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Abstract: This paper presents a method of designing a suboptimal Kalman filter (SKF)
for nonlinear systems, including uncertainties on the system parameter dynamics. In general,
governing dynamics behind real-world phenomena has significant associated uncertainties and
all we can presume is the approximation to system models. We thus need a robust filter that
is capable of rapidly following up the unknown system model parameters while adequately
estimating the system states as well. The SKF is suboptimal in terms of standard square errors
that the KF minimizes at each time step and this suboptimization results in the enhancement
of filter’s parameter adaptation ability. The nonlinearity of system models is handled by using
an unscented transforming statistical linearization without losing the Gaussianity of states to
be estimated. We confirm the effectiveness of the proposed filter by numerical simulations.

1. INTRODUCTION

1.1 Formulation of Dual Estimation Problem

This paper deals with the following nonlinear state-space
models with uncertainties on the system parameter dy-
namics:

Xt = f(Xt−1) + μt−1, μt−1 ∼ N(0, Q + ΔQt−1) (1)

yt = HXt + ωt, ωt ∼ N(0, r) (2)

Here, Xt is an L-dimensional random vector and yt is a
scalar observation at time t. Xt is called a state vector
and includes system states and parameters as its elements.
f(Xt−1) expresses the system dynamics and since both
system states and parameters are unknown, the function
becomes nonlinear in general. Sequentially estimating Xt

given the past series of the scalar observations Yt =
{yt, yt−1, · · · , y1} is our research problem in this paper.
H is an observation matrix and μt−1, ωt are system and
observation noises following Gaussian distributions both
with zero means and variance-covariance matrix Q +
ΔQt−1 and variance r, respectively. ΔQt−1 expresses
abrupt time-varying uncertainties on the modeling errors
for the system parameter dynamics and the actual (true)
values are not known prior to the filter execution.

Since the system parameters are supposed not to greatly
vary in time, their dynamics is usually expressed by the
following random walk models corrupted by small system
noises.

Xp
t = Xp

t−1 + μp
t−1, μp

t−1 ∼ N(0, Qp) (3)

Here, Xp
t corresponds to the system parameter elements

in Xt and μp
t−1 is the Gaussian noise brought to the above

model. However, this simple model is only valid for cases
where the system parameters do not often change with

time (stationary cases). For the other cases where the pa-
rameter values might abruptly or discontinuously change
at random times, an additional technique is required to
take the unknown temporal behaviors into consideration.

1.2 Covariance Inflation Techniques

The most widely used technique is to add fictitious system
noises to eq. (3). The addition of such noises indicates
that the random walk models might include relatively
large modeling errors, and it is performed to convey
the information for the upcoming observation updating
procedure. This kind of technique is called a covariance
inflation and due to its simplicity, most practitioners tend
to use this fictitious noise approach. The only problem is
that we never know how large the noise variances should
be to compensate for the modeling errors and so the
unknown values remain as parameters that users should
tune intensively. Such parameter tuning often troubles
the filter’s users since the parameter values considerably
affect the overall resulting filtered state estimates. Our
suboptimal Kalman filter (SKF) approach[1], which is
designed to become suboptimal in the framework of square
errors of the standard KF[2], addresses this problem and
liberates the users from troublesome parameter tunings.

The other approaches are the fading-memory filter[3] and
H∞ filter[4][5][6]. The fading-memory filter increases the
past observation noise variances and thus the recent obser-
vation update is emphasized. By this procedure, although
the filter can retain the covariance inflation effect as the
fictitious noise approach does, the inflation parameter re-
mains to be tuned. The H∞ filter is designed to minimize
exponential cumulative square errors and thus speeds up
the state convergence to the true value. This effect is also
promising for tackling the problem of interest, but the
parameter that controls how much the convergence is sped
up must be pre-specified and there exists the same problem
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as in the previous approaches. The inappropriate tuning
causes unwanted fluctuations in the state estimates. There
is another cost design[7] that might be applicable to our
research problem, but the filter equation can not be ex-
pressed in closed form and thus a numerical approximation
is required. We focus on a closed-form filter approach that
is capable of rapidly following up the unknown parameter
dynamics.

