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Abstract: Networks consist of interacting components that often function together to achieve
a particular goal. For example, in the human cortex, populations of neurons in different
layers continuously communicate and encode information about the subject’s environment
and cognitive state to govern behavior. In cortical networks, neurons (network nodes) can
be structurally connected (through synapses) in addition to being functionally connected;
and in epilepsy, structural connections in just a few nodes change to destabilize the network
and cause seizures. We define these nodes as fragile and set out to quantify fragility in
networks. We first consider arbitrary linear networks whose state-evolution matrices characterize
functional connectivity. Nodal fragility is then computed as the minimum energy perturbation
required on the node’s functional connectivity to destabilize the network. We then apply our
perturbation theory to a stable probabilistic nonlinear neural network model. We show how
the destabilizing perturbation in functional connectivity translates to a perturbation on the
structural connections between neurons, i.e., the synaptic weights. Our results suggest that the
most fragile nodes in the network are excitatory neurons that become more active or inhibitory
neurons that become less active. This is consistent with abnormal axonal sprouting of excitatory
neurons and loss of inhibitory chandelier cells observed in epileptic cortical tissue. The simulated
activity before and after seizure also highlight the heterogeneity observed in actual recordings
from epilepsy patients, where parts of the network either increase or decrease baseline firing
while the rest of the neurons become silenced.
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1. INTRODUCTION

Epilepsy is a neurological disease that affects over 50 mil-
lion individuals worldwide (de Boer et al., 2008), manifest-
ing in recurrent seizures. During seizures, there is evidence
of abnormal activity in cortical neurons including more
heterogeneity in firing (Truccolo et al., 2011), transient
increases or decreases in firing rate (Truccolo et al., 2011),
and synchronization in population oscillations (Uhlhaas
and Singer, 2003). The etiology of epilepsy is unclear -
studies have implicated genetic anomalies (Jeffrey, 2003),
axo-axonic gap junctions (Traub et al., 2001), neurotrans-
mitter imbalance (Bradford, 1995), loss of inhibitory chan-
delier cells in cortex (DeFelipe, 1999), atypical axonal
sprouting from Layer V pyramidal cells (Jin et al., 2006),
physical injury (Annegers and Coan, 2000) or infection
(Lancman and Morris, 1996). A common thread among
these possible mechanisms is that the effective coupling
between neurons or populations of neurons is altered. For
this reason, epilepsy is understood to be a network phe-
nomenon and network models are often used to study the
relationship between structural connections and functional
activity.
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Network models consist of a set of nodes with internal
dynamics, connected by edges that define the nature of
nodal interactions. For neural networks, nodes are neurons
and edge weights represent synaptic connection strengths.
Negative outgoing edge weights from a node indicate
that neurons in that node are inhibitory, while positive
outgoing weights from a node indicate that the neurons in
that node are excitatory.

We posit that aberrant functional activity observed during
seizures does not arise from random changes in network
structure (edge weights), but from the disruption of the
most fragile nodal connections in the network. Fragility
of a network node is defined as the minimum energy
perturbation (on functional connections to its neighbors)
required to destabilize the network, and is computed here
for a class of perturbations that affect a subnetwork
topology consisting of incoming connections to a single
node. Next, the structural modifications, or the changes in
the synaptic weights of the most fragile node that achieves
the functional perturbation, are derived. The theory is
then applied to a probabilistic nonlinear neural network
model. In its unperturbed state, if a small stimulus is
applied to the network, the activation probability of each
neuron responds transiently but eventually returns to the
fixed point. When the perturbed network is destabilized,
the activation probabilities shift to larger or smaller values
indefinitely.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 7505



2. METHODS

2.1 Structural Connectivity and Functional Connectivity

Here, we elucidate the distinction between structural and
functional connectivity. Consider a network of three nodes
with directed edges from node 1 to 2, and from node 2
to 3. Each node has internal dynamics that are modu-
lated by external inputs to produce outputs propagated
along the directed edges. The structural connectivity, the
physical connections that define adjacent nodes, can be
represented as an adjacency matrix, W, with two non-
zero elements. The functional connectivity, the effect of one
node’s activity on another’s, is different than the structural
connectivity, however. While the activity of the second
node depends only on the activity of the first, the activity
of node 3 depends on the activity of both nodes 1 and 2 –
the activity of node 1 is relayed through node 2 to affect
node 3. The functional connectivity can be represented
as an adjacency matrix, J, with three non-zero elements
(strictly lower triangular).

