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Abstract: In this paper, we investigate integral input-to-state stability for interconnected discrete-time
systems. The system under consideration contains two subsystems which are connected in a feedback
structure. We construct a Lyapunov function for the whole system through the nonlinearly-weighted sum
of Lyapunov functions of individual subsystems. We consider two cases in which we assume that one
of subsystems is integral input-to-state stable and the other is either input-to-state stable or only integral
input-to-state stable.

1. INTRODUCTION

Many attempts have been made on stability analysis of inter-
connected nonlinear systems over the last few decades. It is still
challenging to analyze the stability of interconnected systems
with nonlinearities and, consequently it would be interesting to
establish the universal stability conditions which are applicable
to a wide range of nonlinear systems. Small-gain theorem and
its variants are integral to methods of stability analysis of feed-
back interconnected systems. Among them, Lyapunov-based
small-gain theorems have been given conspicuously attention.
The Lyapunov-based small-gain theorem based on input-to-
state stability (ISS) property was formulated by Jiang et al.
(1996) for continuous-time systems. This was extended to pa-
rameterized discrete-time systems in (Laila and Nešić, 2004).
Recently, small-gain theorems for hybrid systems have been
reported (cf. (Liu et al., 2012; Dashkovskiy and Mironchenko,
2013; Liberzon et al., 2014) and references therein).
A variant of ISS property was introduced in (Sontag, 1998)
extending L2 stability to nonlinear systems. This generalization
is called integral input-to-state stability (iISS) which has been
studied further for continuous-time systems and discrete-time
in (Angeli et al., 2000) and (Angeli, 1999), respectively. It has
been demonstrated that iISS is a broader notion rather than
ISS. Results on iISS for feedback interconnected continuous-
time systems have been presented in (Ito, 2007; Ito and Jiang,
2009; Ito et al., 2010, 2013). Although, small-gain theorems
on iISS have been investigated for continuous-time systems in
depth, iISS for interconnected discrete-time systems has not
been provided yet. With which this paper is primarily concerned
(see motivations in Subsection 3.2 below).
In analogy with the results on iISS for feedback interconnected
continuous-time systems, this paper investigates iISS for a feed-
back interconnection of parameterized discrete-time systems

based on changing supply functions. Particularly, small-gain
conditions providing iISS for feedback interconnected systems
consisting of two subsystems. We construct the iISS Lyapunov
function for the whole system through the nonlinearly-weighted
sum of Lyapunov functions of individual subsystems, which
is called the sum-type construction. Next we provide iISS for
the feedback interconnected system when both subsystems are
integral input-to-state stable. Then results on iISS for a feed-
back interconnection of ISS and iISS systems is investigated.
Moreover, we note that our results show 0-global asymptotic
stability (0-GAS) for the feedback interconnected system as it
is equivalent to iISS for discrete-time systems (Angeli, 1999).
The rest of this paper is organized as follows: notations together
with notions of ISS and iISS for discrete-time systems are
provided in Section 2. The main results are given in Section
3. Section 4 provides the concluding remarks.

2. PRELIMINARIES

In this section, we give notations and review notions of ISS and
iISS for discrete-time systems.

2.1 Notation

• R≥0 and Z≥0 are the nonnegative real and nonnegative
integer numbers, respectively.

• |.| denotes the standard Euclidean norm.
• Given a function ϕ : Z≥0 → Rm, L∞-norm of the func-

tionϕ is denoted by ‖ϕ‖. That is, ‖ϕ‖ = sup{|ϕ(k)| : k ∈
Z≥0} < ∞. The set of all such functions is denoted by
L∞.

• A function γ : R≥0 → R≥0 is positive definite function
(γ ∈ PD) if it is zero at zero and positive elsewhere.

• A function α : R≥0 → R≥0 is of class-K (α ∈ K) if it
is continuous, zero at zero and strictly increasing. It is of
class-K∞ (α ∈ K∞) if α ∈ K and also α(s) → ∞ if
s→∞.
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• A function β : R≥0 × R≥0 → R≥0 is of class-KL (β ∈
KL), if for each t ≥ 0 β(., t) ∈ K and, for each s ≥ 0,
β(s, .) is decreasing and β(s, t) is converging to zero as
t→∞.
• Composition of two functions γ1(.) and γ2(.), which are

from R to R, is denoted by γ1 ◦ γ2.