1.3 Robust Filter to Parameter Uncertainties

Our objective here is to design a filter that rapidly
tracks the unknown parameter dynamics. In this area
there have been a number of investigations propos-
ing a variety of filters insensitive to the parameter
uncertainties[8][9][10][11][12][13]. These filters have been
expressed in closed forms but derived under the assump-
tion of uncertain linear state-space models, so that they
cannot be applied to dual estimation problem because
of coupling nonlinearity. In this paper, we focus on the
simultaneous estimations of system states and parameters
that might exhibit abrupt changes in time.

1.4 Handling Nonlinear System Models

For handling the nonlinear function in eq. (1), the ex-
tended Kalman filter (EKF) or unscented Kalman filter
(UKF)[14] is widely used. The EKF linearizes the f(Xt−1)
around the current state estimate and thus the state the-
oretically retains its Gaussianity during the whole time
interval. On the other hand, the UKF approximates ex-
pectation and covariance matrix of the nonlinearly trans-
formed state and thus the state generally comes to follow
non-Gaussian distributions. Since the Gaussianity is math-
ematically tractable in designing the optimal filter, the
EKF is attractive. However, the UKF, by using unscented
transformation techniques, generally provides better state
estimates than the EKF. Our approach requires the state
Gaussianity, so the UKF is not applicable. For this reason,
we propose an unscented transforming statistical lineariza-
tion (UTSL) technique, which is expected to be superior
in handling the nonlinear functions over the Taylor series
truncation technique of the EKF. The UTSL is a statistical
linearization (SL)[15] used in conjunction with unscented
transformation (UT) estimations of its expectations. With
this technique, the SL becomes applicable to all kinds of
nonlinear functions, while the standard SL has closed-form
solutions only for a small class of nonlinear functions.

The paper is organized as follows. Section 2 describes
our filter approach, including the cost function that the
SKF sequentially minimizes. Section 3 explains the SL
and the UTSL techniques for handling nonlinear functions
and compares them with the Taylor series first-order
truncation technique. We summarize our proposed filter
algorithm in Section 4 and show numerical simulation
results to confirm its effectiveness in Section 5. We then
conclude this paper by mentioning the main contributions
and findings.

2. SUBOPTIMAL KALMAN FILTER (SKF)

2.1 Partial Covariance Inflation

The SKF is designed to achieve covariance inflation with-
out adding fictitious system noises or fading the effects of

the past state estimate as described in the previous sec-
tion. In so doing, we consider a suboptimal state estimate
in the sense of square errors as follows:

X̄sub
t = X̄t ± St (4)

here, X̄t is an optimal solution that minimizes the square
error of E[(Xt − f(Yt−1))T (Xt − f(Yt−1))] = E[||et||2],
where et = Xt − f(Yt−1) and || · || is an Euclidean
norm. St is a suboptimal term. Then, the estimation error
covariance matrix around X̄sub

t becomes as follows:

P̄ sub
t =

∫ (
Xt − (X̄t ± St)

)(
Xt − (X̄t ± St)

)T

×p(Xt|Yt−1)dXt

=
∫

(Xt − X̄t)(Xt − X̄t)T p(Xt|Yt−1)dXt

+StS
T
t

∫
p(Xt|Yt−1)dXt

= P̄t + StS
T
t (5)

Here, P̄t is a state estimation error covariance matrix of
the X̄t. Since the X̄t and P̄t values correspond to those of
the standard KF, we confirm that deliberately making the
state estimate suboptimal as the X̄sub

t yields the partial
covariance inflation effect with an amount of StST

t (see
Subsection 2.3 for the definition). We no longer require
any fictitious system noise addition or fading procedures
and hereafter focus on this suboptimal state estimate.

2.2 Cost Function Design

The next problem is how to determine the suboptimal
term St. We do this by adopting a new cost function
instead of using the standard square error. The cost
function is described as follows:

J(et) = ||et||2P̄−1
t

+ JΔ(et), (6)

where JΔ(et) =
{

γt (||et|| ≤ Δ/2)
0 (||et|| > Δ/2)

(7)

Here, the first term is a square error weighted by P̄−1
t .

This weighting is to balance the two terms and also for the
subsequent mathematical tractability. The second term
represents the suboptimization effect and it has the form
of an inverse uniform error with a height of γt and an L
dimensional super sphere with the radius Δ/2. These two
error terms for the one-dimensional state case are depicted
in Fig. 1. The height γt is defined as follows:

Fig. 1. Cost function: square error (left) and inverse
uniform error (right).

