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Abstract: Multi-frequency atomic force microscopy (MF-AFM), employing the detection
and/or excitation of multiple cantilever frequencies, has shown great promise in increasing the
compositional sensitivity, and the spatial and temporal resolution of imaging. The multitude
of frequency components generated in MF-AFM encode information about the tip-sample
nonlinearity. For quantitative interpretation of the observables in MF-AFM operation, we
propose a two-pronged approach combining special-purpose cantilevers and a system-theoretic
modeling paradigm. This provides an excellent framework to understand and leverage the
nonlinear dynamics of the interaction of a multi-eigenmodal cantilever with the nonlinear
force potentials on the sample surface, to develop novel imaging methods. We describe
experimental techniques for accurate in-situ identification of the cantilever (sensor/actuator)
transfer functions, which are crucial components to understand the generation of MF-AFM
observables. The modeling framework is verified with experiments and is shown to be able to
predict several key features of MF-AFM operation.
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1. INTRODUCTION

Since its invention in 1986 [Binnig et al. (1986)], the atomic
force microscope (AFM) has been one of the quintessential
instruments of nanoscale science and engineering. The tip-
sample interaction force is sensed by a micro-cantilever
and through this observation local surface properties are
mapped with sub-nanometer resolution.

In the most basic form of AFM, the cantilever tip is
scanned across the sample surface. Due to tip-sample in-
teraction forces, the cantilever deflects and this deflection
is measured. This is known as contact mode AFM. Given
that the tip traverses over a short region of the tip-sample
interaction potential, a linear analysis is usually sufficient
to analyze this mode of AFM in spite of the highly non-
linear nature of the interaction force. However, contact-
mode AFM has several drawbacks such as tip and sample
damage owing to the lateral shear forces.

The next significant step in AFM was the introduction
of dynamic mode operation [Martin et al. (1987)]. In this
mode, the micro-cantilever is typically oscillated at the
first resonance frequency to intermittently probe the sam-
ple. There are two key variants of dynamic-mode AFM.
In amplitude modulation (AM-AFM) operation, the ob-
servables are the shift in the amplitude and phase of the
cantilever oscillation. In frequency modulation (FM-AFM)
operation, the cantilever is made to oscillate at the effec-
tive resonance frequency of the cantilever-sample system
and the resulting frequency shift is the observable. Dy-
namic mode AFM is now an established tool for nanoscale
investigation. The dynamics is much more involved given

that the tip traverses a wide range of the interaction
potential. Hence, it took almost 20 years to fully establish
the fundamental theory behind dynamic mode operation
[Garcia and Herruzo (2012)].

In the last few years, there is a significant research ef-
fort towards multi-frequency AFM (MF-AFM). MF-AFM
involves techniques where the cantilever motion is mea-
sured (and sometimes driven) at multiple resonant fre-
quencies [Proksch (2011); Garcia and Herruzo (2012)].
These frequencies are usually associated with either the
higher harmonics of the oscillation or the eigenmodes of
the cantilever. MF-AFM provides several new information
channels owing to the plethora of spectral components
created, many of which can be mapped back into local
surface properties. MF-AFM holds great promise in its
ability to significantly enhance the resolution, the imaging
throughput and the ability to discern material properties.
The “holy grail” quest of AFM has been compositional
mapping where materials differences are mapped out with
the same nanometer resolution as topographic images. At
present the most promising approach to reaching this goal
is MF-AFM. However, in spite of the tremendous promise
of MF-AFM techniques, quantitative MF-AFM remains
a significant challenge. Interpreting and controlling the
complex dynamics of the multi-modal cantilever interact-
ing with the highly nonlinear and dissipative tip-sample
interaction potential is an enormous challenge.

For quantitative MF-AFM, we need to utilize the full
power of the theory of dynamical systems. Note that
the MF-AFM dynamics is substantially more compli-
cated than the regular dynamic mode AFM. The system-
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theoretic approach to modelling AFM dynamics was first
introduced for the analysis of AM-AFM dynamics [Sebas-
tian et al. (2001), Sebastian et al. (2007)]. The systems
viewpoint was also utilized in an elegant manner to obtain
time-resolved tip-sample interaction forces [Stark et al.
(2002)]. In this paper we extend this powerful modelling
approach to investigate MF-AFM operation. We also pro-
pose accurate techniques to experimentally identify these
multi-modal cantilever dynamics, correcting for the ob-
servation problem that arises from the commonly used
optical beam deflection method. Using the systems model,
we demonstrate an algorithm to recover the instantaneous
tip-sample forces under any generic multi-tone cantilever
excitation encompassing all common methods of MF-AFM
operation, not limited to bi-modal, n-modal, inter-modal
or band-excitation. We demonstrate the validity of the
MF-AFM model through experiments using a tunable
electrostatic force potential.