In the context of neurological diseases, what is of interest
is not the structural connectivity per se, but the inter-
dependence between the activity of nodes, the functional
connectivity, that arises from the structural connectivity.
In epilepsy, the obvious defect is in the functional connec-
tivity, the aberrant behavior of neurons and populations
that manifests during seizures, and the goal is to link this
back to some abnormality in the structural connectivity.
This is a non-trivial problem that depends strongly on
both network topology and internal nodal dynamics.

2.2 Stability of Linear Networks

First consider a linear system that evolves in continuous
time as (1) with state vector x(t) ∈ RN , and state matrix
A ∈ RN×N .

ẋ (t) = Ax (t) (1)

The state matrix can be viewed as an adjacency matrix
representation of the functional connectivity of a network
of N nodes, whose dynamics are linear and captured in
the evolution of the state vector. The elements in the state
vector are some metric of the activity of each node. The
system is said to be asymptotically stable about a fixed
point, x̂, if x(t) converges to x̂ as t → ∞ for all initial
conditions. This implies that the activity of the nodes
remains at a baseline value and responds transiently to
external inputs before recovering. In terms of the matrix
representation, stability is equivalent to the eigenvalues of
A being in the open left hand plane i.e. Re {λi} < 0.

If max{Re{λi} = 0}, the state settles somewhere along the
first eigenvector based on initial conditions. Therefore, the
network gets stuck in some pattern of activity instead of
decaying to its baseline. If the elements in the state vector
represent spiking rates, this may be analogous to tonic
spiking or silenced neurons.

2.3 Perturbations and Network Fragility

A linear system becomes unstable if there is a change to the
state matrix so that the conditions on the eigenvalues (real

parts being negative) are no longer met. This change can
be modeled as an additive perturbation, ∆, to the state
matrix so that A+∆ replaces A in the state equation (1).
In this section, we construct perturbation matrices that
render the network unstable. A variety of perturbation
matrices can push the original network into instability.
Based on the structure of the perturbation, and which
elements are preferentially affected, different perturbation
strengths (measured by a matrix norm) are required to
cause the perturbed system to become unstable. Network
fragility is defined here as the magnitude of the minimum
energy perturbation required to push the network to the
brink of instability. If a large magnitude perturbation is
required, the network is more robust, while small energy
perturbations correspond to a fragile network. The ele-
ments that are modified by the minimum energy perturba-
tion define the edges of the most fragile subnetwork. Here,
we constrict ourselves to the treatment of perturbations
with non-zero entries along a row, which correspond to
disruptions of a single neuron’s incoming edge weights. The
column perturbation result is analogous. Subsequently,
preliminary results from a row-perturbed model network
are presented.

2.4 Structured Perturbation Problem

Problem: For a stable matrix A ∈ RN×N , and a family
of row perturbations, Λr = ekΓT ,Γ ∈ RN , solve for the

minimum induced 2-norm perturbation, ∆̂ ∈ Λr, so that

λ = 0 is an eigenvalue of A + ∆̂. ek ∈ RN is the kth

elementary basis vector.

∆̂ =argmin
∆∈Λr

{‖∆‖2 | ∃i : λi (A + ∆) = 0,

∀i : Re {λi (A)} < 0, i ∈ 1 . . . N,A ∈ RN×N}
(2)

Solution: Since 0 is an eigenvalue of A + ∆, there exists
a v ∈ CN , v 6= 0 such that

(A + ∆) v = 0v (3a)(
A + ekΓT

)
v = 0 (3b)

From the characteristic equation,

∣∣A + ekΓT
∣∣ = 0 (4a)

|A|
∣∣I + A−1ekΓT

∣∣ = 0 (4b)∣∣I + A−1ekΓT
∣∣ = 0 (4c)∣∣1 + ΓTA−1ek

∣∣ = 0 (4d)

ΓTA−1ek = −1 (4e)

This is just a minimization of an underdetermined least
squares problem over k.

k̂ = argmax
k
{
∥∥A−1ek

∥∥
2
} (5)

Then ∆̂ = e
k̂
Γ̂T with

Γ̂ =
−A−1e

k̂

e
k̂
TA−TA−1e

k̂

(6)
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2.5 Probabilistic Neural Network Model

The row perturbation result above will be applied to
destabilize a neural network model used in Benayoun
et al. (2010). This model is attractive because it includes
parameters analogous to physiological features like refrac-
tory periods, synaptic strengths and firing rates without
involving the complexity of biophysical models. A diagram
of the neural network model is given in Figure 1.

