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Abstract: In this work, the problem of state estimation for nonlinear continuous-time systems
from discrete data is tackled in a bounded error context. One assumes that all poorly-known
system variables belong to a bounded set with known bounds. Then, a self-triggered algorithm
is proposed to improve the performance of the classical set-membership state estimator based
on the prediction-correction procedures. In order to cope with pessimism propagation linked to
the bounding methods, this algorithm triggers the correction step whenever the size of a part of
the estimated state enclosure becomes greater than a time-converging threshold a priori defined
by the user. The effectiveness of the proposed self-triggered algorithm is illustrated through
numerical simulations.
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1. INTRODUCTION

State estimation is an important field of control system
theory (Luenberger [1971]),(Isidori [1995]). As a matter of
fact, several advanced control and diagnosis approaches
are developed under the assumption that the state vec-
tor of the continuous-time system is available online. To
satisfy this requirement, software sensors called observers
are developed to estimate in real-time the state vector
(Luenberger [1971]). For example, for linear continuous-
time systems one can use the standard Luenberger ob-
server (Luenberger [1971]) or the Kalman filter (Kalman
[1960]). Differently, for nonlinear systems, there are differ-
ent approaches to design nonlinear observers. For instance,
one can cite the extended Luenberger observer (Sorenson
[1985]), the extended Kalman filter (Misawa and Hedrick
[1989]), the high gain observer (Gauthier et al. [1992]) or
the sliding mode observer (Drakunov [1983], Slotine et al.
[1986]. . . ). All these observer design approaches assume
that the model of the real system is perfectly known
and the measurements are available in continuous-time.
In practice, these assumptions are problematic, especially
when dealing with biological or biotechnological systems,
because the system parameters are poorly-known and the
measurements are generally done in discrete time.

To circumvent this problem, prediction-correction set-
membership state estimators are developed during these
last years (Jaulin [2002], Räıssi et al. [2004], Goffaux et al.
[2009], Meslem et al. [2010a]). This kind of estimators
are designed in the unknown but bounded error context
(Milanese et al. [1996]). They estimate from discrete data
an accurate enclosure of the state flow generated by an
uncertain system, where all the uncertain variables are
represented by boxes (interval vectors) (Moore [1966],
Jaulin et al. [2001]). The main contribution of this work

consists in endowing the set-membership state estimator
by a self-triggered algorithm in order to apply efficiently
the correction procedure. In fact, with this algorithm one
can master the propagation of pessimism generated by the
bounding methods (Kieffer and Walter [2006], Ramdani
et al. [2009], Ramdani et al. [2010]). This algorithm is
inspired from the event-triggered control strategy applied
to continuous-time systems (Meslem and Prieur [2013]).

Note that, to the best of our knowledge, the convergence
issue of the state estimation error in the bounded error
context is still not well investigated, in particular when ap-
plying the prediction-correction algorithm (Jaulin [2002],
Räıssi et al. [2004], Goffaux et al. [2009], Meslem et al.
[2010a]). In this work, due to this self-triggered algorithm,
the proof of the convergence of the state estimation error
is provided under some assumptions. This convergence
analysis shows more the importance of our findings.

This paper is organized as follows. In Section 2, basic
notions about interval computations are introduced. Then,
the core idea of the classical prediction-correction state
estimator is recalled in Section 3. The main results of this
work are stated and proved in Section 4. An illustrative
example is given in Section 5 with several simulation
tests. Also, a comparative study with the results obtained
by an interval observer is presented and commented in
this section. Finally, some concluding remarks and future
works are discussed.

2. PRELIMINARY NOTIONS ABOUT INTERVAL
COMPUTATION

Interval analysis was initially developed to account for
the quantification errors introduced by the floating point
representation of real numbers with computers and was ex-
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tended to reliable computations (Moore [1966], Neumaier
[1990]). Denote by [x] = [x, x] a real interval which is a
connected and closed subset of R where the real numbers
x and x are respectively the lower and the upper bound of
[x]. So, the set of all real intervals of R is denoted by IR.
Over IR an interval arithmetic was built by an extension
of the real arithmetic operations. That means, for each
operator ◦ ∈ {+,−,×,÷} and for each couple of intervals
[x] and [y] one defines

[x] ◦ [y] = {a ◦ b | a ∈ [x], b ∈ [y]} (1)

The width of an interval [x] is defined by w([x]) = x−x. As
well, an interval vector or box denoted by [x] is a subset of
Rn defined as the Cartesian product of n closed intervals.
The set of all interval vectors of order n will be denoted
by IRn. The width of an interval vector of dimension n is
defined by

w([x]) = max
1≤i≤n

w([xi])

Likewise, we define the vector width of an interval vector
by

wv

(
[x]
)

=
(
w([x1]), w([x2]), . . . , w([xn])

)T
That is, the components of the real vector wv are the
widths of each component of the interval vector [x].

