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Abstract: Electrically Power Assisted Cycles (EPACs) have been gaining increasing attention
worldwide during the past few years. The delivery of a good assistance during inclines makes or
destroys an EPAC. This paper addresses the low-cost estimation of road slope on bicycle without
pedaling torque measurement. Two estimation algorithms are discussed. A full 6 Degrees of
Freedom kinematic Extended Kalman Filter and a simpler, more cost-effective 2 DoF Kalman
filter based on the longitudinal kinematic model. The proposed reduced-sensor algorithm is
shown to be very accurate during straight running; however it is affected by errors during
cornering. This issue is addressed by augmenting the filter with a curve correction algorithm.
The curve correction algorithm, based on a time-varying low pass filter is detailed and validated
on experimental data, comparing the estimated road slope against cartographic data.
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1. INTRODUCTION

Energy prices and environmental considerations have
brought Light Electric Vehicles (LEVs) under the public
interest spotlight. Strict emission regulations, congestion
charges, and new paradigms for urban mobility (e.g. bike
and car sharing) have been introduced in urban areas in
order to tackle traffic issues and pollution. Electrically
Power Assisted Cycles (EPACs) are an extremely inter-
esting opportunity in this context. They are cost effective,
efficient and promote a healthier life-style.

Consequently EPAC’s received a considerable amount of
attention in both the industrial (see for example Muetze
and Tan (2007); Lataire et al. (2003) for a detailed analysis
of the market) and the academic field (see Spagnol et al.
(2012, 2013a,b)).

A considerable amount of EPAC models exist; they are
differentiated by design, battery technology, motor packag-
ing (in the wheel, or attached to the pedals), and different
sensors layout. However, from the functional perspective,
most EPAC’s can be classified into two main families:

• throttle-based bicycles. They are the simplest from
the control point of view. The cyclist determines the
level of assistance with a throttle-like interface. This
solution is cost-effective not requiring any additional
sensor, but it has been criticized for its unnatural
feeling.

• Torque-based bicycles. Thanks to the pedal torque
measurement, a genuine torque multiplying assistance
can be implemented. This simplifies the control logic
and yields a very natural feeling. However torque
sensors are expensive and their processing may be
tricky in some conditions (see for example Spagnol
et al. (2013b)).

⋆ The work presented has been partially supported by Zehus s.r.l.

Recently a third option has arisen. The idea is to use
advanced control logic and estimation algorithms to pro-
vide a natural cycling experience without the added cost
of a torque sensor. This idea (dubbed Bike+) has been
firstly presented in Spagnol et al. (2012, 2013a) where,
among other things, a charge maintaining strategy has
been presented and analyzed.

The crucible for EPAC’s feeling is the level of assistance
and response they provide when going up or down an
incline. Torque-based solutions do not require any ad-hoc
solution; by simply amplifying the pedaling torque, they
correctly and automatically adjust the level of assistance.
In order to provide the same feeling, Bike+ requires
an accurate slope estimation to determine the level of
assistance. The estimation must be accurate (a 1 deg
slope when cycling considerably increases the fatigue) and
responsive.

This paper deals with the on-board road slope estimation
for a bicycle not equipped with torque sensors. The slope
estimation is based on a suite of acceleration and gyromet-
ric sensors, considerably more cost-effective, reliable and
requiring less maintenance than torque sensors.

The issue of road slope estimation in vehicular appli-
cations is not new. Most of the wheeled vehicles lit-
erature focus on 4-wheeled vehicles (Hsu and Chen
(2010), Sebsadji et al. (2008), Schmidtbauer and Ling-
man (2003)), especially Heavy Duty Vehicles, in which
mass can vary significantly(Vahidi et al. (2003a),Vahidi
et al. (2003b),Johansson (2005)). These estimations rely
on a vehicle longitudinal dynamic model (see Bae et al.
(2001), Han and Rizos (1999), Sahlholm and Henrik Jo-
hansson (2010), Johansson (2005), Sahlholm et al. (2007a),
Sahlholm et al. (2007b) ). It is possible to prove that dy-
namic model-based approaches require the measurement
of the input torque for the road slope to be observable.
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A similar method, requiring the measurement of pedaling
torque, has been applied to bicycles by Mammar et al.
(2011).