Consider the following family of parameterized discrete-time
systems

x(t+ 1) = gT (x(t), u(t)) (1)
where x(t) ∈ Rn, inputs or controls u : Z≥0 → Rm, u ∈ L∞
and T is a parameter (perhaps a sampling time). We assume
that gT (., .) is continuous and gT (0, 0) = 0. For each ξ and
u ∈ L∞, x(., ξ, u) denotes the trajectory of the system (1) with
the initial value x(0) = ξ and the input u. We borrow some
definitions from (Jiang and Wang, 2001) and (Angeli, 1999),
which are required later.
Definition 1. The discrete-time system (1) is input-to-state sta-
ble (ISS) if there exist γ ∈ K and β ∈ KL such that, for all
ξ ∈ Rn, all u ∈ L∞ and all j ∈ Z≥0, the solution x(j, ξ, u)
satisfies

|x(j, ξ, u)| ≤ β(|ξ| , j) + γ(‖u‖). (2)
Definition 2. The discrete-time system (1) is integral input-to-
state stable (iISS) if there exist γ ∈ K and β ∈ KL such that,
for all ξ ∈ Rn and all u ∈ L∞, and all j ∈ Z≥0 the following
holds

|x(j, ξ, u)| ≤ β(|ξ| , j) +

t=j−1∑
t=0

γ(|u(t)|). (3)

Definition 3. A continuous function V : Rn → R≥0 is called a
common ISS-Lyapunov function for the whole family of (1) if
there exist functions α, α ∈ K∞, σ ∈ K, and α ∈ K∞, T ∗ > 0
such that the following hold for all T ∈ (0, T ∗), ξ ∈ Rn and
µ ∈ Rm

α(|ξ|) ≤ V (ξ) ≤ α(|ξ|), (4)
V (gT (ξ, u))− V (ξ) ≤ T [−α(|ξ|) + σ(|µ|)] . (5)

Definition 4. A continuous function V : Rn → R≥0 is called a
common iISS-Lyapunov function for the whole family of (1) if
there exist functions α, α ∈ K∞, σ ∈ K, and α ∈ PD, T ∗ > 0
such that the following hold for all T ∈ (0, T ∗), ξ ∈ Rn and
µ ∈ Rm

α(|ξ|) ≤ V (ξ) ≤ α(|ξ|), (6)
V (gT (ξ, u))− V (ξ) ≤ T [−α(|ξ|) + σ(|µ|)] . (7)

Proposition 1. (Jiang and Wang, 2001) The discrete-time sys-
tem (1) is ISS if and only if it admits a common smooth ISS-
Lyapunov function.
Proposition 2. (Angeli, 1999) The discrete-time system (1) is
iISS if and only if it admits a common iISS-Lyapunov function.
Proposition 3. (Angeli, 1999) The discrete-time system (1) is
iISS if and only if the zero solution of the system (1) is globally
asymptotically stable (GAS), that is to say, the 0-input system

x(t+ 1) = gT (x(t), 0) (8)
is GAS.
Remark 1. It should be noted that Jiang and Wang (2001) and
Angeli (1999) provided ISS and iISS for a nonparameterized
discrete-time system with respect to the origin, respectively.
However, it is easy to see that the similar results hold for a
compact set. Hence, the results are applicable to the family of
parameterized discrete-time systems (1), as well.

3. MAIN RESULTS

This section first addresses iISS small-gain theorems for a feed-
back interconnected discrete-time system, which includes two
subsystems, based upon changing supply functions. Through-
out this paper, we refer to the system which is not ISS but iISS
as strictly iISS.
Consider the following family of interconnected discrete-time
systems

Σ1 : x1(t+ 1) = g1T (x1(t), x2(t), u1(t))

(x1(t), x2(t), u1(t)) ∈ Rn1 × Rn2 × Rm1 (9)
Σ2 : x2(t+ 1) = g2T (x1(t), x2(t), u2(t))

(x1(t), x2(t), u2(t)) ∈ Rn × Rn2 × Rm2 (10)
where x := (x1, x2), u := (u1, u2), gT := (g1T , g2T ), and
n := n1 +n2. Suppose that gT is continuous and gT (0, 0, 0) =
0. We assume that each subsystem Σi with i ∈ {1, 2} is either
ISS or strictly iISS. So we make the following assumption.
Assumption 1. Let Vi : Rni → R≥0 be the corresponding
common iISS(ISS)-Lyapunov function to Σi with i ∈ {1, 2},
that is,
(1) There exist functions αi, αi ∈ K∞ such that

αi(|ξi|) ≤ Vi(ξi) ≤ αi(|ξi|) ∀ξi ∈ Rni , (11)
(2) There exist αi ∈ PD(αi ∈ K∞), σi, σui ∈ K and T ∗ > 0
such that
Vi(giT (ξ, µi))− Vi(ξi) ≤ T [−αi(|ξi|) + σi(|ξ3−i|)
+ σui(|µi|)] ∀(ξ, µi) ∈ Rn × Rmi ,∀T ∈ (0, T ∗). (12)

