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Abstract: In this paper, we consider a simplified dynamic model describing the evolution of
the poloidal flux during the ramp-up phase of the tokamak discharge. We first use the Galerkin
method to obtain a finite-dimensional model based on the original PDE system. Then, we apply
the control parameterization method to obtain an approximate optimal parameter selection
problem governed by a lumped parameter system. Computational optimization techniques
are subsequently deployed to solve this approximate problem. To validate our approach, we
perform numerical simulations using experimental data from the DIII-D tokamak in San Diego,
California. The results show that our numerical optimization procedure can generate optimal
controls that drive the current profile to within close proximity of the desired profile at the
terminal time, thus demonstrating that the Galerkin and control parameterization methods are
effective tools for current profile control in tokamak plasmas.
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1. INTRODUCTION

Control engineering is considered one of the three critical
technologies for achieving viable nuclear fusion power. 1

Accordingly, it has become an important area for multi-
disciplinary collaboration in the fusion research commu-
nity. Many exciting research topics from the viewpoint of
control engineering are surveyed in the book by Ariola
and Pironti (2008) and two special issues of IEEE Control
Systems Magazine 2 . Among many challenging research is-
sues, the control of the current profile in tokamak plasmas
is known to be critical to improved confinement, enhanced
magnetohydrodynamic stability and effective steady-state
operation (see Murakami et al. (2006) and Taylor (1997)).
The evolution in time of the current profile is related to the
evolution of the poloidal magnetic flux, which is modeled
by the magnetic diffusion equation, a parabolic partial
differential equation (PDE) in the normalized cylindrical

? This work was supported by the National Natural Science Foun-
dation of China through grants F030119-61104048 and 61320106009.
1 E. Synakowski’s presentation titled Fusion Energy Research: On
Our Science, Leverage and Credibility at the University Fusion Asso-
ciation General Meeting, held during the 51st Annual Meeting of the
American Physical Society Division of Plasma Physics (November 2-
6, 2009, Atlanta, Georgia, USA).
2 Refer to papers in the special issues titled “Control of Tokamak
Plasmas: Part I” (October 2005) and “Control of Tokamak Plasmas:
Part II” (April 2006) in IEEE Control Systems Magazine, organized
by A. Pironti and M. Walker.

coordinate system. The problem of manipulating the cur-
rent profile to achieve high-performance while satisfying
safety requirements has attracted considerable attention
in the literature.

In Witrant et al. (2007) and Ou et al. (2007), this prob-
lem was formulated mathematically using a distributed
parameter system framework. In our current work, using
the same framework proposed by Witrant et al. (2007)
and Ou et al. (2007), we consider the problem of attaining
the best possible approximate matching at the final time
T during the early flat-top phase of the plasma current
pulse, as shown in Fig. 1. This problem can be formulated
as a finite-time optimal control problem for the magnetic
flux diffusion PDE system, which can be considered as
a bilinear infinite-dimensional system, i.e., the diffusivity
control term appears in the second-order elliptic operator.
In Ou et al. (2008), the extremum seeking approach pro-
posed by Ariyur and Krstic (2003) is used to compute the
optimal open-loop control trajectory during the ramp-up
phase of the plasma discharge. This approach can handle
quite complicated constraints without being trapped in
local minima. A reduced-order model is obtained in Xu
et al. (2010) by using the proper orthogonal decomposition
(POD) method, which can reduce the computational bur-
den of the extremum seeking approach in Ou et al. (2008)
and make receding horizon control a feasible approach for
future work (Ou et al. (2011)).
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Fig. 1. The plasma current evolution can be divided into
two phases – ramp-up phase and flat-top phase.