Consider node i to be a single neuron that exists in one
of two states at some time, active (xi (t) = 1) or quiescent
(xi (t) = 0). The state probability evolves as a Markov
process, with rate constants as given below, for a small
time interval dt.

Pr {xi (t+ dt) = 0 | xi (t) = 1} = αdt (7a)

Pr {xi (t+ dt) = 1 | xi (t) = 0} = f (si (t)) dt (7b)

The active state represents the action potential duration
of a neuron including its refractory period. The input to
neuron i is given by si(t). The spiking propensity of a
neuron therefore depends on the level of input it receives,
but the inactivation propensity is fixed. f (•) is a non-
linear response function, representing the expected firing
rate when quiescent. A clamped hyperbolic tangent was
used in simulations, i.e.

f (s) = max {0, tanh (s)} (8)

Combining (7a) and (7b), the nodal probability, pi (t) =
〈xi (t)〉 = Pr {xi (t) = 1}, i.e. the probability of a neuron
being active at some time, evolves according to the follow-
ing non-linear rate equation.

ṗi(t) = −αpi (t) + f (si (t)) (1− pi (t)) (9)

Consider a network of N such nodes, connected according
to a structural connectivity matrix, W = [wij ], whose
elements are positive if node j excites node i, negative
if node j inhibits node i and zero if nodes i and j are
physically unconnected. The input to node i, si (t), is
contingent on the state of the nodes which connect to
it, the weights of these connections, and some constant
external input, hi. If node j is active, node i feels an
incremental synaptic drive of wij .

si (t) =

N∑
j=1

wijxj (t) + hi (10)

The state of all the nodes in the network at any time, the
network state, is given by aggregating the nodal states,
xi (t), into the Boolean vector x (t) ∈ RN . Similarly, the
nodal inputs, si (t), can be aggregated to form the synaptic
input vector s (t) ∈ RN . It can be expressed in matrix form
as follows where h ∈ RN is the aggregate vector of external
inputs. Then (10) can be re-written as

s (t) = Wx (t) + h (11)

The network probability, p (t) ∈ RN , formed by aggregat-
ing nodal probabilities, pi (t), therefore evolves according

Fig. 1. Diagram of the probabilistic neural network model.
Each node is a two-state Markov process, with an
inactivation rate that is constant and an activation
rate dependent on synaptic inputs, si. The synaptic
input is the sum of an external input, hi, and the
synaptic weights, wij , from active upstream neurons.

to a non-linear rate equation analogous to the nodal rate
equation in (9).

ṗ (t) = −αp (t) + diag {f (Wp (t) + h)} (1− p (t))

,g (p (t) ; W)
(12)

Determining Functional Connectivity Note that (12)
explicitly forecasts the functional activity of the network,
ṗ (t), given some network structure, W, and so the no-
tation g (p (t) ; W) is used. Assume that the initial struc-
tural connectivity of the network gives rise to functional
stability, so that there exists a unique stable fixed point,
p̂ ∈ RN . Details on the existence of a stable fixed point
are given in Benayoun et al. (2010) . This fixed point is
a steady-state probability that satisfies (13) and therefore
represents the baseline behavior of the network. The fixed
point also depends on the network structure.

g (p̂; W) = 0 (13)

Solving for p̂ analytically using (12) and (13) is not
generally possible, but gradient descent algorithms can be
used instead. Equation (12) can be linearized around this
fixed point, where J (p̂; W) is the Jacobian evaluated at
the fixed point (Strogatz, 1994).

δṗ (t) ≈
(
∂g (p; W)

∂p

)
p=p̂

δp (t) (14a)

= J (p̂; W) δp (t) (14b)

The general form of the Jacobian is as follows. δij is the
Kronecker delta.