We look for conditions under which the closed-loop system (9)-
(10), which is denoted by Σ, is iISS, as well. To this end, we
pursue similar procedures as those for continuous-time systems
in (Ito, 2007). We indeed generalize the results in (Ito, 2007)
for discrete-time systems. The results in (Ito, 2007) are based
on the approach of changing supply functions proposed in
(Sontag and Teel, 1995). On the other hand, the discrete-time
counterpart of (Sontag and Teel, 1995) is given in (Nešić and
Teel, 2001). Hence, we rely on the method of changing supply
functions given in (Nešić and Teel, 2001). Define ρi : R≥0 →
R≥0 by

ρi(s) :=

∫ s

0

λi(τ)dτ (13)

where λi : R≥0 → R≥0 is a nondecreasing and continuous
function. We call λi a scaling function. Obviously, ρ ∈ K∞ and
ρ is continuously differentiable on [0,∞). Let V̂i : Rni → R≥0
with i ∈ {1, 2} be

V̂i(xi) := ρi ◦ Vi(xi) (14)
in which Vi(xi) is the Lyapunov function to the ith subsystem.
For convenience, let ∆V̂i := ρi(Vi(giT (x, ui))) − ρi(Vi(xi)).
Also, Vcl : Rn1 × Rn2 → R≥0 is defined by

Vcl(x) :=V̂1(x1) + V̂2(x2)

=

∫ V1(x1)

0

λ1(τ)dτ +

∫ V2(x2)

0

λ2(τ)dτ . (15)

The form (15) called the sum-type construction is used through-
out this paper to verify iISS for the interconnected system Σ. 1 .
Monotonicity of λi(.) together with the mean value theorem
gives for any i ∈ {1, 2}
ρi(a)− ρi(b) ≤ λi(a)[a− b] ∀(a, b) ∈ R≥0 × R≥0. (16)

1 The max-type construction is useless to verify iISS when at least one of
subsystems is strictly iISS (cf. Theorem 8 in (Ito et al., 2012) for more details).
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This property will be invoked below several times. It should
be pointed out that one can deduce from (11) and (12) that the
following hold
Vi(ξi) ≥ max{αi(|ξi|), Tαi(|ξi|)}

∀i ∈ {1, 2},∀ξi ∈ Rni ,∀T ∈ (0, T ∗) (17)
Vi(giT (ξ, µi)) ≤ Vi(ξi) + T [σi(|ξ3−i|) + σui(|µi|)]
∀i ∈ {1, 2},∀(ξ, µi) ∈ Rn × Rmi , ∀T ∈ (0, T ∗), (18)

which will be used in the proof of Lemmas 5 and 7 (see below).

3.1 Feedback Interconnections of iISS Subsystems

Let both subsystems Σ1 and Σ2 be strictly iISS. In what
follows, we show iISS for Σ. It is worthwhile to mention
that throughout this paper, we primarily rely on results of
Proposition 3 stating that 0-GAS is an equivalence for iISS
for discrete-time systems. From now on, by slight abuse of
notation, let Vi := Vi(ξi) and Vi(giT ) := Vi(giT (ξ1, ξ2, 0))
for each i ∈ {1, 2}.
Theorem 4. Let T ∗ > 0 be given. Also, let Assumption 1
hold for each i ∈ {1, 2}. Suppose that αi ∈ K\K∞ for any
i ∈ {1, 2}. If for all T ∈ (0, T ∗) there exist c1, c2 > 0 such that

σ2 ◦ α−11 (s) ≤ c1α1 ◦ α−11 (s) ∀s ∈ R≥0, (19)

c2σ1 ◦ α−12 (s) ≤ α2 ◦ α−12 (s) ∀s ∈ R≥0, (20)
c1 < c2, (21)

then Σ is iISS.

Proof. To establish iISS for the closed-loop system (9)-(10),
we exploit the equivalence between iISS and 0-GAS. So let
u ≡ 0. Define a Lyapunov function candidate for the closed-
loop system by (15). Let strictly positive real numbers T ∗, c1
and c2 be given. Pick λ1 = c1

δ2 and λ2 = 1 with δ := ( c1c2 )
1
3

and c1 < c2. Using, in succession, (15), (12) and the fact that
λ2 = 1, for all ξ ∈ Rn and all T ∈ (0, T ∗) we get
∆Vcl := ρ1 ◦ V1(g1T )− ρ1(V1) + ρ2 ◦ V2(g2T )− ρ2(V2)

= λ1[V1(g1T )− V1] + λ2[V2(g2T )− V2]

≤ T [λ1[−α1(|ξ1|) + σ1(|ξ2|)]− α2(|ξ2|) + σ2(|ξ1|)] .
(22)