2. MICRO-CANTILEVERS FOR MF-AFM

Fig. 1. Scanning electron micrograph of the fabri-
cated MF-AFM cantilever. The cantilever possesses
a stepped rectangular geometry with two segments.

The micro-cantilever is the transducer through which
we probe tip-sample interaction forces. In contact-mode
AFM, the only cantilever parameter of interest is its
static stiffness. In traditional dynamic mode AFM, the
parameters of interest are limited to the cantilever stiff-
ness, resonant frequency and quality factor associated with
the first eigenmode. Hence the dynamic response of the
micro-cantilever over a wide frequency range was not of
great interest. Moreover, these cantilevers are generally
actuated by electrically exciting an externally mounted
piezo-electric actuator. Spurious vibrational modes are
introduced by the imperfect coupling between the external
actuator and the micro-cantilever. Since the cantilevers
are typically actuated and sensed at the first resonance
frequency, these spurious modes did not pose much of
a problem in traditional dynamic-mode AFM. However,
for quantitative MF-AFM, it is essential to have a well-
defined dynamic behaviour for the actuator-cantilever sys-
tem. This could be achieved by integrating piezo-electric
actuators onto the cantilever. In conventional rectangular
cantilevers, there is a wide separation between the resonant
frequencies corresponding to the different eigenmodes. For
MF-AFM it is probably advantageous to reduce the spac-
ing between the resonant frequencies to ensure significant
coupling between the different modes.

Based on this, the authors recently introduced special
MF-AFM cantilevers which have a stepped rectangular

geometry with two rectangular segments and integrated
aluminum nitride actuators [Sebastian et al. (2012); Sham-
sudhin et al. (2012)]. They are also equipped with con-
ductive platinum silicide tips [Bhaskaran et al. (2009)] for
nanoscale electrical sensing. A scanning electron micro-
graph of one such cantilever is shown in Fig. 1. The new ge-
ometry spectrally close-packs the eigenmodes Mi, with the
fourth eigenfrequency ωM4 ≈ 13.2 · ωM1 compared to the
rectangular case where ωM4 ≈ 34.4·ωM1 . Furthermore, the
integrated actuation allows for linear cantilever-actuator
dynamics and an excellent phase response, making them
well suited for quantitative MF-AFM.

3. MF-AFM MODELING FRAMEWORK
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Fig. 2. Schematic illustration of the experimental setup
and a system-theoretic model that captures the MF-
AFM operation.

To interpret the complex dynamics of the above mentioned
multi-modal cantilever interacting with a highly nonlin-
ear tip-sample interaction force, we resort to a system-
theoretic modeling framework, where the cantilever-sample
interaction is modeled as the interaction between two dis-
tinct linear time-invariant cantilever models Gbp and Gtp
interacting with the sample nonlinearity Φ (Fig. 2). The
cantilever dynamics have been decoupled into two separate
models, where the transfer function Gbp relates the tip
displacement to the voltage signal applied to the piezo-
electric actuator. This voltage signal is hitherto referred
to as the base forcing signal, b(t). Gtp relates the displace-
ment to the force experienced by the tip. The tip-sample
forces fts enter the feedback loop through Gtp, results in
a displacement pts, which adds onto the displacement pb
generated byGbp in response to b(t). There is no restricting
assumption on the nonlinearity Φ which may comprise of
electric, magnetic or mechanical origin.
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4. MODEL IDENTIFICATION

Next we present the in-situ experimental identification
of the Gbp and Gtp transfer functions associated with
the systems-model. A key challenge arises from the fact
that optical beam deflection systems are widely employed
to measure the cantilever deflection signal (see Fig. 2)
necessitated by the requirements on bandwidth and res-
olution. However, the measured photodiode signal (Vo) is
proportional to the relative angle generated at the end of
the cantilever (i.e at the point of laser focus) and not to
the absolute cantilever tip displacement [Marti (1999)].