Jij (p; W) =
∂gi (p; W)

∂pj
(15a)

= f ′
(
wi

Tp + hi
)
wij (1− pi)−

δij
(
α+ f

(
wi

Tp + hi
)) (15b)

Since p̂ is a stable fixed point, Re {λi (J (p̂; W))} < 0, so
J (p̂; W) is the stable adjacency matrix for a CT system
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operating about p̂. J (p̂; W) is therefore also the functional
connectivity of a linearized network, with a given struc-
tural connectivity, W. Row i of J (p̂; W) captures how the
probability of any node being active affects the probability
of node i being active. Column j indicates how the active
probability of node j affects the active probability of other
nodes.

Since the network has been linearized about p̂, the mini-
mum row perturbation, ∆J (J (p̂; W)), required to cause
CT instability is given by the result derived in Section 2.4.
The unstable functional connectivity, J̃ (p̂; W), therefore
has the following form where r ∈ {1, 2, . . . , N} is the
perturbed row.

J̃ (p̂; W) = J (p̂; W) + ∆J (J (p̂; W)) (16a)

= J (p̂; W) + erΓJ
T (J (p̂; W)) . (16b)

Disrupting Structure to Destabilize the Network Note
that in (15b) the entries in row i of the functional con-
nectivity matrix depend only on entries in row i of the
structural connectivity matrix. That means the effect of
inbound activity is facilitated at the structural level wholly
by the weight of inbound connections. Therefore, if a row
perturbation is applied to J (p̂; W), this can be accounted
for solely through modifications to the corresponding row
of W, interpreted as modifications to incoming synaptic
strengths. The perturbed structural connectivity required
to produce the unstable functional connectivity is neces-
sarily of the following form.

W̃ = W + ∆W (17a)

= W + erΓW
T (17b)

This perturbed structural connectivity should give rise

to a new functional connectivity, J
(
p̂; W̃

)
, identical to

the unstable one computed from the original network
configuration.

J
(
p̂; W̃

)
= J̃ (p̂; W) (18)

Note however that changes in the structural connectivity
(W → W̃) may change the fixed point, which in turn
alters all rows of the functional connectivity so that

J
(
p̂; W̃

)
cannot reproduce J̃ (p̂; W) which differs only

by a single row. This is to be expected since ∆J is
computed for a functional connectivity at a given fixed
point. Therefore, W̃ must be restricted to be invariant on
the fixed point of the unperturbed system so that

p̂
(
W̃
)

= p̂ (W) = p̂ (19)

This can be accomplished only if the probability flux in
(12) remains at zero while the structural connectivity is
changed so that the fixed point does not move.

g
(
W̃; p̂

)
= g (W; p̂) = 0 (20)

Note that g (W; p̂) is used instead of g (p̂; W) as before,
since the fixed point is now the constant and structural
connectivity the variable. Inspection of (12) reveals condi-
tions required to satisfy (20) element-wise.

For i 6= r:

ei
T W̃ = ei

TW =⇒ gi (W; p̂) = gi

(
W̃; p̂

)
= 0 always

(21)

For i = r:

gr

(
W̃; p̂

)
= 0 ⇐⇒ wr

T p̂ = f−1

(
αp̂r

1− p̂r

)
− hr = w̃T

r p̂

(22a)

=⇒ (w̃r −wr)
T

p̂ = 0 (22b)

The modified row of the structural connectivity, w̃T
r , can

be computed using a constrained gradient descent in a
manner analogous to the fixed point discovery.
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Fig. 2. Graph representation of a neuronal network with
six nodes. (A) The original structural connectivity of
the network. The blue arrows indicate the external
inputs, hi. Black arrows represent synaptic weights,
wij , between nodes. (B) The perturbed structure of
the network after a row perturbation is applied at 0 Hz
(the minimum energy perturbation). The most fragile
node and subnetwork is highlighted in red. Solid red
arrows indicate existing connections with modified
strengths. Dotted arrows indicate new connections.
The black arrows have weights identical to the original
network structure. The external input is also the same
and omitted for clarity.
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3. RESULTS

The network model is a probabilistic one and so far its av-
erage behavior has been described. To simulate realizations
of the stochastic process, the Gillespie algorithm (Gille-
spie, 1977) can be used as in Benayoun et al. (2010). It is
an exact algorithm that generates stochastic realizations
faithful to the underlying distribution. Simulation results
are presented for a sample network designed with only a
few nodes to allow for easy visualization. The structure
and function of the network in its stable state is described
first, followed by its properties after destabilization.

