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Abstract: The problem of stable exact model matching of linear systems by static state
feedback is considered. Based on the effect that a static state feedback produces on the
unobservable/controllable part of the closed-loop system, we provide the set of all static state
feedback control laws that solve the exact model matching. Moreover, necessary and sufficient
conditions for the existence of static state feedback that solves the model matching with stability
are presented, along with a method to determine such a required state feedback law.
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1. INTRODUCTION

A control scheme widely used in the Automatic Control
field is the static state feedback. This is used to tackle a
great variety of problems, including (exact) model mat-
ching.

The model matching problem consists in compensating
of a given dynamic, linear, time-invariant, and finite-
dimensional system with either static or dynamic state
feedback so that the resulting system has a prespecified
transfer function matrix, usually called the model transfer
function matrix. Adequately, the model transfer function
matrix is specified as a proper rational matrix.

The model matching problem is of both theoretical and
practical importance since a number of control problems
can be related to it, see Ichikawa (1985). Among those are
the decoupling problem, the model following problem, the
model tracking problem, the servomechanisms problem,
and the model reference adaptive control.

The model matching problem by static state feedback has
been studied for many authors, however the general case
has not been solved yet. A meticulous formulation and
the first solution of the static state feedback problem were
given by Wolovich (1972). His solution to the problem
made use of a set of feedback invariants along with a
transformation of coordinates derived from the controlla-
bility matrix of the system, and this leads to determining
if a certain set of polynomial equations is solvable. An
analogous solution was given later by Wang and Desoer
(1972). Although their method utilizes essentially the same
feedback invariants and coordinates transformation, they
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reduced the problem to one of solving a system of linear
algebraic equations.

A different approach was presented by Moore and Silver-
man (1972). Their approach was based on an algorithm for
characterizing the input-output structural properties of a
given linear system. In this way, the state feedback model
matching problem is solved without using any coordinates
transformation.

A more general compensation scheme to achieve exact
model matching is dynamic compensation. Necessary and
sufficient conditions for the existence of such a dynamical
model matching solution were given by Moore and Silver-
man (1972) by using the structure algorithm.

An important result, which affected the study of exact
model matching problem, was published by Hautus and
Heymann (1978). The contribution concerns necessary and
sufficient conditions under which the action of a cascade
compensator on a given system can be realized by a static
state feedback law applied to the system. This result
revived the interest in transfer function methods in exact
model matching. In this context, exact model matching
was studied, among others, by Kučera (1981), Kaczorek
(1982), and Kimura et al. (1982). Torres et al. (2005)
considered the problem using the Hermite normal form
for proper rational matrices.

If the model matching problem has a solution, then sta-
bility of the closed-loop model system is an important
issue. Morse (1973) described the possible distributions of
system eigenvalues that can be achieved while maintaining
a model matching configuration. This leads to necessary
and sufficient conditions for the existence of a matching
solution which results in a stable compensated system.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 4709



Anderson and Scott (1977) obtained a parametric solution
to the stable exact model matching problem using an alge-
braic approach. Pernebo (1981), Vardulakis and Karcanias
(1985), Antsaklis (1986), and Gao and Antsaklis (1989)
proved a number of equivalent necessary and sufficient
conditions for the existence of stable solutions to exact
model matching. Marro and Zattoni (2002) provided fur-
ther insight into the exact model matching problem with
stability using the geometric approach.

The literature relating to the model matching problem is
extensive. However, a complete solution to the problem has
been obtained only when dynamic compensation is used,
while the model matching problem by static state feedback
is an open problem yet.

In this work, we focus on the internal stability of the
closed-loop system having as transfer function matrix the
model transfer function matrix. We suppose that there
already exists a static state feedback law that solves the
problem without stability. Then, taking that as a starting
point, we completely characterize the set of static state
feedback laws that solve the model matching problem.
Based on it, we present necessary and sufficient conditions
for the existence of a stabilizing state feedback law, and a
method to find it.

This paper is organized as follows. The problem statement
is presented in Section 2, and the relevant previous results
in Section 3. The main results of this work are presented
in Section 4 along with an illustrative example.

2. PROBLEM FORMULATION

Throughout the paper, R denotes the field of real numbers.
Accordingly, Rn stands for the n−vector space over R and
Rm×r stands for the set of m×r matrices with entries in R.
Finally, Rp(s) denotes the ring of proper rational functions
over R and Rm×rp (s) denotes the set of m×r matrices with
entries in Rp(s).