Kinematic model-based estimation better fits the needs of
Bike+. They rely on the relationship between acceleration,
velocity and angular rates to estimate the vehicle attitude.
Their main advantage is that they are less affected by
model uncertainties. Solution based on Extended Kalman
Filters (see Corno and Lovera (2009)) have a long story of
successes in the aerospace field going back to the Apollo
program. More recently they have also been applied to
powered 2-wheelers by Boniolo et al. (2010) and Boniolo
and Savaresi (2010). The authors use an Extended Kalman
Filter to estimate the lean and pitch angles of a motorcy-
cle. This estimation is based on a kinematic model of sen-
sor measurements with respect to the body reference frame
of the motorcycle, using a complete (3 accelerometers and
3 gyros) inertial measurement unit. In the context of the
present contribution, this solution is taken as a benchmark.

In this work a slope estimation algorithm based on just
one accelerometer, one gyro and the knowledge of vehicle
speed is proposed and compared against the 6 Degrees
of Freedom (DOF) benchmark. The performances of both
algorithms are not satisfactory when the bicycle is in a
curve; a method to account for this fact is proposed.

The paper is structured as follows. Section 2 recalls some
basic concepts on the complete 6 degrees of freedom atti-
tude estimation algorithm. The architecture is presented
and a simplified model employed to explain its main fea-
tures. Section 3 presents the reduced sensor estimation
algorithm along with the curve correction algorithm. Sec-
tion 4 validates the proposed approach on data collected
on urban cycling. Conclusions are then drawn in Section
5.

2. COMPLETE EXTENDED KALMAN FILTER

The following approach is described in details in Bo-
niolo and Savaresi (2010) and in Boniolo et al. (2010)
where it is applied to a motorcycle. The vehicle attitude
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Fig. 1. Body reference frame definition and orientation of
the measurement axes

is parametrized through the Roll-Pitch-Yaw angles. The
rotational matrix RZXY in (1) defines the geometrical
relation between the body reference frame and the inertial
reference (see Figure 1) where φ is the roll angle, θ is the

pitch angle and ψ is the yaw angle of the vehicle. c∗,s∗,t∗
represent the cosine, sine or tangent of angle ∗.

RZXY =

(

cθcψ − sφsθsψ cθsψ + sφsθcψ −cθsθ
−cφsψ cφcψ sφ

sθcψ + sφcθsψ sθsψ − sφcθcψ cφcθ

)

. (1)

From RZXY the relation between the time derivatives of
the Euler angles and the measured angular rates (ω∗) on
the vehicle is derived as





φ̇

θ̇

ψ̇



 =

(

cθ 0 −sθ
tφsθ 1 −tφcθ

−sθ/cφ 0 cθ/cφ

)(

ωx
ωy
ωx

)

. (2)

A simplified formulation of the kinematic accelerations can
be deduced observing that the principal terms affecting the
measured accelerations in a two-wheeled vehicle are the
gravitational acceleration g, the longitudinal acceleration
(v̇x) and the centrifugal acceleration (ψ̇vx). The gravita-
tional acceleration is expressed in the inertial reference
frame, while the longitudinal and centrifugal acceleration
can be expressed in a reference frame that is rotated by
an angle ψ around the absolute Z axis with respect to the
inertial frame, then:

(
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ay
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)

=





−cφsθg + cθ v̇x + sφsθψ̇vx
sφg + cφψ̇vx

cφcθg + sθv̇x − sφcθψ̇vx



 . (3)

Substituting (2) in (3), one gets a set of differential
equations. These equations are arranged in a nonlinear
dynamic system

ẋ = f (x, u) + ηxNL

y = g (x, u) + ηyNL

(4)

defining

x =
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)

u =
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y =

(
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ay
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)

(5)

and the zero mean process and measured noise ηxNL
and

ηyNL
.

Model (4) is the basis to develop a discrete-time Extended
Kalman Filter that estimates the roll and pitch angle with
respect to the inertial reference. Under the hypotheses of
a rigid frame, the vehicle pitch angle is the road slope.

The derivation of the model is based on the main simplify-
ing assumption that the accelerations are measured at the
center of gravity. In most applications (and especially in
bicycles) this cannot be guaranteed and, as a consequence,
the estimation algorithm does not account for the following
contributions:

• Translational lateral acceleration: effect of the sideslip
of the vehicle

• Translational vertical acceleration: contribution of
the heave dynamic of the vehicle and COG elevation

• Angular accelerations: centrifugal and tangential con-
tribution of the accelerations due to roll rate and
pitch rate

• Displacement: the difference between the position of
the Center of Gravity (COG) of the vehicle and the
mounting position of the accelerometers is neglected.
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Both simulation and experimental tests showed excellent
performance both in terms of lean and pitch tracking error
with a root mean square of the estimation error around
2%.