It follows with the fact that δ < 1 and c2 = c1
δ3 that

∆Vcl ≤ T [−[1− δ][λ1α1(|ξ1|) + α2(|ξ2|)] + σ2(|ξ1|)
−c1α1(|ξ1|) + δ[c2σ1(|ξ2|)− α2(|ξ2|)]] . (23)

It follows from (11) that
∆Vcl ≤ T

[
− [1− δ][λ1α1(|ξ1|) + α2(|ξ2|)] + σ2 ◦ α−11 (V1)

− c1α1 ◦ α−11 (V1)

+ δ[c2σ1 ◦ α−12 (V2)− α2 ◦ α−12 (V2)]
]
. (24)

So it is straightforward to see that the conditions (19)-(20)
together with (21) are sufficient to guarantee 0-GAS for Σ. 2

3.2 When Things Go Wrong!

We make this observation that Theorem 4 is the discrete-time
counterpart of Theorem 4 in (Ito, 2007) when k = 1 therein.
We would like to see whether we are able to get iISS for the
feedback interconnected system (9)-(10) with the same condi-
tions as those in Theorem 4 of (Ito, 2007) for all k > 0 therein.
So we follow steps in the proof of Theorem 4 in (Ito, 2007). To
this end, let T ∗ > 0 be given and let Assumption 1 hold for
each i ∈ {1, 2} with α1, α2 ∈ K\K∞. As iISS is equivalent to
0-GAS, let u ≡ 0.

Define a Lyapunov function candidate for the closed-loop sys-
tem by (15). Let λ1 ∈ R>0 be given. Using (14) and (12), we
get for all ξ ∈ Rn and all T ∈ (0, T ∗)

∆V̂1 = ρ1 ◦ V1(g1T )− ρ1(V1) = λ1 [V1(g1T )− V1]

≤ λ1T [−α1(|ξ1|) + σ1(|ξ2|)] . (25)
It follows with adding and subtracting δλ1Tα1(|ξ1|) that

∆V̂1 ≤T [−[1− δ]λ1α1(|ξ1|) + λ1σ1(|ξ2|)− λ1δα1(|ξ1|)] .
(26)

Let the scaling function λ2 be nondecreasing and continuous on
R≥0. From the mean value theorem there exists some point z on
the line segment joining V2 to V2(g2T ) such that the following
holds

∆V̂2 = ρ2 ◦ V2(g2T )− ρ2(V2) = λ2(z) [V2(g2T )− V2] .
(27)

Using (12), we get

∆V̂2 ≤ Tλ2(z) [−α2(|ξ2|) + σ2(|ξ1|)] . (28)
Exploiting Young’s inequality yields

∆V̂2 ≤ T
[
−λ2(z)α2(|ξ2|) +

1

pκp
[λ2(z)]p +

κq

q
[σ2(|ξ1|)]q

]
(29)

for some point z on the line segment joining V2 to V2(g2T ),
for any T ∈ (0, T ∗), for all (ξ1, ξ2) ∈ Rn1 × Rn2 , and any
κ ∈ R>0 and p, q > 1 with 1

p + 1
q = 1. It follows with adding

and subtracting Tδα2(|ξ2|)λ2(z) that

∆V̂2 ≤ T
[
−[1− δ]α2(|ξ2|)λ2(z) +

1

pκp
[λ2(z)]p

−δα2(|ξ2|)λ2(z) +
κq

q
[σ2(|ξ1|)]q

]
. (30)

Combining (26) and (30) gives
∆Vcl ≤ T [− [1− δ]λ1α1(|ξ1|)− [1− δ]α2(|ξ2|)λ2(z)

+ λ1σ1(|ξ2|) +
1

pκp
[λ2(V2(g2))]p

−δα2(|ξ2|)λ2(z) +
κq

q
[σ2(|ξ1|)]q − λ1δα1(|ξ1|)

]
.

(31)
It follows from (11) that

∆Vcl ≤ T [−[1− δ]λ1α1(|ξ1|)− [1− δ]α2(|ξ2|)λ2(z)

+ λ1σ1 ◦ α−12 (V2) +
1

pκp
[λ2(z)]p

− δα2 ◦ α−12 (V2)λ2(z)

+
κq

q
[σ2 ◦ α−11 (V1)]q − λ1δα1 ◦ α−11 (V1)].