Now, one can describe uncertain parameters by an upper
and lower bound, then rigorous bounds on the range of
a real function of these parameters are computed using
interval arithmetic. Consider the real function f : Rn → R.
The range of this function over an interval vector [x] is
given by:

f([x]) = {f(a) | a ∈ [x]} (2)
Then, one calls an inclusion function denoted by [f ] for
the real function f an interval application that satisfies
the following inclusion

∀[x] ∈ IRn, f([x]) ⊂ [f ]([x]) (3)

In practice, the simplest manner to obtain an inclusion
function [f ] for real function f consists in replacing each
occurrence of a real variable by the corresponding interval
and each standard function by its interval counterpart.
The resulting function is called the natural inclusion
function and the tightness of the enclosure provided by
[f ] depends on the formal expression of f . In fact, it is
well known if the same variable xi has many occurrences
in the mathematical expression of f , the dependence effect
(Moore [1966], Jaulin et al. [2001]) will induce pessimism
while computing an enclosure of the range of the real
function. Hence, formal pre-processing of the function
expression is advisable in order to minimize the number
of variable occurrences.

In the sequel, we will show how the joint use of interval
computation and the bounding methods for computing
rigorous bounds on the reachable set of uncertain nonlinear
systems, allows to solve in guaranteed way the state
estimation problem for uncertain nonlinear systems from
discrete data.

3. SET-MEMBERSHIP STATE ESTIMATION

3.1 Prediction-Correction state estimator

In this section, we recall briefly the core idea of the
classical prediction-correction state estimator of nonlinear
continuous-time systems, which are described by

{
ẋ = f(x,p,u)
y = g(x,p,u)

(4)

where x ∈ Rn is the state vector to be estimated from
discrete data. The vectors u ∈ Rm and y ∈ Rp stand
for respectively the input and the output of the system.
The vector field f and the output model g can be linear or
nonlinear functions of the state and input with appropriate
dimensions. The initial state x0 and the parameter vector
p ∈ Rnp are assumed unknown but bounded with known
bounds. That means,

x0 ∈ [x0,x0], p ∈ [p,p]

where x0, x0, p and p are respectively the known upper
and lower bound of the initial state and the parameter
vector p. Experimental data yj are collected at discrete
times tj , j ∈ {1, . . . , N}. And the feasible domain for the
output values at each time tj is given by

[yj ] = yj + [ej ] (5)

where the box [ej ] denotes the feasible domain for output
error at time tj , which includes both deterministic and
random error.

The prediction stage (Pred): In this context the pre-
diction procedure has to compute an outer enclosure of
all possible state trajectories generated by the uncertain
system (4) between two measurement time instants tj
and tj+1. To accomplish this task, one can use either the
validated methods for initial value problems for ordinary
differential equations (Rihm [1994], Nedialkov et al. [2001])
based on interval analysis or the hybrid bounding methods
(Ramdani et al. [2009], Ramdani et al. [2010]) based on the
comparison theorems of differential inequalities (Müller
[1926], Marcelli and Rubbioni [1997], Smith [1995]). In
this work, the bounding methods are used to carry out
the prediction stage. So, an outer enclosure of the state
trajectories generated by (4) over a time interval [tj , tj+1]
is obtained by integrating the following bounding system{

ẋ = f(x,x,p,p,u), x(tj) = xj ,
ẋ = f(x,x,p,p,u), x(tj) = xj ,

(6)

where the vector functions f , f are built in order to frame
the field vector f for all x ∈ [x,x] and for all p ∈ [p,p].
To get more explanations about the construction of the
bounding system (6) the reader can refer to Ramdani et al.
[2009], Ramdani et al. [2010] and references therein. Thus,
one can claim that all possible state trajectories generated
by the uncertain system (4) are framed by the solution of
the deterministic system (6). That means,

x(tj) ∈ [x(tj),x(tj)],p ∈ [p,p]
⇒ ∀t ∈ [tj , tj+1],x(t) ∈ [x(t),x(t)]

(7)

To sum up, the prediction stage computes an outer enclo-
sure, here denoted by [x(t)]p, of the all state trajectories
generated by the system (4) on the period [tj , tj+1].

