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Abstract: A double generating functions based method for the discrete-time linear quadratic
optimal control problem with fixed and free terminal state, i.e., hard constraint problem and
soft constraint problem, is developed in this paper. By this method, the optimal state and input
can be expressed by functions only in terms of the boundary conditions and pre-computed
coefficients. Accordingly, the whole optimal computation can be divided into two parts in
which the off-line part calculates the coefficients and the on-line part generates the optimal
solutions by these proposed functions. In view of this, the developed method is useful in the
on-line iterative computation for optimal control problem with a number of different boundary
conditions. Examples demonstrate the effectiveness of the double generating functions method
for the both hard and soft constraint problems with different boundary conditions.
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1. INTRODUCTION

The theory of linear quadratic (LQ) optimal control is
concerned with operating a linear dynamic system at
quadratic minimum cost. Generally, the initial time, ter-
minal time, and initial state in the finite-horizon optimal
control problem are fixed. According to the terminal state,
there exist two representative problem formulations. One
is called the hard constraint problem (HCP) that denotes
the problem with fixed terminal state and the other one
is called the soft constraint problem (SCP) that with free
terminal state [Park and Scheeres, 2006].

In on-line practice, HCP usually requires the efficient
generation of the optimal trajectories for different sets
of initial and terminal boundary conditions (BCs). For
example, the on-demand control of biped walking robot in
the complex environment needs to adjust the robot step
length and walking speed for each step [Hao et al., 2013b].
When referring to the SCP, engineer in the real application
needs to specify the weighting factors of the cost function
and compare the optimal results with the designated
design goals, especially the factor of the terminal cost.
This means it will be an iterative process that the engineer
adjusts the weighting factor to get a controller more in line
with the design goals.

Dynamic programming [Bellman, 2003] and Riccati frame-
work [Kucera, 1972, Imura, 2004] are the famous approach-

es to solve the optimal control problem. But both of them
have to implement the whole computation repetitively for
each different set of BCs 1 of the HCP and SCP. This yields
the heavy burden for practice.

Recently, the single generating function method for the
optimal control problem with hard and soft constraint in
the continuous-time case is presented [Park and Scheeres,
2006]. Since this approach does not require one to imple-
ment the whole computation repetitively for different BCs
in the on-line computation, it provides an advantage over
methods rooted in the conventional dynamic programming
and Riccati framework. In order to further decrease the
on-line computational burden, the double generating func-
tions method is proposed in the continuous-time case for
the HCP [Hao et al., 2013a,c]. This approach enables one
to obtain the optimal solutions (state and input) only by
partial differentiations and algebraic manipulations of the
double generating functions in the on-line computation.

Interesting characteristics of the generating function the-
ory in the continuous-time case also attract researchers
to study the analogue in the discrete-time case. Based
on the discrete Hamiltonian mechanics [Lall and West,
2006], Ohsawa et al. [2011] develops a discrete analogue
of Hamilton–Jacobi theory which provides an appropri-
ate way to study the discrete-time LQ optimal control

1 The terminal cost factor of the SCP in the transversality condition
can indirectly adjust the terminal state, we also treat it as the BC.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 6044



problem via generating functions. Forward and backward
generating functions specify the family of the canonical
transformations from the initial BC to the current state-
costate and the terminal BC to the current state-costate,
respectively [Hao et al., 2013a,c]. Both of these two kinds of
generating functions can be obtained by solving either the
right discrete Hamilton–Jacobi equation (HJE) or the left
HJE. Lee [2012] applies the backward generating function
approach to the discrete-time LQ optimal control problem
with a hybrid system by solving the right discrete HJE.

This paper develops the double generating functions
method for the HCP and SCP in the discrete-time case. By
selecting any two different generating functions from the
forward and/or backward types, we construct the double
generating functions for optimal control problems. In the
light of this, the optimal solutions can be expressed by
the functions only in terms of the BCs and pre-computed
coefficients. Accordingly, the whole computation can be
divided into two parts in which the off-line part calculates
the coefficients and the on-line part generates the optimal
solutions satisfying the particular BCs. This enables us
to efficiently get the optimal solutions for fundamentally
different sets of BCs in the on-line computation. The
discrete double generating functions possess theoretical
significance for discrete-time optimal control that is equiv-
alent to that of the continuous ones for the continuous-time
optimal control which can generate the optimal solutions
precisely and efficiently in the on-line computation.