In this paper, we consider the same open-loop optimal con-
trol problem as in Ou et al. (2008) and Xu et al. (2010), but
we solve it using a different approach. We first discretize
the model over the state space using the finite element
method (FEM), rather than the POD method, to yield a
finite-dimensional system of ordinary differential equations
(ODEs). The motivation for performing this discretization
procedure is that, in general, it is much easier to solve the
approximate finite-dimensional optimal control problem
than the original infinite-dimensional problem governed
by PDEs. After using FEM to obtain a finite-dimensional
system of ODEs, we then apply the control parameteri-
zation approach to obtain an optimal parameter selection
problem (Teo et al. (1991)). This involves approximating
the control function by a linear combination of temporal
basis functions (usually simple characteristic functions,
polynomials or splines) with the constant coefficients to be
determined by numerical optimization procedures such as
sequential quadratic programming (SQP). This method-
ology follows the discretize-then-control approach rather
than the alternative approach of control-then-discretize.
The numerical convergence of suboptimal controls gen-
erated by the discretize-then-control approach remains a
challenging issue, much more difficult than the conver-
gence analysis for the numerical discretization of PDEs.
See Loxton et al. (2009) for recent work in this area.

2. PROBLEM FORMULATION

The dynamic behavior of the magnetic-flux profile ψ is
described by the following parabolic PDE (Xu et al.
(2010)):

1

ϑ1(ρ̂)

∂ψ

∂t
(ρ̂, t) =

u1(t)

ρ̂

∂

∂ρ̂
[ρ̂D(ρ̂)

∂ψ

∂ρ̂
(ρ̂, t)] + ϑ2(ρ̂)u2(t),

(1)
with the Neumann boundary conditions

∂ψ

∂ρ̂
(0, t) = 0,

∂ψ

∂ρ̂
(1, t) = u3(t), (2)

where t denotes time; ρ̂ denotes the normalized radius;
and ψ(ρ̂, t) denotes the poloidal magnetic flux around
the tokamak. Moreover, ϑ1(ρ̂), ϑ2(ρ̂), and D(ρ̂) are given
functions of ρ̂ that depend on the particular tokamak
device and can be identified offline using experimental
data. The auxiliary functions u1(t), u2(t) and u3(t) depend

on the total power P , the total plasma current I, and the
average density n̄ according to the following equations:

u1(t) =
n̄(t)

3
2

I(t)
3
2P (t)

3
4

, u2(t) =
P (t)

1
2

I(t)
, u3(t) = kI(t), (3)

where k is a given constant. Note that n̄, I, and P are the
control inputs for the physical actuators.

The initial condition for the magnetic flux profile is given
by

ψ(ρ̂, 0) = ψ0(ρ̂). (4)

The aim is to choose the control inputs n̄(t), I(t) and P (t)
so that the output profile ψ(ρ̂, t) is brought as close as
possible to the desired target profile ψd(ρ̂) at t = T .
Thus, the problem is to minimize the following objective
functional:

J(n̄, I, P ) =
1

2

∫ 1

0

Γ0(ρ̂)[ψ(ρ̂, T )− ψd(ρ̂)]2dρ̂

+

∫ T

0

(Γ1n̄(t) + Γ2I(t) + Γ3P (t)) dt,

(5)

where Γ0(ρ̂) is a non-negative weighting function and Γ1,
Γ2 and Γ3 are non-negative weighting factors.

The actuator inputs must satisfy the following physical
bound constraints:

a1 ≤ n̄(t) ≤ b1, a2 ≤ I(t) ≤ b2, a3 ≤ P (t) ≤ b3, (6)

where ai and bi (i = 1, 2, 3) are given constants. Any
vector-valued piecewise-continuous function θ=[n̄, I, P ]> :
[0, T ] → R3 that satisfies the bound constraints (6) is
called an admissible control. Let Θ denote the class of all
such admissible controls.

For notational simplicity, we define ψt(ρ̂, t) = ∂ψ
∂t (ρ̂, t),

ψρ̂(ρ̂, t) = ∂ψ
∂ρ̂ (ρ̂, t) and h(ρ̂) = ϑ1(ρ̂)ϑ2(ρ̂). Then, equation

(1) with the boundary conditions (2) and the initial
condition (4) can be written as

ψt(ρ̂, t) =
ϑ1(ρ̂)u1(t)

ρ̂
[ρ̂D(ρ̂)ψρ̂(ρ̂, t)]ρ̂ + h(ρ̂)u2(t), (7a)

ψρ̂(0, t) = 0, ψρ̂(1, t) = u3(t), t ∈ [0, T ], (7b)

ψ(ρ̂, 0) = ψ0(ρ̂), ρ̂ ∈ [0, 1]. (7c)

We now state our problem formally as follows.