γt =
1
N

j=t∑
j=t−N+1

ν2
j

HP̄jHT + r
(8)
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Here, νj is an observation residual at time j (νj =
yj − HX̄t) and HP̄jH

T + r is its theoretical variance.
N is the averaging window. This definition indicates
that when large observation residuals are detected, the
second term excels and the corresponding suboptimization
is exerted. Then, the resulting state estimation error
covariance matrix is sufficiently inflated. This filtering
behavior can be seen further by investigating the closed-
form solution of this cost function.

2.3 Optimal Solution

The optimal solution X̄sub
t for the cost function in eqs. (6)

and (7) satisfies the following equation.

exp
(
−1

2
(X̄sub

t − X̄t)T P̄−1
t (X̄sub

t − X̄t)
)

=
2
ht

(9)

ht is defined as follows:

ht =
γtDL(Δ)

(
√

2π)L
√

|P̄t|
here, DL(Δ) = πL/2

Γ(L/2+1) (Δ/2)L (volume of the super
sphere with radius of Δ/2). We next restrict our solution
as X̄sub

t ≈ X̄t. Then, eq. (9) becomes the following
quadratic form.

ST
t P̄−1

t St = 2
(

1 − 2
ht

)
= ct (10)

Since the solution for eq. (10) is indefinite, we focus on
the solution whose L2 norm is minimum, that is, whose
distance between X̄sub

t and X̄t is minimum. We solve eq.
(10) by using the method of Lagrange multipliers. The
solution is expressed as follows:

St =±√
ct · βt,minM ′

t

=±√
2βt,min

√(
1 − τ

γt

)
M ′

t (11)

X̄sub
t = X̄t ± St

Here, we set τ = 2(
√

2π)L
√

|P̄t|
DL(Δ) . Note that the βt,min and M ′

t

denote, respectively, the minimum eigenvalue of P̄t and the
corresponding unit eigenvector. Equation (11) indicates
that for γt ≥ τ , the solution is suboptimized with an
amount of calculated St. Besides that case, the solution
keep unchanged to be X̄t, that is, the state estimate of
the standard KF. Recalling the definition of γt in eq. (8),
we see that γt theoretically obeys a Gaussian distribution
N(1, 2/N) for sufficiently large N by the use of the central
limit theorem. Then, the reasonable setting of τ becomes
as follows:

τ = 1 + κ
√

2/N, where κ = 2 ∼ 3 (12)

Equations (11) and (12) express that when the normalized
average observation residual γt exceeds its two or three
sigma range, the suboptimization is performed. This filter-
ing behavior is suited to our research problem. The sign ±
in eq. (11) both leads to the optimal solution; however, we
adopt a sign that produces a lower absolute observation
residual |yt − HX̄sub

t | at each time step.

We summarize the suboptimal state estimate given ob-
servations and its estimation error covariance matrix as
follows:

X̄sub
t =

⎧⎨
⎩X̄t ±

√
2βt,min

√
1 − τ

γt
M ′

t (γt ≥ τ)

X̄t (otherwise)

P̄ sub
t =

⎧⎨
⎩P̄t + 2βt,min

(
1 − τ

γt

)
M ′

t(M
′
t)

T (γt ≥ τ)

P̄t (otherwise)
A filter that uses these estimates at time t given obser-
vations Yt−1 is called the SKF. An important feature of
the SKF is that the suboptimization direction indicated
by M ′

t is aligned with the eigenvector associated with the
minimum eigenvalue of P̂t. Recalling the random walk
model in eq. (3), we see that the estimation error variances
for system parameters tend to be very small compared to
those of the system states. Therefore, the suboptimization
is always performed to the system parameters, and the co-
variance inflation indicated by 2βt,min

(
1 − τ

γt

)
M ′

t(M
′
t)

T

enhances the system parameter adaptation ability. We
call such enhancement a partial covariance inflation and
it significantly differs from a total covariance inflation
of the H∞ filter. This enabling of a rapid follow-up of
the uncertain system parameter dynamics is the primary
feature of the SKF.

2.4 Gaussianity of State

A strong assumption behind the derivation of the SKF
closed-form solution is a Gaussianity of the state. Since
the nonlinear function in eq. (1) easily violates this as-
sumption, we need to consider the linearized model to
ensure the Gaussianity of state. The next section describes
our UTSL technique, which is expected to produce an
approximation model superior to that obtainable with the
standard linearization technique.