This paper is organized as follows. The discrete-time LQ
optimal control problem with fixed and free state is formu-
lated in Section 2. Section 3 gives the first order necessary
conditions for optimizing the HCP and SCP. Based on this,
the forward and backward generating functions are derived
in Section 4. Section 5, which is the main part of this paper,
develops the double generating functions method for the
HCP and SCP. Examples are implemented in Section 6
to illustrate the effectiveness of the developed approach.
Section 7 concludes the paper.

2. PROBLEM FORMULATION

Consider to find a sequence of the input minimizing a
discrete-time quadratic cost function

J = φ(xN ) +
1

2

N−1
∑

k=0

(xTkQxk + uTkRuk) (1)

subject to the following discrete-time linear system with
boundary constraints

xk+1 = fd(xk, uk) = Axk +Buk (2)

x0 = x0, ψ(xN ) = 0 (3)

over a fixed number of time steps N . Here, k ∈ N is the
discrete time. The vectors xk ∈ R

n and uk ∈ R
m are the

state and input of the problem, respectively. The constant
matrices Q ∈ R

n×n and R ∈ R
m×m are both symmetric

positive definite, A ∈ R
n×n is invertible, and B ∈ R

n×m.
The vector x0 ∈ R

n is the value of the fixed initial state.
The terminal cost and terminal boundary constraint are
defined by φ(xN ) : R

n → R and ψ(xN ) : R
n → R

l6n,
respectively.

We consider two representative problem formulations char-
acterized by the types of the terminal BCs [Park and
Scheeres, 2006]:

• HCP: The above problem with φ(xN ) ≡ 0, ψ(xN ) =
xN − xN for the given terminal state value xN ∈ R

n.
• SCP: The above problem with φ(xN ) = xTNPxN ∈
R for the constant matrix P ∈ R

n×n (symmetric
positive definite), ψ(xN ) does not exist.

As the initial time, terminal time, and initial state are fixed
in the original problem formulation, the above two types of
the constraints are placed here to represent two cases of the
terminal state. The terminal states are fixed and free in the
HCP and SCP, respectively. Theory of double generating
functions will be developed in the remainder to solve these
two typical problems. Further, we present that the double
generating functions method is useful for on-line iterative
computation of the optimal solutions corresponding to
different (initial and terminal) BCs in HCP, and different
terminal weighting factor P in SCP.

3. NECESSARY CONDITIONS FOR OPTIMALITY

In this section, we present the first order necessary con-
ditions for optimality according to the discrete minimum
principle. Section 3.1 gives the necessary conditions for
optimizing HCP, and Section 3.2 for optimizing SCP.

3.1 Necessary Conditions for Optimizing HCP

The discrete minimum principle [Sage, 1968] gives the first
order necessary conditions for optimizing HCP

xk+1 =D2H
+

d
(xk, λk+1) (4)

λk =D1H
+

d
(xk, λk+1) (5)

and the optimal input

uk =−Mλk+1 (6)

where λk ∈ R
n is introduced as the costate, M =

R−1BT ∈ R
m×n, and Di stands for the partial derivative

of a function with respect to its i-th argument. Here, (4)
and (5) are the right discrete Hamilton’s equations [Lall
and West, 2006], and H+

d
(xk, λk+1) is the right discrete

Hamiltonian which has the expression

H+

d
(xk, λk+1) =

1

2
xTkQxk + λTk+1Axk −

1

2
λTk+1Gλk+1

(7)

where G = BR−1BT ∈ R
n×n.

The necessary conditions for optimality can also be ex-
pressed by the left discrete Hamilton’s equations [Lall and
West, 2006]

xk =−D1H
−

d
(λk, xk+1) (8)

λk+1 =−D2H
−

d
(λk, xk+1) (9)

where the left discrete Hamiltonian is defined by the
following [Lall and West, 2006]

H−

d
(λk, xk+1) = H+

d
(xk, λk+1)− λTk xk − λTk+1xk+1. (10)

After substitution of (8) and (9) into (10), we obtain

H−

d
(λk, xk+1) = −

1

2
xTk+1Cxk+1 − λTkDxk+1 +

1

2
λTkEλk

(11)
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where the coefficient matrices C, D, and E ∈ R
n×n are

C =− (G+AQ−1AT)−1 (12)

D =(A+GA−TQ)−1 (13)

E =Q−1AT(G+AQ−1AT)−1AQ−1 −Q−1. (14)

Remark 1. The coefficient C is symmetric negative def-
inite because A is invertible, Q is symmetric positive
definite, and G is symmetric positive semi-definite in (12).
We can find the item A + GA−TQ in (13) is invertible
by rewriting it as (AQ−1AT + G)A−TQ. Furthermore, it
can be found that the coefficient E is symmetric negative
semi-definite by rewriting the right hand side of (14) as
−(A+GA−TQ)−1(GA−TQA−1G+G)(AT +QA−1G)−1.