Problem P0. Given the PDE system (7), find an admissi-
ble control θ = [n̄, I, P ]> ∈ Θ such that the cost functional
(5) is minimized.

3. FINITE ELEMENT APPROXIMATION

In this section, we apply the Galerkin finite element
scheme (Thomée (2006)) to approximate Problem P0,
a distributed parameter optimal control problem, by a
sequence of conventional optimal control problems, each
governed by a lumped parameter system (Teo and Wu
(1984)). An efficient computational algorithm will then
be developed in Section 4 for solving these approximate
problems.

Let η(ρ̂) be a trial function. Multiplying both sides of (7a)
by ρ̂η(ρ̂) and then integrating the resulting equation over
[0, 1] gives
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∫ 1

0

ρ̂η(ρ̂)ψtdρ̂

= u1(t)ϑ1(1)D(1)η(1)u3(t)

− u1(t)

∫ 1

0

[η′(ρ̂)ϑ1(ρ̂) + η(ρ̂)ϑ′1(ρ̂)]ρ̂D(ρ̂)ψρ̂dρ̂

+ u2(t)

∫ 1

0

ρ̂h(ρ̂)η(ρ̂)dρ̂.

(8)

We partition the spatial domain [0,1] into N equal subin-
tervals Ii=[ iN , i+1

N ], i = 0, 1, . . . , N − 1. Then, we assume
that the magnetic flux ψ(ρ̂, t) can be approximated by a
linear combination of the basis B-spline functions Bi(ρ̂),
i = 0, 1, 2, . . . , N , corresponding to this partition, i.e.,

ψ(ρ̂, t) ≈ ψN (ρ̂, t) =

N∑
i=0

Xi(t)Bi(ρ̂), (9)

where Xi(t), i = 0, 1, . . . , N, are weighting functions. By
substituting (9) into (8), and choose η(ρ̂) = Bj(ρ̂), j =
0, 1, . . . , N , we obtain

N∑
i=0

Ẋi(t)

∫ 1

0

ρ̂Bi(ρ̂)Bj(ρ̂)dρ̂

= u1(t)ϑ1(1)D(1)Bj(1)u3(t)

− u1(t)

N∑
i=0

Xi(t)

∫ 1

0

ρ̂B′i(ρ̂)B′j(ρ̂)ϑ1(ρ̂)D(ρ̂)dρ̂

− u1(t)

N∑
i=0

Xi(t)

∫ 1

0

ρ̂B′i(ρ̂)Bj(ρ̂)ϑ′1(ρ̂)D(ρ̂)dρ̂

+ u2(t)

∫ 1

0

ρ̂h(ρ̂)Bj(ρ̂)dρ̂.

(10)

We introduce the following notation:

Aij =

∫ 1

0

ρ̂Bi(ρ̂)Bj(ρ̂)dρ̂, (11a)

Ãij =

∫ 1

0

ρ̂B′i(ρ̂)B′j(ρ̂)ϑ1(ρ̂)D(ρ̂)dρ̂, (11b)

Âij =

∫ 1

0

ρ̂Bi(ρ̂)B′j(ρ̂)ϑ′1(ρ̂)D(ρ̂)dρ̂, (11c)

Dj =

∫ 1

0

ρ̂h(ρ̂)Bj(ρ̂)dρ̂, Ej = ϑ1(1)D(1)Bj(1), (11d)

where i, j = 0, 1, . . . , N . Then equation (10) can be
rewritten in matrix form as follows:

AẊ(t) = −u1(t)[Ã + Â]X(t) + u2(t)D + u1(t)u3(t)E,

where

X(t) = [X0(t), X1(t), . . . , XN (t)]>,

A = [Aij ], Ã = [Ãij ], Â = [Âij ],

D = [D0, D1, . . . , DN ]>, E = [E0, E1, . . . , EN ]>.