3. UNSCENTED TRANSFORMING STATISTICAL
LINEARIZATION (UTSL)

3.1 Statistical Linearization (SL)

The UTSL calculates the expectations in SL models of the
target nonlinear systems using the UT technique. The SL
model is obtained by solving the following problem[15].

arg min
(A,b)

E
[
||f(Xt−1) −

(
A(Xt−1 − X̂t−1) + b

)||2] (13)

Here, X̂t−1 is a state estimate at time t− 1 given observa-
tions Yt−1. A and b are an inclination matrix and constant
vector, respectively, and the optimal values are expressed
as follows[16]:

A = E[f(Xt−1)(Xt−1 − X̂t−1)T ]P̂−1
t−1 (14)

b = E[f(Xt−1)] (15)

P̂t−1 is the estimation error covariance matrix of the X̂t−1.
Thus, the SL model for eq. (1) becomes

f(Xt−1) + μt−1 ≈
E[f(Xt−1)δT ]P̂−1

t−1δ + E[f(Xt−1)] + μt−1 (16)

where δ = Xt−1 − X̂t−1.
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3.2 SL and First-order Taylor Series Truncation Models

It has recently been confirmed that this approxima-
tion model corresponds to a first-order truncation of the
Fourier-Hermite series expansion[17]. The approximation
accuracy of eq. (16) is generally higher than that of a
standard linearization (a first-order truncation model of
the Taylor series expansion), and this can be confirmed as
follows by assuming the 1st-order differentiability as well
as the Gaussianity in state:

A =
∂b

∂X̂t−1

= E[
∂

∂Xt−1
f(Xt−1)] (17)

Equation (17) indicates that the A is an expected inclina-
tion using p(Xt−1|Yt−1), and compared with the standard
inclination ∂

∂Xt−1
f(Xt−1)|Xt−1=X̂t−1

, the information of
the state distribution is thus taken into account in the SL
linearization. Therefore, for a general class of nonlinear
functions, it is expected that when the state estimation
covariance matrix is small, the SL model becomes closer
to the standard linearized model. We summarize both
linearized models as follows:

Standard model

f(Xt−1) + μt−1 ≈
∂f

∂Xt−1

∣∣∣∣
Xt−1=X̂t−1

δ + f(X̂t−1) + μt−1

SL model

f(Xt−1) + μt−1 ≈
E

[
∂f

∂Xt−1

]
δ + E[f(Xt−1)] + μt−1

The expectations in eqs. (14) and (15) can not be ex-
pressed in the analytical forms in general. We thus apply
the UT technique to obtain these values with demon-
strated high accuracy. This approach is called here the
unscented transforming statistical linearization (UTSL).

3.3 Unscented Transformation (UT) Estimations

The UT estimates an expectation using 2L + 1 number of
sigma points χ and the weights w as follows:

E[f(Xt−1)] = w0f(χ0) +
2L∑

n=1

wnf(χn) (18)

E[(f(Xt−1)δT )] =
2L∑

n=1

wnf(χn)(χn − X̂t−1) (19)

where, χ0 = X̂t−1, χn = X̂t−1 + (−1)nαC(ñ),

ñ = �n/2� + n mod 2
Here C(ñ) expresses the ñth column vector of the Cholesky
matrix of P̂t−1 (P̂t−1 =

∑2L
n=1 C(ñ)C(ñ)T ). �·� and

· mod 2 express the floor function and the remainder of
the division by 2. By taking the sigma point weights that
satisfy w0 + 2Lw1 = 1, 2w1α

2 = 1, and 2w1α
4 = 3,

eqs. (18) and (19) becomes approximately correct up to
the fourth order in terms of the Taylor series expansion.
Therefore, the SL model in eq. (16) becomes feasible in
conjunction with these UT expectation estimations. The

corresponding UKF parameter and sigma point weights
are α =

√
3, w0 = 1 − L/3, wn = 1/6, (n = 1, 2, · · · , 2L)

The UTSL model of eq. (1) enables us to guarantee the
Gaussianity of states and to validate the use of the closed-
form solution of the SKF explained in the previous section.
We next summarize our proposed filter algorithm that
sequentially utilizes the UKF and UTSL techniques.