The necessary conditions for optimality can be represented
by the right Hamiltonian system (4), (5), and (7) or the
left Hamiltonian system (8), (9), and (11), evaluating the
optimal trajectory of HCP corresponds to solving either of
these two systems satisfying the fixed (initial and terminal)
BCs x0 = x0 and xN = xN . Hence the HCP is reduced to
a two point boundary value problem (TPBVP).

3.2 Necessary Conditions for Optimizing SCP

According to the discrete minimum principle, the addi-
tional condition (transversality condition)

λN = D1φ(xN ) = PxN (15)

is given with (4) and (5) to constitute the first order
necessary conditions for optimizing the SCP in terms of
the right Hamiltonian. Naturally, (8) and (9) with (15)
constitute the necessary conditions for optimizing the SCP
in terms of the left Hamiltonian.

Accordingly, evaluating the optimal trajectory of the SCP
corresponds to solving the right or left Hamilton’s equa-
tions satisfying (15) and x0 = x0. Except the initial BC,
(15) which relates xN and λN provides another BC for the
SCP, so the SCP is also reduced to a TPBVP.

4. FORWARD AND BACKWARD GENERATING
FUNCTIONS

In this section, after a general description of the generating
function in Section 4.1, we develop the forward generating
function in Section 4.2 and re-derive the backward gener-
ating function [Lee, 2012] in Section 4.3. Both of these are
the bases to construct the double generating functions.

4.1 General Description

In the TPBVP, both the right and the left discrete Hamil-
ton’s equations define the same dynamics {(xk, λk)}

N
k=0

which is the sequence of the optimal state-costate. A gen-
erating function specifies the family of canonical transfor-
mations that describe the dynamics {(xk, λk)}

N
k=0 under

the condition that if this generating function is a solu-
tion of the HJE [Ohsawa et al., 2011]. The coordinate
transformation from the initial to the current, (x0, λ0) 7→
(xk, λk), is the canonical transformation [Goldstein et al.,
2001]. The type II and III 2 forward generating func-
tions F2f(xk, λ0, k) and F3f(λk, x0, k) are the right tools

2 The definition of the type of generating functions is given by
Goldstein et al. [2001].

to specify the family of these canonical transformations
(0 6 k 6 N) by the relations

λk =D1F2f(xk, λ0, k) (16)

x0 =D2F2f(xk, λ0, k) (17)

and

xk =−D1F3f(λk, x0, k) (18)

λ0 =−D2F3f(λk, x0, k) (19)

respectively. Furthermore, F2f(xk, λ0, k) and F3f(λk, x0, k)
satisfy the corresponding left and right discrete HJEs 3

[Ohsawa et al., 2011]

F2f(xk+1, λ0, k + 1) =F2f(xk , λ0, k)−D1F2f(xk , λ0, k)xk

−H
−

d

(

D1F2f (xk, λ0, k), xk+1

) (20)

F3f(λk+1, x0, k + 1) =F3f(λk , x0, k)− λT
k D1F3f(λk , x0, k)

−H
+

d

(

−D1F3f(λk , x0, k), λk+1

) (21)

respectively.

The type II and III backward generating functions
F2b(xk, λN , k) and F3b(λk, xN , k) are the tools to speci-
fy the family of the canonical coordinate transformation
from the terminal to the current, (xN , λN ) 7→ (xk, λk)
(0 6 k 6 N) by the relations

λk =D1F2b(xk, λN , k) (22)

xN =D2F2b(xk, λN , k) (23)

and

xk =−D1F3b(λk, xN , k) (24)

λN =−D2F3b(λk, xN , k) (25)

respectively. Moreover, F2b(xk, λN , k) and F3b(λk, xN , k)
satisfy the corresponding right and left discrete HJEs

F2b(xk−1, λN , k − 1) =F2b(xk , λN , k)−D1F2b(xk, λN , k)xk

+H
+

d

(

xk−1,D1F2b(xk, λN , k)
) (26)

F3b(λk−1, xN , k − 1) =F3b(λk , xN , k)− λT
k D1F3b(λk , xN , k)

+H
−

d

(

λk−1,−D1F3b(λk , xN , k)
)

(27)

respectively.