It is common practice to identify the dynamics of the first
eigenmode for regular dynamic mode AFM and only a few
groups have tried to identify the multi-modal dynamics of
the cantilever [Scherer et al. (2000), Stark et al. (2005),
Pini et al. (2010)]. Multi-modal identification via thermal
noise forcing is also demonstrated [Salapaka et al. (1997)],
but it is not possible to obtain any useful phase informa-
tion. But in all these approaches a methodology to identify
the multi-modal displacement dynamics from the angular
measurement is clearly lacking.

4.1 Base-Forcing Transfer Functions Gba and Gbp
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Fig. 3. Identification of base-forcing transfer functions;
The measured angular response to a base excitation
is shown in blue, the pole-zero fit Gba in red, and the
bi-quad expansion of the pole-zero model is shown in
cyan, and finally Gbp is shown in green.

To identify the base-forcing transfer functions, the inte-
grated actuator is driven with a single tone voltage signal,
b(t) and the input frequency is varied while simultaneously
monitoring the photodiode signal, Vo(t) using a lock-in
amplifier. To obtain the angular information, a(t) from
the photodiode signal, Vo, it needs to be scaled by the
inverse of a constant parameter, KE . KE is defined as
KE = α0 · D−1 where α0 [rad/meter] is the ratio of the
tip angle to the tip displacement generated by a static tip
forcing and D [volts/meter] is the displacement sensitivity
obtained from a standard approach curve. For a diving
board cantilever, α0 = (3/2) ·L , where L is the cantilever
length, but since ours has a dual-beam structure with
integrated actuators and electrodes, we used finite-element
analysis to estimate the ratio α0. The complete frequency
response is recorded upto 2 MHz (Fig. 3). The drive signal
is chosen to have a fixed peak-to-peak amplitude of 300 mV
to ensure adequate signal-to-noise ratio and at the same
time preserving the linearity of cantilever motion.

The resulting angular frequency response is fit with a pole-
zero model (curve in red in Fig. 3) to the obtain Gba (curve
in blue in Fig. 3). The excellent fit further confirming
the linearity of the frequency response. Remarkably the
phase response shows a collocated dynamic behavior over
a Megahertz bandwidth. We restrict our identification to
the first four eigenmodes of the cantilever. Performing
a biquad expansion on Gba, we can rewrite it as as a
summation, which essentially represents an orthogonal
summation of the first four eigenmodes of the cantilever.

Gba(s) =

4∑
i=1

βi ω
2
i

s2 + 2ζbiωis+ ω2
i

=

4∑
i=1

Hb,i(s) (1)

Now, to obtain Gbp (curve in green Fig. 3), we scale each
of the eigenmodes Hb,i by modal correction factors αi,

Gbp(s) =

4∑
i=1

(
1

αi

)
Hb,i(s) (2)

αi captures the angle generated by a unit displacement at
the ith eigenmode and are obtained from finite element
analysis. Thus we have identified both the transfer func-
tions Gba and Gbp.

4.2 Tip-Forcing Transfer Functions Gta and Gtp

To identify the tip-forcing transfer functions, we need a
mechanism to ensure forcing at the cantilever tip and
to excite its multiple eigenmodes. We propose an iden-
tification strategy utilizing electrostatic tip forcing. The
cantilever is made of n-doped silicon, this means that it
can form a conductive plate of a capacitor. To create a
confined electrostatic-forcing at a narrow region around
the tip, we microfabricated pillars of dimensions 50 µm in
height and 8 µm in diameter (see Fig. 4). There pillars were
created on an n-doped silicon wafer using deep reactive ion
etching process. The cantilever tip was then positioned
approximately 200 nm above one of these pillars.

Fig. 4. Si pillars fabricated by DRIE positioned at the tip
of the micro-cantilever. Scale bar: 100µm

The net electrostatic force acting on the cantilever for a
given pillar bias voltage Ve can be decomposed into the
sum of three forces, essentially the tip-apex force, the tip-
cone force, and the body force as proposed by Colchero
et al. (2001).

fts = Φe (Ve, p) = Φapex + Φcone + Φbody (3)

Due to the confinement of the electrostatic field to a nar-
row region of tip, and for small cantilever deflections, we
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can estimate a frequency-independent Φe linearly depen-
dent on the square of the electrostatic voltage, fts ≈ A0·V 2

e

The silicon pillar was biased with a band-limited noise
signal and the resultant photodiode signal, Vo was recorded
at a sampling frequency of 10 MHz and the frequency re-
sponse was estimated using Welch’s averaged periodogram
method. The linearity of the output response to the input
electrostatic forcing is verified by the high coherence value
of the identified frequency response and further confirmed
by the excellent pole-zero fit as shown in Fig. 5. Following
a similar calibration procedure as for identifying the base
excitation dynamics Gbp, we scale each harmonic oscillator
with the corresponding modal correction factors αi.
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Fig. 5. Identification of tip-forcing transfer functions; The
measured angular response to a tip excitation is shown
in blue, the pole-zero fit Gta in red, and the bi-quad
expansion of the pole-zero model is shown in cyan,
and Gtp0 is shown in green.