3.1 Stable Network

A schematic of the original, stable network is shown in
Figure 2A. The network has 6 neurons, and 14 connections.
The decay rate, α, is set to 100 Hz, which caps the neuronal
firing rates at that value. This network was simulated using
MATLAB.

Raster plots of 1 second segments from 10 stochastic
realizations are shown in Figure 3A. The spike times are
marked as the instant when a node switches from quiescent
to active. Firing rates are therefore closely related to the
active state probabilities at the fixed point. All nodes fire
fairly regularly in the raster plot.

3.2 Perturbed Network - DC Instability

The behavior of the perturbed network is now highlighted.
The functional connectivity is computed by evaluating
(15b) at the fixed point. Then, using the perturbation
result, the minimum energy row perturbation for the sys-
tem is computed and the corresponding structural per-
turbation that would manifest as this specific functional
instability is computed. The structure of the perturbed
network is shown in Figure 2B. The most fragile subnet-
work corresponds to the incoming edges to node 4, an
inhibitory neuron.

Figure 3B shows a segment of 10 stochastic realizations of
the network activity after the structural perturbation is
applied. The network is operating away from the baseline
behavior at its fixed point with node 4 spiking less fre-
quently. When the linearized system is perturbed so that

Fig. 3. Raster plots of 10 stochastic realizations of neural
activity from (A) the original stable network, (B) the
unstable network perturbed at 0 Hz with λ = 0ms−1,
and (C) λ = 1ms−1. Node 4 is eventually silenced.

an eigenvalue is moved to the origin, a stable manifold
is on the cusp of becoming unstable. In a deterministic
system, the emergence of an unstable manifold implies
that for almost all initial conditions, the trajectory will
grow without bound along the unstable manifold, at a rate
proportional to the eigenvalue. In this system, since proba-
bilities are being modeled, there are necessarily upper and
lower bounds. The firing rates too are therefore capped.
Furthermore, since the system is stochastic, trajectories do
not indefinitely follow the unstable manifold but are kicked
away and then recycled to the saddle point by the stable
manifolds. This mechanism may explain the heterogeneity
in firing rates seen during seizure activity, as trajectories
veer about this fixed point.

As the eigenvalue is set to be more positive, the trajectories
follow the unstable manifold more strongly, the noisy
resetting mechanism occurs less frequently and the active
probabilities saturate at the boundaries more consistently
during simulations, so that the nodes either approach tonic
spiking or become silent (see Figure 3C). Inhibitory node 4
(where the perturbation is applied) is eventually silenced,
and there is increased activity in nodes 3 and 6, which
originally felt the strongest inhibition from node 4 prior to
the perturbation. Cortical neurons from epilepsy patients
show a similar increase or decrease in firing rates during
seizure. Compare Figure 3 to the preictal and ictal spiking
patterns respectively in Figure 4.

4. CONCLUSIONS

This study explored the relation between structure and
function in a neuronal network model. The concept of
network fragility was introduced and the minimum energy
perturbation required to destabilize a linear network was
derived. A procedure for linking structural connectivity
to functional connectivity was developed for a probabilis-

Fig. 4. Raster plot of cortical neurons sorted by mean
spiking rate during seizure. The spiking rate of any
given neuron is fairly uniform before seizure onset
(marked by the vertical red line) suggesting a stable
baseline behavior. During seizure, some neurons are
silenced, a few fire almost tonically throughout, while
others fire in bursts that appear as short streaks in the
raster plot. Reprinted by permission from Macmillan
Publishers Ltd: Nature Neuroscience (Truccolo et al.,
2011), copyright 2011.
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tic neuronal network so that a given functional instabil-
ity could be reproduced by appropriate modifications to
synaptic weights. These results were used to perturb a
neuronal network with a stable baseline behavior to cause
atypical functional activity. The mechanism by which
aberrant activity was produced, namely wandering tra-
jectories around a fixed point with an unstable manifold,
may be indicative of neuronal or population dynamics in
seizure.
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