4. PROPOSED FILTER ALGORITHM

Our filter performs a state estimate suboptimization when
the observation residuals exceed a specified limit. With
this procedure, the system parameter estimation error
covariance matrix is inflated and the Kalman gain regains
health. Adequate Kalman gain results in the rapid follow-
up for the system parameter changes and thus the filter
behaves like a robust filter to the parameter dynamics
uncertainties, which is our solution addressing the research
problem in this paper. Figure 2 plots the flow chart of
the SKF algorithm. As shown in this figure, it consists

Fig. 2. Flow chart of SKF algorithm.

of an iteration of three main procedures: time update of
state, automatic suboptimization of state when required,
and observation update of state. The automatic subopti-
mization yields the partial inflation of the state estimation
error covariance matrix, leading to the rapid follow-up for
abrupt changes in the system parameters. We call this
sequential state estimation algorithm as SKF.

The algorithm equations are summarized as follows:

Time update

χ0 = X̂t−1

χn = X̂t−1 + (−1)n
(√

3C(ñ)
)

wn =

⎧⎪⎨
⎪⎩

1 − L

3
, for n = 0

1
6
, for n 	= 0

X̄t = w0f(χ0) +
2L∑

n=1

wnf(χn)

FUTSL =
2L∑

n=1

wnf(χn)(χn − X̂t−1)T

P̄t = (FUTSLP̂−1
t−1)P̂t−1(FUTSLP̂−1

t−1)
T + Q
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Suboptimization

νt = yt − HX̄t

γt =
1
N

j=t∑
j=t−N+1

ν2
j

HP̄jHT + r

τ = 1 + κ
√

2/N

X̄sub
t =

⎧⎨
⎩X̄t ±

√
2βt,min

√
1 − τ

γt
M ′

t (γt ≥ τ)

X̄t (otherwise)

P̄ sub
t =

⎧⎨
⎩P̄t + 2βt,min

(
1 − τ

γt

)
M ′

t(M
′
t)

T (γt ≥ τ)

P̄t (otherwise)
Observation update

νsub
t = yt − HX̄sub

t

Kt = HP̄ sub
t (HP̄ sub

t HT + r)−1

X̂t = X̄sub
t + Ktν

sub
t

P̂t = P̄ sub
t − KtHP̄ sub

t

Here, βt,min and M ′
t are the minimum eigenvalue of P̄t and

the unit eigenvector. We adopt a sign from ± which pro-
duces a lower absolute observation residual |yt − HX̄sub

t |.
κ and N are the algorithm design parameters, and consid-
ering that κ is a threshold of unusual observation resid-
uals and that N is related to the validation of using the
central limit theorem, their recommendation settings are
κ = 2 ∼ 3, N = 10. Since these parameter values do
not depend on the problem to be solved, our proposed
filter is liberated from troublesome parameter tunings. The
other approaches mentioned in Section 1 require intensive
parameter tunings and since the parameter values con-
siderably affect the overall state estimation results. Our
approach is clearly superior to them from the practical
viewpoint. We numerically confirm the effectiveness of the
proposed filter algorithm in the next section.

5. NUMERICAL SIMULATIONS

5.1 Performance of SKF

This section presents the result of a numerical investi-
gation of our proposed approach. Our filter algorithm
is designed to rapidly follow up the uncertain dynamics
of system parameters. The example problem taken is as
follows:

Xt = f(Xt−1) + μt−1, μt−1 ∼ N(0, Q)

yt = HXt + ωt, ωt ∼ N(0, r),

where Xt ≡ [x1,t, x2,t, at, bt]T , Q = diag(0.2, 0, 0, 0),

r = 0.1, H = [1, 0, 0, 0]
here, the nonlinear function f(·) is expressed as follows:

f(Xt−1) =

⎡
⎢⎣

at−1sin(x1,t−1) + bt−1x2,t−1

x1,t−1

at−1

bt−1

⎤
⎥⎦ ,

where

⎧⎨
⎩

at = 1.5, bt = −0.9 (t ≤ 2000)
at = 1.0, bt = −0.5 (2000 < t ≤ 4000)
at = 1.5, bt = −0.9 (4000 < t ≤ 6000)

The system state dynamics is a second-order Markovian
process with known modeling error magnitude and it
is expressed as Q11 = 0.2. On the other hand, the
system parameter dynamics is a random walk model with
unknown modeling error magnitude. The two parameters
significantly change after t = 2000 and t = 4000, and
these changing points of time are also unknown prior to
the filter design phase. Therefore, some strategies must
be pursued in order to follow up the uncertain parameter
dynamics. We compare the system parameter estimation
performance of the proposed filter with that obtained by
the UKF with the fictitious system noise approach.

