solution of Eq. (4) requires a
computation of LMI (11). However, CVXGEN and FISTA
cannot deal with SDP like LMI, so one regularization
parameter calculated by CVX is fixed in CVXGEN and
FISTA. Furthermore, an estimation procedure of outlier
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Table 1. Sum of root mean squared errors.

Type of methods Cauchy noise
Gaussian mix-
ture noise

KF without outliers 1.31

KF with outliers 50.1 12.2

RKF using CVX 1.66 4.35

RKF using CVXGEN with
fixed regularization parameter

1.54 4.94

RKF using FISTA with
fixed regularization parameter

2.18 4.35

RKF using only diagonal elements 2.04 2.17

proposed method 1.52 1.80

proposed method (Compiled ver.) 1.52 1.78

Table 2. Average of computation time at one
time step.

Type of methods Time [ms]

KF 0.06

RKF using CVX 239

RKF using CVXGEN with
fixed regularization parameter

0.11

RKF using FISTA with
fixed regularization parameter

0.30

RKF using only diagonal elements 0.09

proposed method 0.10

proposed method (Compiled ver.) 0.08

in the proposed algorithm is implemented in C code, and
the compiled code is also compared with them.

4.4 Results

Table 1 shows summations of root mean square errors
(RMSEs) of each state, and Table 2 shows averaged
computation times of each algorithm at one time step.
These values are averages of 10 times simulations. Results
of standard KF with and without outliers are also shown in
the table for comparison. In the simulation, results using
the proposed algorithm satisfy the condition (26).

Table 1 shows that the RKF can reduce effects of both
Cauchy and Gaussian mixture noises. However, accuracy
of the solutions depends on the algorithms, and it can be
seen that the proposed algorithm gives smaller RMSE than
the other algorithms.

Table 2 shows that, using CVXGEN, FISTA, use of only
diagonal elements, and the proposed algorithm, compu-
tation times are about 1/1000 times less than one using
CVX. Moreover, the compiled version of the proposed
algorithm is more accelerated, and a computation time
of the compiled version comes close to that of KF.

5. CONCLUSION

In this paper, we proposed a fast algorithm of RKF via
l1 regression, which consists of a l1 optimization prob-
lems. The proposed algorithm approximates the optimal
solution by using its upper and lower bounds, and the
approximated solution is given by a closed form. Moreover,
it was shown that the proposed algorithm has an almost
same performance as KF without outliers. Effectiveness
was demonstrated by some numerical simulations.

In larger scale optimization problems, or in some condi-
tions of a covariance matrix of Gaussian noise, the condi-
tion (26) was not satisfied at times, and performances of
the RKF were deteriorated. A proposition of an efficient
algorithm for the situations is one of our future works.
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