The correction stage (Corr): At each measurement time
instant tj , an other outer enclosure of the state vector
denoted by [x(tj)]

inv is computed now by solving the
following set inversion problem

[x(tj)]
inv = {x ∈ Rn | g(x,p,u) ∈ [y(tj)]} (8)

Then, the inconsistent state vectors belonging to the two
outer enclosures are discarded as follows

[x(tj)]
c = [x(tj)]

inv ∩ [x(tj)]
p (9)
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Now, in order to improve the accuracy of the state enclo-
sure, the next step of the prediction-correction procedure is
initialized with the corrected state enclosure [x(tj)]

c. It is
worth pointing out that to solve the set inversion problem
(8), one can either use an advanced version of the SIVIA
algorithm based on interval analysis or an adequate inter-
val Contractor. For more details about these consistency
techniques and their implementation the reader can refer
to Jaulin et al. [2001] and references therein.

The below algorithm synthesizes the operating principle of
this kind of the Set-Membership State Estimators (SM-
SE).

Algorithm: SM-SE([x0], [p], f ,g, t0, . . . , tN ,)

• For j = 0 to j = N − 1
· [x(t)]p := Pred([x0], [p], f , [tj , tj+1])
· [yj+1] := yj+1 + [ej+1]
· [x(tj+1)]c := Corr([x(tj+1)]p, [yj+1], [p],g)
· [x0] := [x(tj+1)]c

• End

However, to the best of our knowledge, no convergence
analysis of the estimation error of the type of estimators is
done up to now, see for example Jaulin [2002], Räıssi et al.
[2004], Goffaux et al. [2009], Meslem et al. [2010a]. Thus,
the main contribution of this paper concerns this matter.
In fact, we propose to endow the correction stage by a
self-triggered algorithm in order to control the pessimism
propagation and so to improve the accuracy of the estimate
state enclosure. Moreover, under some assumptions, a
convergence analysis of the estimation error is presented
in the next section.

4. SELF-TRIGGERED ALGORITHM TO SCHEDULE
THE CORRECTION STAGE

Let us start by introducing the assumptions needed to
prove the convergence of the state estimation error, then
we state the main contributions of this work (new SM-SE
algorithm, convergence analysis).

Hypothesis 1. The state equation of (4) can be divided as
follows

ẋ1 = f1(x1,x2,p,u) (10)
ẋ2 = f2(x2,x1,p,u) (11)

where x1 ∈ Rn1 ,x2 ∈ Rn2 , n1 + n2 = n and (f1, f2)T = f .
Then, we assume

• the subsystem (11) is monotone stable over a given
domain D ⊂ Rn1+n2+np+m. For more details about
monotone systems, the reader can refer to Smith
[1995], Angeli and Sontag [2003].

• all state variables of the vector x1 and all parameters
of the vector p act positively or negatively on all the
state variables of the vector x2.

Hypothesis 2. There exists a positive time-decreasing
threshold ξ such that: at each measurement time instant
tj > 0 the following inequality is satisfied

w([x1(tj)]
inv) < ξ(tj) (12)

That is, the width of the first part of the enclosure of
the state vector [x1(tj)]

inv, obtained via a set inversion
of the feasible domain of measurement (5) according to
the output model g, must be lower than an instrumental
threshold a priori defined by the user.

These hypotheses are satisfied by a large class of biological
systems (Sontag [2005], Angeli and Sontag [2008]), thermal
systems (Meslem et al. [2010b]), biotechnological systems
(Hadj-Sadok and Gouzé [2001], Moisan et al. [2009])
and all monotone systems closed by a negative feedback
(Angeli and Sontag [2003]).

So, under Hypothesis 1, applying the bounding methods
(Ramdani et al. [2009], Ramdani et al. [2010]) to ((10),
(11)), we obtain the following bracketing systems to carry
out the prediction stage.{

ẋ1 = f1(x1,x2,x1,x2,p,p,u)
ẋ1 = f1(x1,x2,x1,x2,p,p,u)

(13){
ẋ2 = f2(x2,x

+
1 ,p

+,u)
ẋ2 = f2(x2,x

−
1 ,p

−,u)
(14)

where the vector x+
1 is either equal to the upper bound x1

or to the lower bound x1 (idem for x−
1 ). Also the vector

p+ is either equal to the upper bound p or to the lower
one p (idem for p−).