3. REDUCED SENSOR SET KALMAN FILTER

The above estimation algorithm is considered the state-
of-the-art for motorcycle applications. Its main drawback
is that it requires a complete IMU. In the following a
kinematic road slope estimation requiring a reduced set
of sensor is presented. Fig. 2 shows the main idea of the
algorithm: the acceleration measured by the accelerometer

g

v
.

ax

θ

gsin(θ)

Fig. 2. Kinematic representation of a bike during slope

ax is the sum of the longitudinal velocity rate of change
v̇ (obtained through numerical differentiation of the wheel
velocity and thus measured along the inclined direction)
and the gravitational contribution that depends on the
road grade angle g sin(θ). Simple trigonometry yields:

sin(θ) =
ax − v̇

g
(6)

The simple use of the trigonometry law (presented in
H.Ohnishi et al. (2000)) is heavily affected by accelerome-
ter noise and noise generated by the differentiation of the
wheel speed. An alternative solution is that of implement-
ing a Kalman filter on the longitudinal kinematic model
exemplified by Figure 2. The model is augmented with a
fictitious road slope dynamics:







v̇(t) = −gθ∗(t) + ax(t) + ηx1(t)

θ̇∗(t) = ηx2(t)

y(t) = v(t) + +ηy(t)

(7)

where for simplicity θ∗(t) = sin(θ(t)). This simple substi-
tution yields a linear system with state vector, and the
input and outputs:

x =

(

v
θ∗

)

, u = ax, y = v. (8)

The system is observable and the noises ηx and ηy are
assumed to be uncorrelated with covariance matrices Q
and R. Under these hypotheses, a Kalman filter can be
designed to estimate the state vector x. Q and R have

been tuned minimizing JRMSE(θ̃) - the RMSE between θ̂

(estimated using the reference 6 DOF EKF) and the θ̃ (es-
timation with the longitudinal acceleration and velocity),
yielding

Q =

(

2.406e− 3 0
0 2.7e− 3

)

R = 0.089. (9)

Figure 3 and 4 compare the two estimates. The first figure
shows the urban itinerary employed in the testing; the
second shows the outputs of the two algorithms. The RMS
difference between the two slope estimates is around 0.5◦.

Fig. 3. Test itinerary.
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Fig. 4. Experimental comparison between θ̂ and θ̃

The comparison shows that, in bicycles, a complete 6 DOF
IMU does not yield an improvement in the estimation.
Despite the overall good agreement of the two estimates,
locally errors up to 1◦ are observed. In what follows these
errors are further analyzed and addressed.

Figure 5 plots the algorithms output during a sine sweep
test performed at approximately constant velocity on a
flat road. Despite the road being flat, both algorithms
output a maximum slope of -4◦. This discrepancy is not
sensitive to the filters tuning and is strongly correlated
with the steering action. When the bicycle is in a curve,
the discrepancies are bigger. During cornering and slope
variation a number of hypotheses in both approaches break
down. First of all the steering geometry of a bicycle is
such that for non-null steering angle the bicycle pitches.
Secondly, more specifically, It is easy to understand that
the reduced sensor approach, being based on a longitudinal
model, cannot be accurate when the gravitational acceler-
ation has an out-of-plane component. As for the complete
approach, its main limitation is due to the hypotheses
that the rotations happen around the center of gravity
where the IMU is installed. This is not exact because the
roll rotation instantaneous center of rotation is along the
line connecting the contacts points of the two tires. The
errors introduced by these phenomena are negligible for
motorcycle applications, but may be relevant to bicycles.
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Fig. 5. Slope estimation by means of EKF and KF for a
steering sweep test.

The issue is addressed by adding a mechanism that weights
the confidence of the current slope estimation as a function
of the cornering state of the vehicle. This is reasonable
because:

• aggressive curves, at high speed and small radius are
rare events during normal cycling.

• It is not advisable to change the level of electric assis-
tance while cornering, even if a sudden change of slope
is detected. Unexpected chances in the traction force
may startle the cyclist and destabilize the vehicle (see
Tanelli et al. (2009); De Filippi et al. (2013) for a
detailed analysis of single-track vehicle stability).

A time-varying filter implements this confidence schedul-
ing mechanism. The filter bandwidth is modified according
to the level of aggressiveness of the curve so that, if the
bike is cornering, the estimate is updated more slowly.