Figure 3 plots the observations yt and the true evolu-
tion of system parameters. The observation time series

Fig. 3. yt (left). True parameter dynamics (right).

exhibit two changing patters as the parameters vary. The
sequential state estimations were simulated using these
observations and the results were averaged over 100 times
Monte Carlo runs.

Figure 4 plots the parameter estimation results for the
proposed filter and UKF with fictitious system noises. The
first three graphs (upper left, upper right, and lower left)
are the results for the UKF with tunings of Q33, Q44 that
are brought to the system parameter dynamics. The last
graph (lower right) is the result for the proposed filter.
The middle lines at each graph are the filtered estimates

Fig. 4. Results for UKF with fictitious system noises:
Q33 = Q44 = 10−6 (upper left): Q33 = Q44 = 10−5

(upper right): Q33 = Q44 = 10−4 (lower left). Results
for proposed filter: Q33 = Q44 = 0 (lower right).

and the upper and lower lines indicate the estimation
error bars (±2 sigma). From Fig. 4, the UKF enhances its
parameter adaptation ability by adding fictitious system
noises to the unknown dynamics. However, this approach
easily leads to surplus covariance inflation and prevents
the estimation errors from gradually becoming small. This
makes the filter always sensitive to the new observations
and causes fluctuations in estimation results. Besides that,
the estimation results considerably depend on the settings
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of the fictitious noise variances and appropriate tuning of
the settings is essential.

On the other hand, our proposed filter automatically de-
tects significant changes in system parameters and deals
with them at the cost function level. Therefore, fictitious
noises are not necessary and when the observation resid-
uals are within the normal range, it is expected that
the estimation errors becomes sufficiently lowered. The
algorithm parameters are set κ = 2, N = 10 by following
the recommendation values in Section 2.

5.2 κ and N dependency

N is the average number in eq. (8) and must be large to
theoretically validate the use of the central limit theorem.
To investigate the parameter dependency, we show the
estimation results with κ = 2, N = 5 and κ = 2, N = 20
in Fig. 5. From these figures, we can observe that the

Fig. 5. Results for proposed filter. N = 5 (left). N = 20
(right).

results do not considerably depend on the setting of N .
The recommendation value is thus N = 10. However,
κ is relatively important parameter since it controls the
balance of two cost terms in eqs. (6)-(7). Recall that κ
relates to Δ through the following equation.

τ =
2(
√

2π)L
√
|P̄t|

DL(Δ)
= 1 + κ

√
2/N

Larger κ indicates smaller Δ and smaller Δ contributes
less effect of the second cost term (suboptimal term) in
eqs. (6)-(7). In other words, when κ is wrongly set small,
since the effect of the suboptimal term becomes excessive,
suboptimization will be performed frequently, leading to
the unstable state estimation results. To investigate the
dependency of κ, we show the estimation results with
κ = 1, N = 10 and κ = 3, N = 10 in Fig. 6. The left

Fig. 6. Results of proposed filter. (Left) κ = 1. (Right)
κ = 3.

figure shows that the estimation error bars do not become
sufficiently small, indicating that the suboptimization was
excessively performed even during the observation resid-
uals are within the normal range. To the contrary, the
right figure clearly shows that the suboptimization was not
performed when needed and thus, the estimation results
do not exhibit the rapid parameter follow-up that can
be seen in Fig. 3 (lower right). From these results, we

need a special attention to set the value κ and when
the state dimension becomes small, larger κ (smaller Δ)
would be more appropriate since it reduces the effect of the
suboptimization term. We thus recommended κ = 2 ∼ 3
in Section 2.

6. CONCLUSION

Governing dynamics behind real-world phenomena has
significant uncertainties and all we can presume is approx-
imation models of the uncertainties. The approximation
models are composed of unknown system states and pa-
rameters, and the system parameters do not generally stay
constant over time. We therefore need a robust filter that
is capable of rapidly following up the unknown system
parameter dynamics and thus yielding the accurate state
estimates as well. Our proposed filter is based on a SKF al-
gorithm that requires state Gaussianity and thus the filter
uses UTSL models for the nonlinear system dynamics. The
UTSL calculates expectations in the standard SL solutions
using UT and it is thus applicable to a general class of
nonlinear functions. We have confirmed the effectiveness
of the proposed approach by numerical simulations.
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