Let (A,B,C) be a state space representation of a linear
time-invariant differential system described by the equa-
tions

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are, respectively, the
state, input and output vectors of the system.

Let us consider a static state feedback control law (F,G)
of the form

u(t) = Fx(t) +Gv(t), (2)

where F ∈ Rm×n and G ∈ Rm×r are constant matrices,
with rank G = r. When (2) is applied to the system (1)
then the closed-loop system becomes

ẋ(t) = (A+BF )x(t) +BGv(t)

y(t) = Cx(t).
(3)

The transfer function matrix of the closed-loop system,
from the new input v(t) to the output y(t) is then given
by

TF,G(s) = C(sI −A−BF )−1BG. (4)

If r = m (matrix G is square and nonsingular), then (2) is
said to be a regular state feedback, and if r < m then it is
said to be a non-regular state feedback.

In this work the exact model matching problem with
stability is defined as follows:

Given a linear multivariable system (A,B,C) and a de-
sired proper and stable rational matrix Tm(s) of size
p × m, the exact model matching problem with stability
consists in finding a static state feedback law (F,G), with
G nonsingular, such that the transfer function matrix of
the closed-loop system is

TF,G(s) = C(sI −A−BF )−1BG = Tm(s),

furthermore the matrix A + BF is asymptotically stable
(i.e. has all its eigenvalues in the open left half plane).

In this work, we are interested in studying the properties
of the closed-loop model system, and the properties of F
and G such that the closed-loop system is asymptotically
stable, without affecting the model transfer function ma-
trix Tm(s).

3. PRELIMINARY RESULTS

The closed-loop transfer matrix TF,G(s) given in (4) also
can be written as

TF,G(s) = T (s)W (s),

where
W (s) = [I − F (sI −A)−1B]−1G (5)

is a proper rational matrix. In the case of regular state
feedback, (5) is a biproper matrix, i.e. a proper rational
matrix whose inverse exists and is also proper rational.
In the case of non-regular state feedback, (5) is column
biproper, i.e.

rank lim
s→∞

W (s) = r.

Thus, the action of a state feedback law (F,G) on the
system (A,B,C) can be represented in transfer function
matrix form as the post-multiplication of the system
transfer function matrix T (s) by a proper rational matrix
W (s).

The converse problem, i.e. under which conditions a proper
rational matrix that post-multiplies T (s) can be realized
using a state feedback law applied to the system, is known
as the feedback realizability of compensators. Then, a
given proper compensator W (s) is said to be feedback
realizable if there exists a static state feedback control law
(F,G) such that

W (s) = [I − F (sI −A)−1B]−1G.

Conditions for static state feedback realization of dynamic
compensators are well known. The following result applies
to square nonsingular compensators.

Lemma 1. Hautus and Heymann (1978) . Given a system
(A,B,C), let N1(s), D(s) be right coprime polynomial
matrices such that

(sI −A)−1B = N1(s)D−1(s)

and let W (s) ∈ Rm×mp (s) be a nonsingular compensator.
Then W (s) is feedback realizable if and only if

a) W (s) is biproper, and
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b) W−1(s)D(s) is a polynomial matrix.

The required regular static state feedback is linked to a
constant matrix solution (M,E) to the polynomial matrix
equation, see Kučera and Zagalak (1991),

W−1(s)D(s) = ED(s) +MN1(s),

where E is a nonsingular constant matrix. Then, the
regular static state feedback realizing W (s) is given by

F = −E−1M, G = E−1.

When a compensator W (s) is feedback realizable by static
state feedback law, the stability of the closed-loop system
is an important issue. The following result applies to
nonsingular compensators.

Lemma 2. Kučera (1990). Let W (s) ∈ Rm×mp (s) be a
nonsingular compensator that is feedback realizable on a
stabilizable system (A,B,C). Let N1(s), D(s) be right
coprime polynomial matrices such that

(sI −A)−1B = N1(s)D−1(s).

Then the resulting closed-loop system (3) is internally
stable if and only if detW−1(s)D(s) has all roots with
negative real part.

Lemma 1 is related to the model matching problem as
follows.

Lemma 3. Wolovich (1972). Given a system (A,B,C)
with transfer function matrix T (s), let N1(s), D(s) be
right coprime polynomial matrices such that

(sI −A)−1B = N1(s)D−1.