So the following conditions guarantee 0-GAS for Σ[
κq

q

]
[σ2 ◦ α−11 (V1)]q − λ1δα1 ◦ α−11 (V1) ≤ 0

∀V1 ∈ R≥0, (32)
1

pκp
[λ2(z)]p − δα2 ◦ α−12 (V2)λ2(z) + λ1σ1 ◦ α−12 (V2) ≤ 0

∀ (V2, z) ∈ R≥0 × R≥0. (33)

Let c1 :=
[
qλ1δ
κq

]
, k := q and s := V1. So it follows from (32)

that
[σ2 ◦ α−11 (s)]k ≤ c1α1 ◦ α−11 (s) ∀s ∈ R≥0, (34)
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which is identical to the condition (47-a) in (Ito, 2007).
Let w := V2 and let λ2 : R≥0 → R≥0 be

λ2(z) := κqδq−1
[
α2 ◦ α−12 (w)

]q−1
. (35)

Substituting (35) into (33) gives

σ1 ◦ α−12 (w) ≤ [κδ]
q

qλ1
[α2 ◦ α−12 (w)]q ∀w ∈ R≥0, (36)

which is the same as (47-b) in (Ito, 2007) by setting c2 := (κδ)q

qλ1

and k := q. As seen the conditions (34) and (36) are the same as
the pair of conditions (47) in (Ito, 2007). So one might naively
conclude that the system Σ is iISS under these conditions.
However, the main problem is that the equation (35) is not
well-defined because the argument of the scaling function λ2
is different from one on the right-hand side of the equation.
It should be noted that the equation (35) becomes well-defined
as T → 0 because z tends to w. In this case, the equation (35)
equals to its continuous-time counterpart (cf. (50) in (Ito, 2007)
for more details). So we recover results of Theorem 4 in (Ito,
2007).

3.3 Feedback Interconnections of iISS Subsystems (continuation)

Here we provide new conditions under which iISS holds for the
system Σ when both subsystems are strictly iISS. To give these
results, we rely on Lemma 5 whose proof is removed for space
reason.
Lemma 5. Let T ∗ > 0 and λi(.) be a nondecreasing function
with λi(a + b) ≤ λi(a) + λi(b) for all a, b ∈ R≥0 and
λi(s) ≤ ε

[
s
T

]q−1
for all T ∈ (0, T ∗), some ε > 0, for some

q > 1, and for all s ∈ R≥0. Also, let Assumption 1 hold with
µ ≡ 0. Then there exist positive numbers κ > 0, p and q with
min{p, q} > 1 and 1

p + 1
q = 1 such that for any τi > 1, for each

i ∈ {1, 2}, for all T ∈ (0, T ∗) and for all ξ ∈ Rn the following
dissipation inequality holds

∆V̂i ≤ T
[
−
[
τi − 1

τi

]
αi(|ξi|)λi(

Vi
τi

) +

[
1

pκp

]
[λi(Vi)]

p

+

[
κq

q
+ ε

]
[σi(|ξ3−i|)]q

]
. (37)

Theorem 6. Let T ∗, λ2(.) and τ2 come from Lemma 5. Also, let
Assumption 1 hold for each T ∈ (0, T ∗) and for any i ∈ {1, 2}
with α1, α2 ∈ K\K∞. If there exist α̂2 ∈ K and c1, c2 > 0,
and k > 1 such that[
α̂2 ◦ α−12 (s)

]k ≤ α2 ◦ α−12 (s)

[
α̂2 ◦ α−12 (

s

τ2
)

]k−1
∀s ∈ R≥0, (38)

[σ2 ◦ α−11 (s)]k ≤ c1α1 ◦ α−11 (s) ∀s ∈ R≥0, (39)

c2σ1 ◦ α−12 (s) ≤ [α̂2 ◦ α−12 (s)]k ∀s ∈ R≥0, (40)
then Σ is iISS.

Proof. As iISS is equivalent to 0-GAS, let u ≡ 0. Also, let
T ∗ > 0 be given and T ∈ (0, T ∗). Define a Lyapunov function
candidate for the closed-loop system by (15).
Let λ1 ∈ R>0. Using (14) and (12), we get for all ξ ∈ Rn and
for all T ∈ (0, T ∗)

∆V̂1 = ρ1 ◦ V1(g1T )− ρ1(V1) = λ1 [V1(g1T )− V1]

≤ Tλ1 [−α1(|ξ1|) + σ1(|ξ2|)] . (41)
Let λ2 come from Lemma 5. It follows from Lemma 5 that for
all ξ ∈ Rn and all T ∈ (0, T ∗)

∆V̂2 ≤ T
[
−
[
τ2 − 1

τ2

]
α2(|ξ2|)λ2(

V2
τ2

) +

[
1

pκp

]
[λ2(V2)]p

+

[
κq

q
+ ε

]
[σ2(|ξ1|)]q

]
(42)

Combining (41) and (42) gives

∆Vcl ≤ T
[
−[1− δ]

[
λ1α1(|ξ1|) +

[
τ2 − 1

τ2

]
α2(|ξ2|)λ2(

V2
τ2

)
]

+ λ1σ1(|ξ2|) +

[
1

pκp

]
[λ2(V2)]p

+

[
κq

q
+ ε

]
[σ2(|ξ1|)]q

−δ
[
τ2 − 1

τ2

]
α2(|ξ2|)λ2(

V2
τ2

)− λ1δα1(|ξ1|)
]
.