We can now introduce the first contribution of this paper,
namely the new Set-Membership State Estimation algo-
rithm where the correction stage is managed by a Self-
Triggered procedure (ST-SM-SE).

Algorithm: ST-SM-SE([x0], [p], f ,g, h0, . . . , hk, ξ)

• For j = 0 to j = k − 1
· tj+1 := tj + hj
· [x(t)]p := Pred([x0], [p], f , [tj , tj+1])
· [x0] := [x(tj+1)]p

· If w([x1(tj+1)]p) ≥ ξ(tj+1)
[yj+1] := yj+1 + [ej+1]
[x(tj+1)]c := Corr([x(tj+1)]p, [yj+1], [p],g)
[x0] := [x(tj+1)]c

· End
• End

where hj(j = 0, . . . , k) stand for the integration steps,
which are not necessarily equal. As aforementioned, this
algorithm is designed in order to guarantee the conver-
gence of the state estimation error with a small number of
measurements. The next section is devoted to prove this
convergence.

4.1 Convergence analysis

Consider the estimated enclosure of the state trajectories

[x(t)] =
(
[x1(t)], [x2(t)]

)T
computed by the ST-SM-SE algorithm. Denote by E(t)
the state estimation error defined as follows

E(t) = max
{
e1(t) = w([x1(t)]p), e2(t) = w([x2(t)]p)

}
Hereafter, we present the main result of this work.

Theorem 3. If Hypotheses 1 and 2 hold, then the state
estimation error E(t) generated by the self-triggered algo-
rithm ST-SM-SE converges towards a ball of diameter

R ≤ max
{
ξ(∞), f

(
ξ(∞)

)}
where f is a positive bounded function.

Proof. It is clear that Hypothesis 2 coupled with ST-
SM-SE algorithm ensures that the size of the first part
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of the predicted state enclosure [x1(t)]p stays always lower
than ξ(t) after the first integration step:

∀t ≥ h0, e1(t) = w([x1(t)]p) < ξ(t)

That means, thanks to the measurement one can directly
reduce the width of [x1(t)]p. In fact, when the width
of [x1(t)]p exceeds ξ(t) at tj , the ST-SM-SE algorithm
activates the correction stage; and so under Hypothesis 2
we obtain

[x1(tj)]
c = [x1(tj)]

p ∩ [x1(tj)]
inv

w([x1(tj)]
c) ≤ w([x1(tj)]

inv) < ξ(tj)

Thereafter, for the next integration step hj+1, the ST-
SM-SE algorithm reinitializes the prediction stage by

[x1(tj)]
p = [x1(tj)]

c

which implies that w([x1(tj)]
p) < ξ(tj). So, we can claim

that in the steady state the width of the box [x1(t)]p is
upper bounded by ξ(∞).

Now, consider the enclosure of the second part of the
state vector [x2(t)]p engendered by the system (14), which
is not assumed directly corrected by the measurement.
According to Hypothesis 1, we can frame the box [x2(t)]p

by the state trajectories generated by the following stable
system {

ż2 = f2(z2, z
+
1 (ξ),p+,u)

ż2 = f2(z2, z
−
1 (ξ),p−,u)

(15)

where (z+1 , z
−
1 ) ∈ R2n and either z+1 (ξ) = x1 + ξ or

z+1 (ξ) = x1 − ξ (same for z−1 ). The vector x1 contains
the first part of the state variables of the nominal system
(4). Then, at the equilibrium, we obtain

[x2(te)]
p ⊂ [z2(te), z2(te)] = [z2(te)]

which implies that for all t ≥ te, e2(t) is upper bounded
as follows

∀t ≥ te, e2(t) ≤ w([z2(te)]) = f
(
ξ(∞)

)
where f(.) is a positive bounded function in ξ because
subsystem (15) is stable on the domain D2 as claimed
by Hypothesis 1. Finally, we can say, under Hypotheses
1 and 2 the state estimation error generated by the self-
triggered algorithm ST-SM-SE converges towards a ball
with diameter R = max{ξ(∞), f

(
ξ(∞)

)
}. This completes

the proof. �

5. ILLUSTRATIVE EXAMPLE

Usually in biotechnology field, the models of bio-process
are poorly-known and the measurements of their outputs
are available in discrete time. So, in this context, the
proposed algorithm ST-SM-SE is suitable to resolve the
state estimation problem. Consider the case of a bioreactor
with two state variables. A bioreactor is a reactor wherein
microorganism grows by consuming a substrate. As a rule,
the concentrations of microorganism and substrate in the
bioreactor are assumed to be weak. This allows us to use
the assumption that the dynamics of the microorganism
and that of substrate are observed with constant volume.