Let Nm(s), Dm(s) be right coprime polynomial matrices
such that Tm(s) = Nm(s)D−1m (s). Then the exact model
matching problem is solvable if and only if there exist
a biproper matrix W (s) and a nonsingular polynomial
matrix V (s) such that[

N(s)
W−1(s)D(s)

]
=

[
Nm(s)
Dm(s)

]
V (s), (6)

where N(s) = CN1(s).

Thus, with respect to the model matching problem with
stability we have the following proposition.

Proposition 1. Given a stabilizable system (A,B,C) with
transfer function matrix T (s), then, the exact model
matching with stability is solvable if and only if there exist
a biproper matrix W (s) and a nonsingular polynomial
matrix V (s), satisfying the conditions of Lemma 3, such
that detV (s) is a stable polynomial.

Proof. Necessity: Suppose that a stable match exists.
By Lemma 1, there exists a biproper matrix W (s) such
that T (s)W (s) = Tm(s) and W−1(s)D(s) is a polynomial
matrix, moreover by Lemma 2, detW−1(s)D(s) is stable.
Then N(s)D−1(s)W (s) = Nm(s)D−1m (s). As Nm(s) and
Dm(s) are right coprime, then there exists a nonsingular
polynomial matrix V (s) such that (6) holds. As Dm(s) has
a stable determinant by assumption, detV (s) is stable.

Sufficiency: It follows from (6) that

T (s)W (s) =N(s)D−1(s)W (s)

= [Nm(s)V (s)] [Dm(s)V (s)]
−1

= Tm(s),

where Dm(s)V (s) = W−1(s)D(s) for some biproper ma-
trix W (s). Then by Lemma 2, a stable match exists.

Note that Proposition 1 provides a complete solution
to the model matching problem with stability; however,
conditions (6) are implicit. It is also noted that matrix
V (s) is not unique when a non-square systems (A,B,C)
is considered. Then, if the model matching problem has a
solution, a particular V (s) may lead to a matching solution
of the problem without stability, while another V (s) may
lead to a solution with stability. Indeed, to find such a
stabilizing matrix V (s) becomes complicated when large
systems are considered.

4. MAIN RESULTS

In this section a different way to obtain a stabilizing
regular static state feedback law that solves the model
matching problem is provided. Then, necessary and suffi-
cient conditions are presented for the model closed-loop
system to be stabilizable by such a regular static state
feedback law. The result is based on a modification of the
controllable-unobservable part of the closed-loop system.

This section is divided into two parts. In the first part,
we characterize the set of static state feedback laws that
give rise to the same closed-loop transfer function matrix;
this is achieved by analyzing the controllable-unobservable
structure of the closed-loop system. Based on this, the
second part is devoted to obtain a stabilizing state feed-
back control law that solves the matching problem.

4.1 The effect of the state feedback on the controllable-
unobservable subsystem

Suppose that a particular regular static state feedback
law (F0, G0) is applied to the system (A,B,C), which
produces an unobservable and uncontrollable closed-loop
system (A+BF0, BG0, C).

Let T be a n × n similarity transformation matrix which
decomposes the closed-loop system (A+BF0, BG0, C) into
its controllable-observable, controllable-unobservable, and
uncontrollable parts, i.e.

T−1(A + BF0)T =

[
Ac,o 0 A13

A21 Ac,no A23

0 0 Anc

]
,

T−1BG0 =

[
B1

B2

B3

]
G0 =

[
Bc,o

Bc,no

0

]
, (7)

CT =
[
Cc,o 0 Cnc

]
.

Then, (Ac,o, Bc,o, Cc,o) corresponds to the controllable
and observable subsystem, the controllable-unobservable
subsystem is represented by (Ac,no, Bc,no, 0), and (Anc, 0,
Cnc) corresponds to the uncontrollable subsystem, all of
them associated with the closed-loop system.

It is noted that

TF0,G0(s) = Cc,o(sI −Ac,o)−1Bc,o.

Further, it is denoted

F̄0 = F0T = [ Fc,o Fc,no Fnc ] . (8)
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The equations of the closed-loop system in the coordinates
defined by T are given by[

ẋc,o(t)
ẋc,no(t)
ẋnc(t)

]
=

[
Ac,o 0 A13

A21 Ac,no A23

0 0 Anc

][
xc,o(t)
xc,no(t)
xnc(t)

]
+

[
B1

B2

B3

]
G0v(t), (9)

and

y(t) = [Cc,o 0 Cnc ]

[
xc,o(t)
xc,no(t)
xnc(t)

]
.