4.2 Forward Generating Functions

We give the following proposition to present the explicit
expressions of F2f(xk, λ0, k) and F3f(λk, x0, k) by solving
the corresponding HJEs (20) and (21), respectively.

Proposition 2.

(i) The type II forward generating function has the
expression of

F2f(xk, λ0, k) =
1

2
xTkX2f,kxk + λT0 Y2f,kxk

+
1

2
λT0 Z2f,kλ0

(28)

where the coefficient matrices X2f,k = XT
2f,k, Y2f,k,

and Z2f,k = ZT
2f,k ∈ R

n×n (0 6 k 6 N), satisfy the

following forward recurrence relations 4

3 The generating function satisfies both the right and left discrete
HJEs which are in terms of the right and left discrete Hamiltonian,
respectively. It is free of us to obtain the generating function by
solving any kind of HJE.
4 It should be noted that all the inverse items in this paper are
invertible. This will be presented in the further work.
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X2f,k+1 =DT(I +X2f,kE)−1X2f,kD + C (29)

Y2f,k+1 =Y2f,k(I + EX2f,k)
−1D (30)

Z2f,k+1 =Z2f,k − Y2f,k(I + EX2f,k)
−1EY T

2f,k (31)

with the initial conditions X2f,0 = 0, Y2f,0 = I, and
Z2f,0 = 0, respectively, where I ∈ R

n×n denotes the
identity matrix.

(ii) The type III forward generating function has the
expression of

F3f(λk, x0, k) =
1

2
λTkX3f,kλk + xT0 Y3f,kλk

+
1

2
xT0 Z3f,kx0

(32)

where the coefficient matrices X3f,k = XT
3f,k, Y3f,k,

and Z3f,k = ZT
3f,k ∈ R

n×n (0 6 k 6 N), satisfy the
following forward recurrence relations

X3f,k+1 =A(I +X3f,kQ)−1X3f,kA
T +G (33)

Y3f,k+1 =Y3f,k(I +QX3f,k)
−1AT (34)

Z3f,k+1 =Z3f,k − Y3f,k(I +QX3f,k)
−1QY T

3f,k (35)

with the initial conditions X3f,0 = 0, Y3f,0 = −I, and
Z3f,0 = 0, respectively.

Proof.

(i) Type II F2f(xk, λ0, k) takes the form of quadratic
as (28) [Ohsawa et al., 2011]. From (16) and (17),
we have F2f(xk, λ0, k)|k=0 = λT0 x0, which yields the
given initial conditions X2f,0 = 0, Y2f,0 = I, and
Z2f,0 = 0. Then, we solve the left discrete HJE (20)
to obtain the explicit expression of F2f(xk, λ0, k). It is
clear that (20) is a function in terms of three variables
xk, xk+1, and λ0. Thus, we first eliminate λk in (8)
by (16) so that xk can be expressed by a function in
terms of xk+1 and λ0. Then, replacing the xk in (20)
by this function, we obtain a new quadratic equation
only in terms of xk+1 and λ0. Since this new quadratic
equation should be satisfied for any xk+1 and λ0,
we get the forward recurrence relations (29)–(31).
Further, since (29) is a discrete-time Riccati equation,
by considering the initial X2f,0 = 0 and Z2f,0 = 0, we
know that both X2f,k and Z2f,k are symmetric.

(ii) The proof here is similar to the part (i) by solving the
corresponding right discrete HJE (21).

4.3 Backward Generating Functions

We give the following proposition without proof to present
the expressions of F2b(xk, λN , k) and F3b(λk, xN , k) by
solving the corresponding HJEs (26) and (27), respectively.

Proposition 3.