(43)

It follows from (11) that

∆Vcl ≤ T
[
− [1− δ]

[
λ1α1(|ξ1|) +

[τ2 − 1

τ2

]
α2(|ξ2|)λ2(

V2
τ2

)
]

+ λ1σ1 ◦ α−12 (V2) +

[
1

pκp

]
[λ2(V2)]p

+
[κq
q

+ ε
]
[σ2 ◦ α−11 (V1)]q

− δ
[τ2 − 1

τ2

]
α2 ◦ α−12 (V2)λ2(

V2
τ2

)

− λ1δα1 ◦ α−11 (V1)
]
.

So sufficient conditions under which 0-GAS for Σ preserves are[
κq

q
+ ε

]
[σ2 ◦ α−11 (s)]q − λ1δα1 ◦ α−11 (s) ≤ 0 ∀s ∈ R≥0,

(44)

λ1σ1 ◦ α−12 (s) +

[
1

pκp

]
[λ2(s)]p

− δ
[
τ2 − 1

τ2

]
α2 ◦ α−12 (s)λ2(

s

τ2
) ≤ 0 ∀s ∈ R≥0. (45)

Pick c1 :=
[
κq

q + ε
]−1

λ1δ and k := q. So it follows from (44)
that

[σ2 ◦ α−11 (s)]k ≤ c1α1 ◦ α−11 (s) ∀s ∈ R≥0, (46)

which is identical to (39).
Now we need to find λ2(.) so that the condition (45) holds. But
the problem is that arguments of the functions λ2 in (45) are
different. To solve this matter, we impose the condition (38).
Let α̂2 ∈ K\K∞ so that the following holds

α̂2 ◦ α−12 (s)λ2(s) ≤ α2 ◦ α−12 (s)λ2(
s

τ2
) ∀s ∈ R≥0.

(47)

It follows from (47) that

λ1σ1 ◦ α−12 (s) +

[
1

pκp

]
[λ2(s)]p

− δ
[
τ2 − 1

τ2

]
α̂2 ◦ α−12 (s)λ2(s) ≤ 0 ∀s ∈ R≥0. (48)

Now arguments of the functions λ2 in (48) are the same (both
functions are with s). Taking the derivative of (48) with respect
to λ2 and equating to zero give
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λ2(s) = κqδq−1
[
τ2 − 1

τ2

]q−1
[α̂2 ◦ α−12 (s)]q−1 ∀s ∈ R≥0.

(49)
Substituting (49) into (48) gives

qλ1τ
q
2

[κδ[τ2 − 1]]
q σ1 ◦ α−12 (s) ≤ [α̂2 ◦ α−12 (s)]q ∀s ∈ R≥0,

(50)

which is identical to (40) by setting c2 :=
qλ1τ

q
2

[κδ[τ2−1]]q and
k := q. Also, substituting (49) into (47) yields[

α̂2 ◦ α−12 (s)
]k ≤ α2 ◦ α−12 (s)

[
α̂2 ◦ α−12 (

s

τ2
)

]k−1
∀s ∈ R≥0, (51)

which is equivalent to (38). This completes the proof. 2

Remark 2. Theorem 6 gives a discrete-time version of Theorem
4 in (Ito, 2007) where k > 1. One additional condition is
required by Theorem 6 in comparison with Theorem 4 in (Ito,
2007). This condition is given to solve problems mentioned
in subsection 3.2. The other two conditions (39) and (40) are
similar to the pair of conditions (47) in Theorem 4 in (Ito,
2007).

3.4 Feedback Interconnections of iISS and ISS Subsystems

We give iISS for Σ when the first subsystem Σ1 is ISS and
the second one Σ2 is strictly iISS. We are in the need of
lemma below to establish Theorem 8. This lemma is a slight
modification of Lemma 1 in (Nešić and Teel, 2001).
Lemma 7. Let T ∗ > 0 be given. Let λi(.) be a nondecreasing
function. Also, let Assumption 1 hold with αi ∈ K∞ and
µ ≡ 0. Then there exists some τi > 1 such that for each
i ∈ {1, 2}, any T ∈ (0, T ∗), and all ξ ∈ Rn, the following
dissipation inequality holds

∆V̂i ≤ T
[
−
[τi − 1

τi

]
αi(|ξi|)λi(

Vi(ξi)

τi
)

+ λi ◦ θi(|ξ3−i|)σi(|ξ3−i|)
]