We are interested in modifying the internal structure of the
closed-loop system, without affecting its transfer function
matrix. This will be done by analyzing the effect that a dif-
ferent static state feedback law, say (F1, G1), produces on
the structure of the closed-loop system, without affecting
TFG

(s). Thus, let

v(t) = F1x(t) +G1v1(t), (10)

be such static state feedback, where F1 is defined, in
general form, as

F1 =
[
F̂c,o F̂c,no F̂nc

]
T−1.

When the static state feedback (F1, G1) is applied to the
system (9), it is obtained that

ẋ(t) =

 Ac,o + B1G0F̂c,o B1G0F̂c,no B1G0F̂nc

A21 + B2G0F̂c,o Ac,no + B2G0F̂c,no A23 + B2G0F̂nc

B3G0F̂c,o B3G0F̂c,no Anc + B3G0F̂nc


[

xc,o(t)
xc,no(t)
xnc(t)

]
+

[
B1

B2

B3

]
G0G1v1(t),

y(t) =
[
Cc,o 0 Cnc

][ xc,o(t)
xc,no(t)
xnc(t)

]
.

It is seen that B3G0 = 0; then F̂nc does not affect the

structure of the closed-loop system, therefore F̂nc can be
any arbitrary real matrix of adequate dimensions.

Now, it is required that

TF,G(s) = Cco(sI −Ac,o)−1Bc,o
for any static state feedback. We arrive to the conclusion

that F̂c,o must be equal to 0, so that Ac,o + B1G0F̂c,o =
Ac,o. Moreover, in order to preserve TF,G(s) as transfer
function matrix of the closed-loop system, it must be also

satisfied that B1G0F̂c,no = 0.

The set of matrices F̂c,no satisfying that B1G0F̂c,no = 0
can be parameterized as follows

F̂c,no = KL, (11)

where K is a basis for the kernel of B1G0 and L is any
real matrix of adequate dimensions.

Then, the static state feedback gain (F1, G1) is of the form

F1 =
[

0 KL F̂nc
]
T−1. (12)

With respect to matrix G1, it is seen that

T−1BG0G1 =

[
B1

B2

B3

]
G0G1 =

[
Bc,o
Bc,no

0

]
G1.

Note that it is possible to take G1 = I. It follows that
matrix G can be parameterized as

G = G0 + ΓP, (13)

where Γ is a basis for the kernel ofB1 and P is a real matrix
of adequate dimensions, such that G is non singular.

Thus, we have arrived at the following result.

Theorem 1. Let (A,B,C) be a linear multivariable sys-
tem, and let (F0, G0) be a regular static state feedback
law which is applied to the system (A,B,C) and gives
rise to the transfer function matrix TF,G(s) = C(sI −A−
BF0)−1BG0. Then the set of matrices F and G, such that
the transfer matrix of the closed loop system is equal to
the obtained TF,G(s), can be parameterized as

F = F0 +G0F1

=
[
Fc,o Fc,no +G0KL Fnc +G0F̂nc

]
T−1,

and
G = G0 + ΓP,

where K and Γ are obtained, respectively, from (11) and
(13). Matrices L and P are arbitrary real matrices of
adequate dimensions.

4.2 Stabilizing Feedback

In order to obtain a regular static state feedback law that
solves the model matching problem with stability, consider
a particular static state feedback law (F0, G0) that solves
the model matching problem, that is, consider that there
exists a matrix V (s) such that Lemma 3 holds. Then, by
Theorem 1, the set of all static state feedback laws that
provide a matching solution can be parameterized as

F =
[
Fc,o Fc,no +G0KL Fnc +G0F̂nc

]
T−1, (14)

G=G0 + ΓP.

A stable match can be determined as follows. Let δ be
the rank of the observability matrix of the subsystem
(Ac,o, Bc,o, Cc,o) and let q be the rank of the controllability
matrix of the system (A,B,C). Then, when the similar-
ity transformation T is applied to the original system
(A,B,C), we have

T−1AT =

[
A11 A12 A13

A21 A22 A23

A31 A32 A33

]
, T−1B =

[
B1

B2

B3

]
(15)

CT =
[
C1 C2 C3

]
,

for some matrices A11 ∈ Rδ×δ, A12 ∈ Rδ×(q−δ),
A13 ∈ Rδ×(n−q), A21 ∈ R(q−δ)×δ, A22 ∈ R(q−δ)×(q−δ),
A23 ∈ R(q−δ)×(n−q), A31 ∈ R(n−q)×δ, A32 ∈ R(n−q)×(q−δ),
A33 ∈ R(n−q)×(n−q) and B1 ∈ Rδ×m, B2 ∈ R(q−δ)×m,
B3 ∈ R(n−q)×m and C1 ∈ Rp×δ, C2 ∈ Rp×(q−δ), C3 ∈
Rp×(n−q).
Then, when a static state feedback law (F,G) defined by
(14) is applied to solve the model matching problem, in
view of (7), (15), and (14), it is obtained that
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T−1(A + BF )T =