(i) The type II backward generating function has the
expression of

F2b(xk, λN , k) =
1

2
xTkX2b,kxk + λTNY2b,kxk

+
1

2
λTNZ2b,kλN

(36)

where the coefficient matrices X2b,k = XT
2b,k, Y2b,k,

and Z2b,k = ZT
2b,k ∈ R

n×n (0 6 k 6 N), satisfy the
following backward recurrence relations

X2b,k−1 =AT(I +X2b,kG)
−1X2b,kA+Q (37)

Y2b,k−1 =Y2b,k(I +GX2b,k)
−1A (38)

Z2b,k−1 =Z2b,k − Y2b,k(I +GX2b,k)
−1GY T

2b,k (39)

with the terminal conditions X2b,N = 0, Y2b,N = I,
and Z2b,N = 0, respectively.

(ii) The type III backward generating function has the
expression of

F3b(λk, xN , k) =
1

2
λTkX3b,kλk + xTNY3b,kλk

+
1

2
xTNZ3b,kxN

(40)

where the coefficient matrices X3b,k = XT
3b,k, Y3b,k,

and Z3b,k = ZT
3b,k ∈ R

n×n (0 6 k 6 N), satisfy the
following backward recurrence relations

X3b,k−1 =D(I +X3b,kC)
−1X3b,kD

T + E (41)

Y3b,k−1 =Y3b,k(I + CX3b,k)
−1DT (42)

Z3b,k−1 =Z3b,k − Y3b,k(I + CX3b,k)
−1CY T

3b,k (43)

with the terminal conditions X3b,N = 0, Y3b,N = −I,
and Z3b,N = 0, respectively.

5. OPTIMAL SOLUTIONS VIA DOUBLE
GENERATING FUNCTIONS

This section gives the main results of this paper. Based
on the preceding single generating functions, we develop
the double generating functions method for the HCP and
SCP in this section. In light of this approach, the optimal
solutions for the HCP and SCP can be expressed as the
functions only in terms of the BCs and the pre-computed
coefficients, which are exhibited in Section 5.1 and 5.2,
respectively. In view of this, the optimal trajectories can be
efficiently generated for the iterative on-line computation.

5.1 Optimal Solutions for HCP

Six kinds of double generating functions can be construct-
ed by the choice of any two different single generating func-
tions among F2f(xk, λ0, k), F3f(λk, x0, k), F2b(xk, λN , k),
and F3b(λk, xN , k). Since double generating functions with
same time directions (F2f(xk, λ0, k) and F3f(λk, x0, k),
F2b(xk, λN , k) and F3b(λk, xN , k)) will cause instabilities
when generate optimal trajectories as the time steps in-
crease [Hao et al., 2013c]. Therefore, we here only use
double generating functions with different time directions
to obtain the optimal solutions by the following theorem.

Theorem 4. Suppose the following

(i) The matrices X2f,k, Y2f,k, and Z2f,k ∈ R
n×n (0 6

k 6 N), satisfy (29)–(31) with the initial conditions
X2f,0 = 0, Y2f,0 = I, and Z2f,0 = 0, respectively.

(ii) The matrices X3f,k, Y3f,k, and Z3f,k ∈ R
n×n (0 6 k 6

N), satisfy Eqs. (33)–(35) with the initial conditions
X3f,0 = 0, Y3f,0 = −I, and Z3f,0 = 0, respectively.

(iii) The matrices X2b,k, Y2b,k, and Z2b,k ∈ R
n×n (0 6

k 6 N), satisfy (37)–(39) with the terminal condition-
s X2b,N = 0, Y2b,N = I, and Z2b,N = 0, respectively.

(iv) The matrices X3b,k, Y3b,k, and Z3b,k ∈ R
n×n (0 6

k 6 N), satisfy (41)–(43) with the terminal con-
ditions X3b,N = 0, Y3b,N = −I, and Z3b,N = 0,
respectively.
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Then with the fixed initial and terminal BCs, the optimal
state x∗k (1 6 k 6 N − 1) and input u∗k (0 6 k 6 N − 1)
for the HCP can be generated by
[

x∗

k

u∗

k

]

=

[

X3b,k(X3f,k −X3b,k)
−1Y T

3f,k,

M(X3f,k+1 −X3b,k+1)
−1Y T

3f,k+1,

−X3f,k(X3f,k −X3b,k)
−1Y T

3b,k

−M(X3f,k+1 −X3b,k+1)
−1Y T

3b,k+1

]

[

x0

xN

]

(44)

or
[

x∗

k

u∗

k

]