Hereafter, denote by x1 and x2 the concentration of the
microorganism and the substrate, respectively. Moreover,
we consider that the growth rate of the microorganism
is described by the Contois law (Contois [1959]) and
the dynamical model of the bioreactor is presented by
(Gauthier et al. [1992])

 ẋ1 =
a1x1x2
a2x1 + x2

− ux1

ẋ2 = − a3a1x1x2
a2x1 + x2

− ux2 + ua4
(16)

where the initial state of (16) is uncertain but belonging
to the box (x1(0), x2(0))T ∈ [0.001, 0.1] × [0.001, 0.1].
The parameters a2 and a3 are considered perfectly known
a2 = a3 = 1 and the parameters a1, a4 are unknown but
bounded with known bounds. We have p = (a1, a4)T ∈
[0.9, 1.1] × [0.09, 0.11]. The system input is defined as
follows u(t) = 0.08 for t ≤ 10, u(t) = 0.02 for 10 ≤ t ≤ 20
and again u(t) = 0.08 for t ≥ 20. Finally, the system
output is given by

y(t) = x1(t) (17)
and the feasible domain of the output error is determined
as follows

[e(t)] = [−5%ym(t),+5%ym(t)]

where ym stands for the real measurement.

For this example, Hypothesis 1 is satisfied. It is straight-
forward to show that the subsystem ẋ2 is monotone and
stable for all (x1, x2) ∈ R2

+, for all (a1, a4)T ∈ [p] and
for the given input u. First, this subsystem is monotone
because it is mono-variable. In fact, it is well known that
all first order system is monotone. Second, as the partial
derivative ∂ẋ2

∂x2
is strictly negative for all (x1, x2) ∈ R2

+,

for all (a1, a4)T ∈ [p] and for the given input u, then we
can claim that the positive function V (∆x) = ∆x2 is a
Lyapunov function of this subsystem where ∆x = x2 − xe2
and xe2 is its equilibrium point.

Now, applying the bounding method to the uncertain
system (16) we obtain the following bracketing systems
to use in the prediction stage

ẋ1 = −ux1 +
a1x1x2
a2x1 + x2

ẋ1 = −ux1 +
a1x1x2
a2x1 + x2

(18)


ẋ2 = −ux2 −

a3a1x1x2
a2x1 + x2

+ ua4

ẋ2 = −ux2 −
a3a1x1x2
a2x1 + x2

+ ua4

(19)

Moreover, from the output equation (17), it is clear that
the size of [x1(tj)]

inv is directly controlled by the feasible
domain of measurement. In fact, at each time measure-
ment tj , we have [x1(tj)]

inv = [y(tj)]. Then, for this
example, in order to satisfy Hypothesis 2, it is enough to
choose the following threshold

ξ(t) = ε1 exp(−ε2t) + ε3x1(t)

where ε1, ε2 are positive constants and ε3 must be upper
than 0.1, which represents the maximal percentage of the
output error. So, we have

w([x1(tj)]
inv) = w([y(tj)]) = 0.1ym(tj) < 0.1x1(tj) < ξ(tj)

Furthermore, the convergence of ξ(t) is guaranteed in-
directly by the convergence of x2(t). In fact, when the
trajectory x2(t) reaches its equilibrium, denoted here by
xe2, one can show by simple computation that

x1 ≤ (
a1
u
− 1)xe2

In order to show the efficiency of the ST-SM-SE algo-
rithm, we test it in different simulation conditions; and
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then we compare its performance with those of interval
observer presented in Meslem et al. [2008]. Note that,
here, the measurements are obtained by simulating (16)
with initial conditions x1 = x2 = 0.05 and the parameters
a1, a4 are considered equal to a1 = 1, a4 = 0.1. The time
decreasing threshold is chosen as follows

ξ(t) = 0.1 exp(−0.2t) + 0.2x1

• Test 1: without uncertainties on the parameters

For this first test, only initial state is considered uncertain.
As shown in Fig. 1, the ST-SM-SE algorithm uses only
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time

x
1

The estimated state enclosure

0 10 20 30 40 50 60
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x
2

Fig. 1. The lower and upper estimated bounds of the state
variables. Only initial state is considered uncertain.

two measurements (at t = 0.4h and t = 3.32h) to compute
a tight enclosure of all possible state trajectories generated
by (16). Moreover, in this case, the state estimation error
converges towards zero, see Fig. 1. This result is expected
because there are no uncertainties on the parameters,
which implies that the bounding systems (18), (19) have
the same equilibrium point with the nominal system (16).