(52)

where θi : R≥0 → R≥0 is defined by
θi(s) := αi ◦ α−1i ◦ τiσi(s) + Tσi(s). (53)

We are ready to state the main result of this subsection.
Theorem 8. Let λ1(.), θ1(.), α1(.), σ1(.) and τ1 come from
Lemma 7. Also, let λ2(.), α2(.), σ2(.) and τ2 come from
Lemma 5. Suppose that α2 ∈ K\K∞. If there exist some
α̂2 ∈ K, c1, c2 > 0, and k > 1 such that for all s ∈ R≥0,
the following hold

α̂2 ◦ α−12 (s)k ≤ α2 ◦ α−12 (s)α̂2 ◦ α−12 (
s

τ2
)k−1 (54)

max
w∈[0,s]

[c1σ2 ◦ α−11 (τ1θ1(w))]k

α1 ◦ α−11 (τ1θ1(w))
≤ [c2α̂2 ◦ α−12 ◦ α2(s)]k

σ1(s)
,

(55)
then Σ is iISS.

Proof. Using the result of Proposition 3, let u ≡ 0. Define
a Lyapunov function candidate for the closed-loop system by
(15). Take any arbitrary T ∗ > 0. Let λ1 come from Lemma 7.
So for all ξ ∈ Rn and for all T ∈ (0, T ∗) we get

∆V̂1 ≤T
[
−
[
τ1 − 1

τ1

]
α1(|ξ1|)λ1(

V1
τ1

) + λ1 ◦ θ1(|ξ2|)σ1(|ξ2|)
]
.

(56)

Let λ2 come from Lemma 5. It follows from Lemma 5 that for
all ξ ∈ Rn and for all T ∈ (0, T ∗)

∆V̂2 ≤ T
[
−
[
τ2 − 1

τ2

]
α2(|ξ2|)λ2(

V2
τ2

) +

[
1

pκp

]
[λ2(V2)]p

+

[
κq

q
+ ε

]
[σ2(|ξ1|)]q

]
(57)

Combining (56) and (57) gives

∆Vcl ≤ T
[
− [1− δ]

{[τ1 − 1

τ1

]
α1(|ξ1|)λ1(

V1
τ1

)

+
[τ2 − 1

τ2

]
α2(|ξ2|)λ2(

V2
τ2

)
}

+ λ1 ◦ θ1(|ξ2|)σ1(|ξ2|) +
[ 1

pκp

]
[λ2(V2)]p

+
[κq
q

+ ε
]
[σ2(|ξ1|)]q − δ

[τ2 − 1

τ2

]
α2(|ξ2|)λ2(

V2
τ2

)

− δ
[τ1 − 1

τ1

]
α1(|ξ1|)λ1(

V1
τ1

)
]
. (58)

Given that (53) and (11) yields

∆Vcl ≤ T
[
− [1− δ]

{[τ1 − 1

τ1

]
α1(|ξ1|)λ1(

V1
τ1

)

+
[τ2 − 1

τ2

]
α2(|ξ2|)λ2(

V2
τ2

)
}

+
[ 1

pκp

]
[λ2(V2)]p

+ λ1 ◦ θ1 ◦ α−12 (V2)σ1 ◦ α−12 (V2)

+
[κq
q

+ ε
]
[σ2 ◦ α−11 (V1)]q

− δ
[
τ2 − 1

τ2

]
α2 ◦ α−12 (V2)λ2(

V2
τ2

)

− δ
[τ1 − 1

τ1

]
α1 ◦ α−11 (V1)λ1(

V1
τ1

)
]
.

So Σ is 0-GAS if for all ∀s ∈ R≥0, the following hold[
κq

q
+ ε

]
[σ2 ◦ α−11 (s)]q − δ

[
τ1 − 1

τ1

]
α1 ◦ α−11 (s)λ1(

s

τ1
)

≤ 0 (59)

λ1 ◦ θ1 ◦ α−12 (s)σ1 ◦ α−12 (s)

+

[
1

pκp

]
[λ2(s)]p − δ

[
τ2 − 1

τ2

]
α2 ◦ α−12 (s)λ2(

s

τ2
) ≤ 0.