=

[

−(I +X3f,kX2b,k)
−1Y T

3f,k,

M(I +X2b,k+1X3f,k+1)
−1X2b,k+1Y

T
3f,k+1,

−(I +X3f,kX2b,k)
−1X3f,kY

T
2b,k

−M(I +X2b,k+1X3f,k+1)
−1Y T

2b,k+1

]

[

x0

λN

]

(45)

where λN = −X−1

3f,N(xN + Y T
3f,Nx0), or

[

x∗

k

u∗

k

]

=

[

−(I +X3b,kX2f,k)
−1X3b,kY

T
2f,k,

−M(I +X2f,k+1X3b,k+1)
−1Y T

2f,k+1,

−(I +X3b,kX2f,k)
−1Y T

3b,k

M(I +X2f,k+1X3b,k+1)
−1X2f,k+1Y

T
3b,k+1

]

[

λ0

xN

]

(46)

where λ0 = −X−1

3b,0(x0 + Y T
3b,0xN ), or

[

x∗

k

u∗

k

]

=

[

(X2b,k −X2f,k)
−1Y T

2f,k,

−MX2b,k+1(X2b,k+1 −X2f,k+1)
−1Y T

2f,k+1
,

−(X2b,k −X2f,k)
−1Y T

2b,k

MX2f,k+1(X2b,k+1 −X2f,k+1)
−1Y T

2b,k+1

]

[

λ0

λN

]

(47)

where λ0 = Z−1

2f,N(x0 − Y2f,NxN ) and λN = Z−1

2b,0(xN −

Y2b,0x0).

Proof. The optimal solutions can be generated via the
double generating functions constructed by F3f(λk, x0, k)
and F3b(λk, xN , k). Eliminating λk in (18) by (24) yields
the x∗k (1 6 k 6 N − 1) in (44) for the HCP. Moreover,
eliminating xk in (18) by (24) and substituting this new
equation (changing the indices from k to k + 1) into (6)
leads to the u∗k (0 6 k 6 N − 1) in (44) for the HCP. We
can also derive the optimal solutions in (45)–(47) based on
the other three double generating functions by the similar
way. In addition, we get the calculation for λ0 by letting
k = 0 in (24) and λN by letting k = N in (18), or λ0 by
letting k = N in (17) and λN by letting k = 0 in (23).

5.2 Optimal Solutions for SCP

Since x0 and the transversality condition (15) which
relates xN and λN are given in the SCP, single ones
F3f(λk, x0, k), F2b(xk, λN , k), and F3b(λk, xN , k) are the
most appropriate candidates to construct double gen-
erating functions for the SCP. Again, we only consid-
er double generating functions constructed by the single
ones with different time directions, i.e., F3f(λk, x0, k) and
F3b(λk, xN , k), and F3f(λk, x0, k) and F2b(xk, λN , k), to
generate the optimal solutions for the SCP by the following
theorem.

Theorem 5. Suppose that the coefficients of F3f(λk, x0, k),
F2b(xk, λN , k), and F3b(λk, xN , k) (0 6 k 6 N) satisfy the
corresponding recurrence relations with the known BCs,
respectively. Then with the fixed initial BC, the optimal
state x∗k (1 6 k 6 N) and input u∗k (0 6 k 6 N − 1) for
the SCP can be generated by

x∗k =− Vk(Vk +X3f,k)
−1Y T

3f,kx0 (48)

u∗k =M(Vk+1 +X3f,k+1)
−1Y T

3f,k+1x0 (49)

where Vk = Y T
3b,k(P + Z3b,k)

−1Y3b,k −X3b,k, or

x∗k =− (I +X3f,kWk)
−1Y T

3f,kx0 (50)

u∗k =MWk+1(I +X3f,k+1Wk+1)
−1Y T

3f,k+1x0 (51)

where Wk = X2b,k + Y T
2b,kP (I − Z2b,kP )

−1Y2b,k.

Proof. The optimal solutions can be generated based on
double generating functions constructed by F3f(λk, x0, k)
and F3b(λk, xN , k). First, we rewrite (24) as xk = Vkλk
by the help of (15) and (25), where Vk = Y T

3b,k(P +

Z3b,k)
−1Y3b,k−X3b,k. Then based on this new relation and

(18), eliminating the λk yields x∗k (48), and eliminating the
xk (changing the indices from k to k+1) and substituting
into (6) leads to u∗k (49). This can also be achieved by
selecting F3f(λk, x0, k) and F2b(xk, λN , k). Similarly, first
rewrite (22) as λk =Wkxk, whereWk = X2b,k+Y

T
2b,kP (I−

Z2b,kP )
−1Y2b,k. Then based on this new equation, (18),

and (6), we obtain (50) and (51).