• Test 2: (a1, a4) ∈ [0.95, 1.05]× [0.095, 0.105]
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x
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Fig. 2. The lower and upper estimated bounds of the state
variables. The uncertain parameter box is considered
equal to [a1]× [a4] = [0.95, 1.05]× [0.095, 0.105].

Despite the presence of uncertainties, the ST-SM-SE
algorithm computes an accurate enclosure of all the state
trajectories of (16) by using only seven measurements,

see Fig. 2. This figure shows also, how the self-triggered
procedure imposes the convergence of the state estimation
error. For this case the state estimation error never exceeds
the tuning threshold ξ(∞).

It is worth noting that, for the first test, if one applies
the classical SM-SE algorithm one will use regularly
measurements even if it is not necessary as shown in
Fig. 1. In fact, by construction, the SM-SE algorithm
still continues to carry out the correction stage without
improving the accuracy of the estimated state enclosure.
Moreover, with this algorithm one can neither claim that
the size of [x1(t)] do not exceed the a priori defined
threshold ξ(t), nor to give an upper estimation of the width
of the estimated state enclosure.

Now, we devote the next two tests to compare the perfor-
mance of the ST-SM-SE algorithm with those of interval
observer (Meslem et al. [2008]). To do that, we use a
smaller time-converging threshold defined by

ξ(t) = 0.05 exp(−0.5t) + 0.11x1

in order to better reduce the pessimism and so the com-
parison with interval observer makes sense.

• Test 3: comparison with interval observer (without
uncertainties on the parameters)
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2

Fig. 3. The lower and upper estimated bounds of the state
variables. Only initial state is considered uncertain.

In this case, the ST-SM-SE algorithm uses six mea-
surements to get a tight estimated enclosure of the state
trajectories with an estimation error decreasing towards
zero as shown by the continuous curves in Fig. 3. On the
other side, in the same conditions, the interval observer
cannot compute an enclosure of the state trajectories with
a converging size towards zeros as illustrated by the dashed
curves in Fig. 3. This result is expected. In fact, by con-
struction, we ask to the interval observer to generate a
state enclosure such that the estimated enclosure of the
output converges to the feasible domain of measurements.

6. CONCLUSION

In this paper, a new set-membership state estimation algo-
rithm was presented. The main advantage of this algorithm
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is its ability to cope with pessimism propagation. Indeed,
when one uses set-membership approaches the last phe-
nomenon is usually source of an important conservatism.
Moreover, with this algorithm, one uses measurements
only when it is necessary; and in this event based frame-
work, a convergence analysis of the state estimation error
was presented. For future work, we will attempt to gener-
alize the use of this estimation algorithm for a large class
of nonlinear systems. To reach this objective, we must find
a relaxed version of Hypotheses 1 and 2.

REFERENCES

D. Angeli and E. D. Sontag. Oscillations in I/O monotone
systems. IEEE Transactions on Circuits and Systems,
Special Issue on Systems Biology, 55:66–176, 2008.

D. Angeli and E.D Sontag. Monotone control systems.
IEEE Transaction on automatic control, 48(10), 2003.

D. Contois. Kinetics of bacterial growth relationship
between population density and specific growth rate of
continuous cultures. J. Genetic Macrobiol, 21:40–50,
1959.

S.V. Drakunov. An adaptive quasioptimal filter with dis-
continuous parametres. Automation ans remote Control,
44:76–86, 1983.

J.P. Gauthier, H. Hammouri, and S. Othman. Simple ob-
server for nonlinear systems applications to bioreactors.
IEEE Transactions on Automatic Control, 37:875–880,
1992.

G. Goffaux, A.V. Wouwer, and O. Bernard. Improving
continuous-discrete interval observers with application
to microalgae-based bioprocesses. Journal of Process
Control, 19:1182–1190, 2009.

M.Z. Hadj-Sadok and J.L. Gouzé. Estimation of uncer-
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