The yaw rate ψ̇, i.e. the angular rate around the inertial Z
axis quantifies the aggressiveness of the curve. As the roll
angles and road slope are small the yaw rare along Z is
approximated by wz . Figure 6 compares ψ̇ and ωx showing
that when used as a scheduling index the two variables are
essentially the same. The index of interest is therefore

J̃curve = G(s)|ωz |. (10)

The absolute value takes care of the fact that right and
left hand turns need to be treated in the same way; and
G(s) is a linear low pass filter. J̃curve determines the cut-
off frequency, fc, of an additional low-pass filter that filters
the slope estimate:











fc =
fcmax

α
(

J̃curve − J̄curve

)

fcmin
< fc < fcmax

(11)

where fcmin
and fcmax

are respectively the minimum
and maximum allowed cutoff frequencies [Hz]. Table 1
summarizes the tuning parameters.

Figure 7 depicts the complete reduced sensor road slope
estimation scheme.
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Fig. 6. Comparison between yaw rate estimation ˆ̇ψ and
gyro measurement ωz.

Parameter Value

J̄curve 11.5
◦

s

fcmin
0.005 Hz

fcmax
1 Hz

α 15

Table 1. Parameters values for curve correction
algorithm.

Fig. 7. Slope estimation algorithm scheme.

4. VALIDATION

Two kind of tests are performed to asses the overall road
slope estimation scheme. Figure 8 plots the results of
the scheme when applied to the same data of Figure 5.
The figure clearly shows that when the bicycle starts the
weaving trajectory the update of the road slope is slowed
down and the estimation errors caused by the out-of-plane
dynamics are filtered out. As soon as J̃curve crosses the
limit Jcurve the filter starts to limit the effect of the
innovation in the estimate.

A second experiment has been performed on a hilly tract of

a urban path. Figure 9 shows θ̃ and
˜̃
θ. There are two main

curves in the trip. The first one leads to a sudden peak of θ̃
that is removed with the curve correction algorithm. In the
case of the urban trip the road slope estimate is compared
with altitude data obtained from a cartographic database
google inc. (2013) (with a claimed spatial resolution of of
9.5m). Cartographic data do not report slope, but rather
altitude; consequently two representations of the same
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Fig. 8. Comparison between θ̃ and
˜̃
θ during sweep test.
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Fig. 9. Effect of the curve correction scheme on a hilly
urban trip.

data are provided. In Figure 10 the cartographic altitude
is compared against the integrated road slope:

h(s) =

∫ s

0

sin
(

˜̃θ(s)
)

ds

s(t) =

∫ t

0

v(t)dt

(12)

where s(t), is the curvilinear abscissa describing the cov-
ered distance from the initial time to time t, v(t) is the

bike speed, ˜̃θ(x) is the estimated slope in x, and h(x) is
the altitude as a function of s. In the comparison, the two
initial altitudes have been set equal. This integral approach
confirms the absence of any bias in the estimation. A bias
would be integrated over time and cause a drift in the
estimation. Table 2 reports the quantitative comparison.

The integral approach focuses on low frequency accuracy.
The high frequency accuracy is evaluated by Figure 11;
which plots the comparison between the istantaneous esti-
mated road slope and the differentiated altitude from the
cartographic data. The altitude differentiation introduces
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Fig. 10. Comparison between cartographic altitudes and
integrated altitude as a function of the curvilinear
abscissa.

Index Value

J
L2

2

(h(x)) 1%

JRMSE(h(x)) 0.94 m

Table 2. Integral performance indexes
JL2

2
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Fig. 11. Comparison between slope calculated form

GoogleMaps altitude data and ˜̃θ. The general behav-
ior is quite similar, but there are huge punctual differ-
ence due to lack of precision and spatial discretization
and interpolation of GoogleMaps altitude data

high frequency noise, which makes the quantitative com-
parison of the estimate difficult; nevertheless note that the
road slope is rather well described by the algorithm.

5. CONCLUSIONS

In this paper the issue of road slope estimation for bicycles
without torque measurement has been addressed. It has
been shown that, given the impossibility of relying on a
dynamic model, a kinematic approach is the preferred ap-
proach. Two estimation algorithms have been discussed. A
full 6DoF Extended Kalman Filter approach and a simpler
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2 DoF approach based on only the longitudinal kinematic
model. It has been shown that the performance of the
two approaches is similar, thus opening the possibility of
a more cost-effective solution.

The features of bicycle dynamics lead to error in both
methods during cornering; a curve correction algorithm
has been thus presented. Using an additional gyro, it is
possible to detect when the bicycle is cornering and adjust
the slope estimation accordingly.

The reduced sensor set approach has been finally tested
comparing it against the full sensor suite approach and
cartographic data.
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