Gtp0(s) =

4∑
i=1

(
1

αi

)
γi ω

2
i

s2 + 2ζtiωis+ ω2
i

(4)

The dc gain of the tip-forcing transfer function Gtp must
equal the inverse of the cantilever static stiffness ks.
The static stiffness is typically determined by using the
cantilever’s thermal noise response or by Sader’s method.
Since both techniques use theoretical calibration factors
based on rectangular cantilever geometries, we employ
a calibrated FemtoTools MEMS force sensor to directly
quantify the stiffness of the cantilever. The force sensor is
used to measure the restoration force when the cantilever
tip is pressed against it.

Finally the transfer function, Gtp is obtained as,

Gtp(s) =
1

ks

Gtp0(s)

|Gtp0(j0)|
=

4∑
i=1

Htp,i (5)

4.3 Optical Filter Sb and St

From the identified transfer functions Gba, Gbp, Gta, Gtp,
we can derive two filters Sb and St given by

Sb(ωn) =

∣∣∣∣GbaGbp

∣∣∣∣ and St(ωn) =

∣∣∣∣GtaGtp

∣∣∣∣ (6)

and the magnitude response of the filters is shown in Fig.
6.

These zero-phase filters capture the effect of the optical
beam deflection system, namely the translation from tip
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Fig. 7. Block diagram description of the measurable pho-
todiode signal and the forcing signals.

displacement signal to the angular signal. For example,
the measurable photodiode signal arising from forcing the
cantilever with a base forcing signal, b(t) or a tip forcing
signal, fts(t) is schematically shown in Fig. 7. These
filters are essential in de-convolving the tip displacement
from the measured photodiode signal during MF-AFM
operation as illustrated in the next section.

5. SIGNAL FLOW IN MF-AFM

Based on the identified Gbp, Gtp, KE and the optical filters
Sb and St, we can now create an accurate description of
the tip displacement as well as the tip-sample interaction
forces.

5.1 Tip Displacement in MF-AFM

If the cantilever is actuated with an M -tone base forcing
signal b(t), in the absence of tip-sample interaction forces,
the linearity of Gbp ensures that the tip response pb(t) is
also M -toned given by,

pb(t) =

M∑
ω=1

pf (ω) = Gbp

{
M∑
ω=1

b(ω)

}
(7)

where ω = [ω1, ..., ωM1
, ..., ωM ] ∈ RM

However, in the presence of a sample nonlinearity, Φ, the
interaction of the M -tone driven-cantilever with Φ gener-
ates spectral components in the tip motion which are dif-
ferent from the actuation frequencies, including harmonics
and intermodulation products. The net displacement of
the cantilever tip p(t) can be written as the summation
of the displacements pb(t) and pt(t) induced by the base
forcing and the tip forcing from the sample respectively
(Fig. 2).
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p(t) = Gbp b(t) +Gtp fts(t) (8)

p(t) = pb(t) + pts(t) (9)

The corresponding photodiode signal can also be written
as a summation,

Vo(t) = Vob(t) + Vots(t) (10)

By taking the discrete fourier transform DFT of the
sampled photodiode signal, we can express Eq. (10) as

Vo(ωn) =

N−1∑
i=0

Vo(ti)e
−j2πin/N (11)

Vo(ωn) = Vob(ωn) + Vots(ωn) (12)

The contribution of the tip-forcing displacement pts com-
ing from the sample can be estimated by removing the
base actuation component from the measured photodiode
signal Vo.