[
A11 A12 A13

A21 A22 A23

A31 A32 A33

]
+[

B1

B2

B3

][
Fc,o Fc,o + G0KL Fnc + G0F̂nc

]
=

[
Ac,o 0 A13

A21 Ac,o + B2G0KL A23

0 0 Anc

]
,

T−1BG =

[
B1

B2

B3

]
(G0 + ΓP ) =

[
Bc,o

B2(G0 + ΓP )
0

]
,

CT =
[
C1 C2 C3

]
=
[
Cc,o 0 Cnc

]
.

The equations of the model closed-loop system in the
coordinates defined by T are given by

ẋc,o(t) = (A11 + B1Fc,o)xc,o(t) +

(A12 + B1Fc,no + B1G0KL)xc,no(t) +

(A13 + B1Fnc + B1G0F̂nc)xnc(t) + B1Gv(t)

ẋc,no(t) = (A21 + B2Fco)xc,o(t) + (16)

(A22 + B2Fc,no + B2G0KL)xc,no(t)

+(A23 + B2Fnc + B2G0F̂nc)xnc(t) + B2Gv(t)

ẋnc(t) = (A33 + B3Fnc)xnc(t)

y(t) = C1xc,o(t) + C3xnc(t).

where, it is noted that A12 +B1Fc,no +B1G0KL = 0 and
B3G = 0. It follows that the matrix A11 + B1Fc,o is the
same for every (F,G) that provides a solution to the model
matching problem, while the controllable - unobservable
subsystem matrix Ac,no = A22+B2Fc,no+B2G0KL can be
modified through L. In fact, equation (16) can be viewed
as an internal feedback of the form

ẋc,no(t) = (A21 + B2Fco)xc,o(t) +

(A22 + B2Fc,no)xc,no(t) + B2G0Kuc,no(t) +

(A23 + B2Fnc + B2G0F̂nc)xnc(t) + B2Gv(t)

where
uc,no(t) = Lxc,no(t).

If the subsystem (A22+B2Fc,no, B2G0K, I) is controllable,
then L can allocate the eigenvalues of the controllable-
unobservable part of the model system at will. However,
if the rank of its controllability matrix is ε < q − δ, then
the controllable-unobservable subsystem has q−δ−ε fixed
modes. Thus, we have arrived at the following result.

Theorem 2. Suppose that the uncontrollable eigenvalues
of the given system (A,B,C), if any, are stable. Let
(F0, G0) be a particular static state feedback law that
solves the model matching problem. Then the model
matching problem with stability has a solution if and only
if

i) the poles of Tm(s) have negative real parts;
ii) the system (A22 +B2Fc,no, B2G0K, I) is stabilizable.

Proof. The model closed-loop system is asymptotically
stable if and only if the eigenvalues of Ac,o, Ac,no, and
Anc have negative real parts. It is supposed that the non-
controllable modes are stable, then the eigenvalues of Anc
have negative real parts.

i) Note that

Tm(s) = Cc,o(sI −Ac,o)−1Bc,o.

The subsystem (Ac,o, Bc,o, Cc,o) is both controllable and
observable. Thus the poles of Tm(s) are the eigenvalues of
Ac,o.

ii) Recall that

Ac,no = A22 +B2Fc,no +B2G0KL.

The eigenvalues of Ac,no can be affected by L and, in
particular, can be made to have negative real parts if
and only if the subsystem (A22 + B2Fc,no, B2G0K, I) is
stabilizable. Indeed, if L is such a stabilizing feedback gain,
then

F =
[
Fc,o Fc,no + G0KL Fnc + G0F̂nc

]
T−1.

If the conditions of Theorem 2 are satisfied, then the
required matrix L can be found using the standard tech-
niques of eigenvalue assignment by static state feedback.
In particular, if (A22 + B2Fc,no, B2G0K, I) is control-
lable, then the controllable-unobservable eigenvalues of the
closed-loop system (A + BF,BG,C) can be assigned any
desired values. Theorem 2 presents necessary and sufficient
conditions for the model matching problem with stability
to have a solution. Other advantages of this result with
respect to previous solutions on model matching is that
we provide a method to obtain a state feedback which
solves the problem with stability, and that the conditions
of our results can be applied to large systems.