6. EXAMPLES

To present the effectiveness of the developed method for
the on-line iterative computation, we give two examples,
one for the HCP and the other for the SCP.

Example 6. Consider the problem (1)–(3) in the case of
HCP with

A =

[

3 1 −1
1 2 1
1 1 1

]

, B =

[

1 1
2 3
1 2

]

, Q =

[

3 1 2
1 2 1
2 1 5

]

, R =

[

3 1
1 2

]

.

Let the initial and terminal BCs, (k0, x0) and (kN , xN ),
jointly be three different sets as in Table 1, where k0 and
kN ∈ N (0 6 k0 6 kN 6 N) denote the initial and terminal
time, respectively. The objective is to generate the optimal
input and state satisfying each set of BCs in Table 1.

Table 1. Three sets of BCs

Initial (k0, x0) Terminal (kN , xN )

1st set
(

6, [−4, 8,−2]T
) (

16, [7,−7,−1.2]T
)

2nd set
(

3, [−3, 7,−1.5]T
) (

18, [6,−6,−1]T
)

3rd set
(

0, [−2, 6,−1]T
) (

20, [5,−5,−0.8]T
)

The generation equations (44)–(47) are all in terms of
the BCs and the pre-computed coefficients. Therefore, we
can divide the whole computation into two parts, i.e., off-
line part and on-line part. Here, we take the generation
equation (44) as example. First, in the off-line part, we
choose the time interval as the maximum [0, 20] according
to Table 1 to calculate the coefficients of the F3f(λk, x0, k)
and F3b(λk, xN , k). Then, in the on-line part, we can
efficiently generate the optimal input and state satisfying
each different set of the BCs in Table 1 by (44). Fig. 1
shows the result in which the optimal inputs corresponding
to the three different sets of BCs are presented by Fig. 1(a)
(first element u(1)) and 1(b) (second element u(2)), and
the optimal states corresponding to the three sets of BCs
are presented by Fig. 1(c) (first element x(1)), 1(d) (second
element x(2)), and 1(e) (third element x(3)). It is clear
that the trajectory of the optimal state

(

x(1), x(2), x(3)
)

satisfy the BCs in Table 1.

Example 7. Consider the problem (1)–(3) in the case of
SCP with the same A, B, Q, and R in Example 6 and the
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Fig. 1. Optimal input and state for the three sets of BCs
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Fig. 2. Optimal input and state for the three values of P

fixed initial state x0 = (−3, 5,−2)T over a fixed number of
time steps N = 5. To indirectly adjust the terminal state
to approach the origin, we usually try a number of different
terminal weighting factors by experience and compare the
optimal results to the designated goal. Based on this, we
can choose the most satisfactory factor P . Here, we set the
factor P as three different values: P = αPv, α = 1, 5, 100,

Pv =

[

0.1 0.2 −0.3
0.2 1 −1.6
−0.3 −1.6 2.8

]

.

Similarly, after off-line computation for the coefficients of
the double generating functions, we can efficiently generate
the optimal state and input corresponding to different
terminal factors by (48) and (49), or (50) and (51).

The result is presented in Fig. 2. We can see that the
trajectories of the optimal state satisfy the fixed initial
BC and have different terminal values corresponding to
different weighting factors. It is clear that the terminal

state of the third (red) trajectory, which approaches the
origin of the frame, corresponds to the most satisfactory
factor P .

By these two examples, it is shown that the developed
double generating functions method decreases the on-
line iterative computational burden and can be useful in
practice for the HCP and SCP, especially when the number
of iterations is large.

7. CONCLUSION

This paper develops the double generating functions
method for the HCP and SCP in the discrete-time case.
Since the optimal solutions can be expressed only in terms
of the BCs and pre-computed coefficients by this method,
we can compute the coefficients in the off-line part and
generate the optimal solutions in the on-line part by simple
algebraic manipulations. In view of this, the developed
method is useful in the on-line iterative computation for
optimal control problem with a number of different BCs.
The prospect of the double generating functions method
for the discrete-time nonlinear optimal control is also
bright.
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