Vots(ωn) = Vo(ωn)−KE · Sb(ωn) · pb(ωn) (13)

pts(ωn) =
1

KE
· S−1

t · Vots(ωn) (14)

Taking the inverse DFT of Eq (14), we arrive at the
displacement pts generated by the tip-sample forces fts,

pts(ti) =
1

N

N−1∑
n=0

pts(ωn)ej2πin/N (15)

One of the perennial challenges of AFM is the accurate
description of the instantaneous tip-sample interaction
forces. Using the experimentally identified model com-
ponents along with the system-theoretic framework, the
tip-sample forces fts in MF-AFM experiments can be
directly estimated without any prior assumptions of the
parametrization of the forcing nonlinearity Φ. We can
reformulate Eq.(8), and solve for the tip-sample force as
follows,

fts(t) = G−1
tp {p(t)−Gbp b(t)} (16)

5.2 Experimental demonstration

To verify the systems-model in a multi-frequency AFM
scenario, electrostatic forcing was again chosen as the
candidate for generating the tip forcing signal. A block
diagram representation is shown in Figure 8. The elec-
trostatic forcing operator, denoted by Φe will generate a
force that is a function of the voltage signal, Ve and the
tip displacement, p(t).

An experiment is performed whereby the cantilever tip
is positioned above the Si pillar (as shown in Fig. 4).
The cantilever is actuated bi-modally at its first two
eigenfrequencies with b(t) = 0.6sin(ωM1

t)+0.05sin(ωM2
t).

Based on the systems-model, by suitable selection of Ve(t),
each of the eigenmodal vibrations are cancelled selectively

pf

Gtp Φe

p(t)∑b(t) Gbp

pts

fts Ve

Fig. 8. Systems-model for electrostatic cantilever forcing.

Fig. 9. Experimental validation of the systems-model (a)
Electrostatic forcing signal Ve(t) (b) Corresponding
photodiode deflection signal Vo(t); No cancellation in
blue, eigenmode M1 cancellation in green, and bi-
modal (M1 and M2) cancellation in red.

as shown in Fig. 9. Fig. 9(b) shows the photodiode signal
whereas 9(a) shows the corresponding Ve(t) signal. This is
a strong validation of not just the systems-model, but also
of the various steps involved in the model identification
process.

Next we present imaging experiments where the cantilever
tip was scanned in non-contact mode above the surface of
the Si pillar which had been milled by a focused ion beam
(FIB) to produce narrow stripes (see Fig. 10(a)). As the
cantilever tip is scanned above this sample, the topography
variation of the stripes creates a varying Φe consequently
modulating the force fts felt by the tip.

In the first experiment, the pillar was biased with a
voltage signal at half the second eigenmodal frequency
Ve(t) = Ve0sin

(
2π

ωM2

2 t
)

while b(t) = 0. Fig. 10(b) shows
the demodulated ωM2 amplitude. In this scenario, the
resulting amplitude signal is enhanced due to the forcing
at the tip apex caused by the protruding stripes, while
the background signal from cantilever body is low. In the
second experiment, we additionally apply a base excitation
b(t) = sin (2πωM2t+ φ) which in accordance with the
systems-model should cancel the M2 oscillation when the
cantilever is above the stripes. The resulting image is
shown in Fig. 10(c) where this cancellation is clearly
visible. This experiment serves as a further validation of
the modeling approach as well as provides insight into
development of directed MF-AFM operation modes in the
future.

6. CONCLUSIONS

Quantitative multi-frequency AFM is a challenging prob-
lem where system-theoretic approaches can play a signifi-
cant role especially in combination with experimental tools
such as micro-cantilevers with well defined dynamic be-
haviour over MHz bandwidth. In this article we illustrate
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(a) Scale Bar S= 4µm

(b) Ve(t) = Ve0sin
(
2π

ωM2
2
t
)
and b(t) = 0

(c) Ve(t) = Ve0sin
(
2π

ωM2
2
t
)
and b(t) = sin

(
2πωM2

t+ φ
)

Fig. 10. (a) Scanning electron micrograph of the structures
created using the FIB. (b,c) Images obtained based on
the ωM2 amplitude signal.

this by unravelling the complex dynamics arising from such
a cantilever interacting with nonlinear tip-sample interac-
tion forces using a systems-model. The various elements
of the model are experimentally identified. In particular,
an experimental methodology is proposed to overcome the
challenge posed by optical beam deflection systems that
are used to sense the cantilever deflection signal. Accurate
description of the tip displacement as well as the instan-
taneous tip-sample interaction force is derived from the
observable photodiode signal. Finally, experimental results
are presented to validate the modeling framework where
the tip-sample interaction forces are generated through
electro-static means.
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