The next example illustrates the main result.

Example. Consider a linear multivariable system (A,B,C)
described by

A =


−2 3 0 0 0 0 0
0 −1 0 0 0 0 0
8 −3 5 0 0 3 0
2 3 0 −2 0 0 0
0 0 0 1 −3 1 0
0 3 0 0 0 −1 0
−2 0 0 −1 0 0 −4

 , B =


0 0 0
0 0 0
5 0 1
1 1 0
1 0 0
1 0 2
−1 1 0

 ,

C =

[
0 3 0 1 0 1 0
4 −3 0 0 0 −2 0

]
,

with transfer function matrix

T (s) =

[ 2s+3
(s+2)(s+1)

1
s+2

2
s+1

− 2
s+1

0 − 4
s+1

]
and consider the model transfer function Tm(s) = T (s),

so that the match already exists. Anyway, a particular
static state feedback solving the model matching problem
is F0 = [0], G0 = I.

However, the closed-loop system is not asymptotically
stable, it has eigenvalues {−1,−2,−3,−4, 5,−1,−2}. The
eigenvalues {−1,−2} are controllable and observable,
{−3,−4, 5} are controllable and unobservable, whereas the
eigenvalues {−1,−2} are uncontrollable.

Can the model matching problem be solved using a dif-
ferent static state feedback law so that the closed-loop
system is asymptotically stable? Theorem 2 will be applied
to answer the question.

Observe that the uncontrollable eigenvalues are stable
and the poles of Tm(s) are {−1,−2}, therefore condition
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i) of Theorem 2 is satisfied. Now, a similarity trans-
formation matrix which decomposes the closed-loop sys-
tem (A + BF0, BG0, C) into its controllable-observable,
controllable- unobservable, and uncontrollable parts is
given by

T =


0 0 0 0 0 0 1

0 0 0 0 0 1
3

0

0 0 0 0 1 0 −1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0

0 −1 0 1 0 − 1
3

0

 .

We have that

F0T = [ 0 0 0 ] = [ Fc,o Fc,no Fnc ] .

Thus, given a particular static state feedback law (F0, G0)
that solves the model matching problem, we infer from
(14) that the set of static state gains F that provide a
solution to the problem can be parameterized as

F =
[
Fc,o Fc,no + G0KL Fnc + G0F̂nc

]
T−1,

where

K =

[
−2
2
1

]
is a basis for the kernel of

B1G0 =

[
1 0 2
1 1 0

]
and, L and F̂nc are arbitrary real matrices of dimension

1 × 3 and 3 × 2, respectively. Now, the controllable-
unobservable part of the closed-loop system is governed
by the equation

.
xc,no(t) = (A21 +B2Fco)xc,o(t) +

(A22 +B2Fc,no)xc,no(t) +B2G0Kuc,no(t) +

(A23 +B2Fnc +B2G0F̂nc)xnc(t) +B2Gv(t)

where

A22 + B2Fc,no =

[
−3 0 0
0 −4 0
0 0 5

]
, B2G0K =

[
−2
4
−9

]
.

Note that the subsystem (A22 + B2Fc,no, B2G0K, I) is
controllable, then condition ii) of Theorem 2 is satisfied.
Thus, there exists a matrix L such that the control law

uc,no(t) = Lxc,no(t)

can allocate the eigenvalues of the controllable-unobservable
part of the closed-loop system at will. A particular con-
trol law uc,no(t) , which will allocate the controllable-
unobservable eigenvalues at {−3,−4,−5} is given by

uc,no(t) =
[

0 0 10
9

]
xc,no(t).

It follows that

KL =

 0 0 − 20
9

0 0 20
9

0 0 10
9

 .

Finally, a stabilizing static state feedback law (F,G) that
solves the model matching problem is given by

F =

 − 20
9

0 − 20
9

0 0 0 0
20
9

0 20
9

0 0 0 0
10
9

0 10
9

0 0 0 0

 , G = G0 =

[
1 0 0
0 1 0
0 0 1

]
.

Now, the model system (A + BF,BG,C) with transfer
function matrix

TF,G(s) = Tm(s) =

[ 2s+3
(s+2)(s+1)

1
s+2

2
s+1

− 2
s+1 0 − 4

s+1

]
is asymptotically stable, and it has eigenvalues −1,−2,−3,
−4,−5.
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