Recalling the initial condition (7c), we have

ψ0(ρ̂) =

N∑
i=0

Xi(0)Bi(ρ̂). (12)

We multiply both sides of (12) by ρ̂Bj(ρ̂) and then
integrate over [0, 1] to obtain AX(0) = G, where G =
[G0, G1, . . . , GN ]> and

Gj =

∫ 1

0

ρ̂Bj(ρ̂)ψ0(ρ̂)dρ̂, j = 0, 1, . . . , N. (13)

By following the same arguments as in Lin et al. (2009),
it can be shown that matrix A is nonsingular. Thus, we
have X(0) = A−1G.

Consequently, the equations in (7) can be rewritten as

Ẋ(t) = F(X(t),θ(t))

= − n̄(t)
3
2

I(t)
3
2P (t)

3
4

A−1[Ã + Â]X(t)

+
P (t)

1
2

I(t)
A−1D +

kn̄(t)
3
2

I(t)
1
2P (t)

3
4

A−1E, (14a)

X(0) = A−1G. (14b)

Now, for the desired output profile ψd(ρ̂), we can also
obtain

D̄ = ĀX
d
, (15)

where

Āij =

∫ 1

0

Bi(ρ̂)Bj(ρ̂)dρ̂, i, j = 0, 1, . . . , N, (16)

D̄j =

∫ 1

0

ψd(ρ̂)Bj(ρ̂)dρ̂, j = 0, 1, . . . , N. (17)

Using the same arguments as in Lin et al. (2009), it can be
shown that matrix Ā is nonsingular, just like matrix A.
Therefore, the coefficients for the desired profile are given
by

Xd = Ā−1D̄. (18)

Using the expansion (9), the computed output profile
ψ(ρ̂, T ) at the terminal time T can be approximated as
follows:

ψ(ρ̂, T ) =

N∑
i=0

Xi(T )Bi(ρ̂), (19)

where Xi(T ), i = 0, 1, . . . , N, are weighting coefficients.
Then, the cost functional (5) becomes

J(n̄, I, P ) =
1

2

N∑
i=0

N∑
j=0

(Xi(T )−Xd
i )(Xj(T )−Xd

j )

×
∫ 1

0

Γ0(ρ̂)Bi(ρ̂)Bj(ρ̂)dρ̂

+

∫ T

0

(Γ1n̄(t) + Γ2I(t) + Γ3P (t)) dt.

Hence, the cost functional (5) can be rewritten as

J(n̄, I, P ) =
1

2
[X(T )−Xd]>M[X(T )−Xd]

+

∫ T

0

(Γ1n̄(t) + Γ2I(t) + Γ3P (t)) dt,
(20)

where M = [Mij ] and

Mij =

∫ 1

0

Γ0(ρ̂)Bi(ρ̂)Bj(ρ̂)dρ̂, i, j = 0, 1, . . . , N.

Problem P0, the distributed parameter optimal control
problem, is now approximated by the following conven-
tional parameter optimal control problem, which we call
Problem PN .
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Problem PN .Given the dynamic system (14), find an
admissible control θ = [n̄, I, P ]> ∈ Θ such that the cost
functional (20) is minimized.

4. OPTIMAL CONTROL COMPUTATION

To solve Problem PN , we will apply the control parameter-
ization method (Teo et al. (1991)). We subdivide the time
horizon [0, T ] into p subintervals [tk−1, tk), k = 1, 2, . . . , p,
where tk, k = 0, 1, . . . , p, are fixed knot points such that

0 = t0 < t1 < t2 < · · · < tp−1 < tp = T. (21)

The vector-valued control function θ = [n̄, I, P ]> is then
approximated by a constant vector on each subinterval:

θ(t) ≈ σk, t ∈ [tk−1, tk), k = 1, 2, . . . , p, (22)

where σk = [σk1 , σ
k
2 , σ

k
3 ]>. The piecewise-constant approx-

imation (22) can be expressed as follows:

θ(t) ≈ θp(t) =

p∑
k=1

σkχ[tk−1,tk)(t), (23)

where χ[tk−1,tk) : R → R is the indicator function defined
by

χ[tk−1,tk)(t) =

{
1, if t ∈ [tk−1, tk),

0, otherwise.
(24)

Recall that the control variables n̄(t), I(t), and P (t) satisfy
the bound constraints (6). Thus, it follows that the control
parameters σki (i = 1, 2, 3, k = 1, 2, . . . , p) satisfy

ai ≤ σki ≤ bi, i = 1, 2, 3, k = 1, 2, . . . , p. (25)

We denote σ = [(σ1)>, (σ2)>, . . . , (σp)>]>. Define

U = {σ ∈ R3p : ai ≤ σki ≤ bi, i = 1, 2, 3, k = 1, 2, . . . , p}.
After control parameterization, the dynamic system (14)
becomes

Ẋ(t) =

p∑
k=1

F(X(t),σk)χ[tk−1,tk)(t), t ∈ [0, T ], (26a)

X(0) = A−1G. (26b)

Let Xp(·|σ) denote the solution of system (26) correspond-
ing to σ ∈ U . To determine Xp(·|σ), we can solve (26)
sequentially over the subintervals [tk−1, tk), k = 1, 2, . . . , p.

Now, the cost functional (20) becomes

J p(σ) =
1

2
[Xp(T |σ)−Xd]>M[Xp(T |σ)−Xd]

+

p∑
k=1

(
Γ1σ

k
1 + Γ2σ

k
2 + Γ3σ

k
3

)
(tk − tk−1),

(27)

where J p(σ) = J(θp). We may now state the approximate
optimal parameter selection problem as follows.

Problem Pp
N . Given the lumped parameter system (26),

find a control parameter vector σ ∈ U such that the cost
functional (27) is minimized over U .

Problem PpN is an optimal parameter selection problem
in the so-called canonical form (Teo et al. (1991)). In
principle, such problems can be solved as nonlinear op-
timization problems using the SQP method. However, to
do this, we need the gradient of the cost functional (27)
with respect to the decision parameters. Since (27) is only
an implicit, rather than explicit, function of σ, computing
its gradient is a non-trivial task. Thankfully this gradient

can be computed using the sensitivity method described
in Loxton et al. (2008).

We first define the state variation with respect to σki as
follows:

Ski(t|σ) =
∂Xp(t|σ)

∂σki
, k = 1, 2, . . . , p, i = 1, 2, 3. (28)

Furthermore, let

δkl =

{
1, if k = l,
0, otherwise,

δ̂kl =

{
1, if k ≤ l,
0, otherwise.

Then, for each k = 1, 2, . . . , p and i = 1, 2, 3, it can be
shown (see Loxton et al. (2008)) that the state variation
defined in (28) satisfies the following dynamic system:

Ṡki(t) = δ̂kl
∂F(Xp(t|σ),σl)

∂X
Ski(t)

+ δkl
∂F(Xp(t|σ),σl)

∂θi
,

t ∈ [tl−1, tl), l = 1, 2, . . . , p,

(29)

with the initial condition

Ski(0) = 0. (30)

As a result, by using the chain rule, we can derive the
gradient of J p(σ) as follows:

∂J p(σ)

∂σki
= [Xp(T |σ)−Xd]>MSki(T |σ)

+ Γi(tk − tk−1), k = 1, 2, . . . , p, i = 1, 2, 3.

(31)

By incorporating these formulae into a nonlinear program-
ming algorithm such as SQP, we can solve Problem PpN
numerically. See Lin et al. (2014) for more details.

5. NUMERICAL SIMULATIONS

We now apply the proposed computational algorithm to an
example. This example, which comes from Xu et al. (2010),
is based on experimental data from the DIII-D tokamak
in San Diego, California. The functions D(ρ̂), ϑ1(ρ̂), and
ϑ2(ρ̂) in the PDE model (1) are given in reference Xu et al.
(2010). The initial magnetic flux profile is taken from shot
#129412 from the DIII-D tokamak.