(60)
The inequality (59) gives

λ1(
s

τ1
) ≥

[
κq

q + ε
]

[σ2 ◦ α−11 (s)]q

δ
[
τ1−1
τ1

]
α1 ◦ α−11 (s)

∀s ∈ R≥0. (61)

We pick the same λ2 as that in the proof of Theorem 6. So let
α̂2 ∈ K\K∞ so that the following holds

α̂2 ◦ α−12 (s)λ2(s) ≤ α2 ◦ α−12 (s)λ2(
s

τ2
) ∀s ∈ R≥0

(62)
which is equivalent to (54). It follows from (62) that

λ1 ◦ θ1 ◦ α−12 (s)σ1 ◦ α−12 (s) +

[
1

pκp

]
[λ2(s)]p

− δ
[
τ2 − 1

τ2

]
α̂2 ◦ α−12 (s)λ2(s) ≤ 0 ∀s ∈ R≥0. (63)

Now arguments of the functions λ2 in (63) are equal. Let
λ2 : R≥0 → R≥0 be
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λ2(s) := κqδq−1
[
τ2 − 1

τ2

]q−1
[α̂2 ◦ α−12 (s)]q−1 ∀s ∈ R≥0.

(64)
Substituting (64) into (63) gives

λ1 ◦ θ1(s) ≤ [κδ]q

q

[
τ2 − 1

τ2

]q
[α̂2 ◦ α−12 ◦ α2(s)]q

σ1(s)
∀s ∈ R≥0.

(65)

Let λ1(s) := maxw∈[0,s]
[κ
q

q +ε][σ2◦α−1
1 (τ1w)]q

δ
[
τ1−1

τ1

]
α1◦α−1

1 (τ1w)
. Obviously, this

choice of λ1(.) is nondecreasing and satisfies (61). Pick c1 :=

[κ
q

q +ε]
1
q

δ
1
q
[
τ1−1

τ1

] 1
q

, c2 := [κδ]

q
1
q

[
τ2−1
τ2

]
and k := q. Let the condition

(55) hold. So the condition (55) guarantees that for all s ∈ R≥0,
(65) holds

max
w∈[0,s]

[c1σ2 ◦ α−11 (τ1θ1(w))]q

α1 ◦ α−11 (τ1θ1(w))
≤ [c2α2 ◦ α−12 ◦ α2(s)]q

σ1(s)
.

(66)
This completes the proof. 2

Remark 3. Thanks to monotonicity of θ(.) and the fact that
τ1 > 1, the following simpler-to-check condition provides a
sufficient condition to ensure that for all s ∈ R≥0, (55) holds

max
w∈[0,s]

[c1σ2 ◦ α−11 (τ1θ1(w))]k

σ1(s)
≤ [c2α̂2 ◦ α−12 ◦ α2(s)]k

σ1(s)
.

(67)

Now we show sufficient conditions to check (67).
Lemma 9. Let the functions θ1, α̂2, σi, αi, and αi for each
i ∈ {1, 2} and the constant τ1 come from Theorem 8. Define

η(s) :=
[α̂2◦α−1

2 (s)]
k

σ1◦α−1
2 (s)

with k > 1. Let for some k > 1 the
following pair of conditions hold
η(s+ ε) ≥ η(s) ∀ε > 0 (68)

c1σ2 ◦ α−11 (τ1θ1(s)) ≤ c2α̂2 ◦ α−12 ◦ α2(s) ∀s ∈ R≥0.
(69)

Then the inequality (67) holds.

Proof. It is proved in similar arguments as those in the proof of
Lemma 1 in (Ito, 2007) with minor modifications. 2

Remark 4. Theorem 8 presents a discrete-time version of The-
orems 2 and 3 in (Ito, 2007). By approaching T → 0, Case
1 in the proof of Lemma 7 vanish and the function θ1 tends
to its continuous-time counterpart in Theorems 2 and 3 in (Ito,
2007). Further, it follows from the arguments in subsection 3.2
together with those in the proof of Lemma 7 that the condition
(54) and the constant τ1, which is multiplied by θ1, in the left-
hand side of (55) disappear as T → 0. So we indeed recover
results in Theorems 2 and 3 in (Ito, 2007).

4. CONCLUSION

The main purpose of the current work was to study integral
input-to-state stability for a feedback interconnection of pa-
rameterized discrete-time systems. We considered two different
cases of subsystems. The former contained a feedback intercon-
nection of two strictly integral input-to-state stable subsystems.
In the latter, one of the subsystems was allowed to be input-to-
state stable.

An extension could be integral input-to-state stability for large-
scale interconnected systems (cf. (Ito et al., 2013) and ref-
erences therein). Another future work is to provide integral
input-to-state stability for time-delay discrete-time systems in
a feedback interconnection (cf. (Dashkovskiy et al., 2012) and
references therein).
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Liberzon, D., Nešić, D., and Teel, A.R. (2014) ’Lyapunov-
based small-gain theorems for hybrid systems’, IEEE Trans.
Automatic Control, DOI: 10.1109/TAC.2014.2304397.

Liu, T., Jiang, Z-P., and Hill, D. J. (2012) Lyapunov formulation
of the ISS cyclic-small-gain theorem for hybrid dynamical
networks, Nonlinear Analysis: Hybrid Systems, 6, 988-1001.
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