For the spatial discretization of the PDE system, we
use the first-order basis functions Bi(ρ̂), i = 0, 1, . . . , N ,
defined by

Bi(ρ̂) =


1 +Nρ̂− i, ρ̂ ∈

[
i− 1

N
,
i

N

]
,

1−Nρ̂+ i, ρ̂ ∈
[
i

N
,
i+ 1

N

]
,

0, otherwise,

(32)

where N = 25 is the number of subintervals in the spatial
domain.

In applying the control parameterization technique, we
subdivide the time interval [0, T ] into p subintervals, with
t0 = 0 and tp = 1.2. Note that the approximate con-
trols switch value at the switching instants t = tk, k =
1, 2, . . . , p − 1. The lower and upper bounds in (6) are
given by: a1 = 0.1 [1019m−3], b1 = 100.5 [1019m−3], a2 =
0.1 MA, b2 = 100.9 MA, a3 = 0.01 MW, b3 = 10 MW.
Furthermore, the weighting factors in the objective func-
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(d) Optimal ψ-profile at the terminal time.

Fig. 2. Optimal controls and optimal ψ-profile for p = 5.
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Fig. 3. Optimal controls and optimal ψ-profile for p = 6.
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tional (5) are Γ1 = 10−25, Γ2 = 10−12, Γ3 = 10−12 and

Γ0(ρ̂) =

N∑
i=0

1√
2πε

exp

{
−

(ρ̂− i
N )2

2ε2

}
,

where ε = 0.4. This choice for Γ0 consists of a linear
combination of bell curves with peaks at the spatial knot
points ρ̂ = i/N , i = 0, 1, . . . , N . Thus, deviation from
the desired target profile is penalized most severely at the
spatial knot points in the PDE spatial discretization.

Our numerical simulation study was carried out within
the MATLAB programming environment running on a
personal computer with the following configuration: Intel
Core i7-2600 3.40GHz CPU, 4.00GB RAM, 64-bit Win-
dows 7 Operating System. Our MATLAB code implements
the gradient-based optimization procedure described in
Section 4 by combining FMINCON with the sensitivi-
ty method for gradient computation. We initially used
MATLAB’s non-stiff differential equation solver ODE45
to integrate the state system (26) and the sensitivity
systems (29). However, we noticed that ODE45 struggled
to solve the state and sensitivity systems, which indicates
that these differential equations are stiff. Hence, we subse-
quently replaced ODE45 in our code with the stiff solver
ODE15s. All of the numerical results presented in this
section were generated using ODE15s.

The optimal controls and optimal flux profiles for p = 5, 6,
are shown in Fig. 2, Fig. 3, respectively. As the control
variables change with time, the numerical optimization
procedure can drive the final ψ-profile to within close
proximity of the predefined desired profile. When p is
increased from p = 5 to p = 6, the simulation results
show that the trajectory matching error is reduced, as
expected. However, we note that increasing p further from
p = 6 to p = 7 does not result in any significant change
in the objective functional value, despite a significant
increase in the overall computation time. For example, the
computation time for p = 7 is almost 40% longer than for
p = 6, but the improvements in the flux profile and the
cost functional are negligible.

6. CONCLUSION

This paper has presented an effective computational
method for solving a finite-time optimal control problem
arising during the ramp-up phase of tokamak plasmas.
The method is based on a combination of the Galerkin
finite element and control parameterization methods. Sim-
ulation results using experimental data from the DIII-
D tokamak demonstrate that the method is effective at
driving the plasma profile to a predefined desired profile
at the terminal time. Nevertheless, there is still much room
for improvement, i.e., we can add path constraints on the
control variables in our problem formulation in Section 2,
and we can also take the control switching points as deci-
sion variables, along with the control heights, by applying
the so-called time-scaling transformation described in Lin
et al. (2014).
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