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Abstract: In this paper we consider the remote control of a noisy linear time-invariant (LTI)
plant over erasure channels located in both the plant-to-controller and controller-to-plant links.
We restrict our attention to a class of controllers where all processing is affine, except for some
elementary use of sensor-to-controller channel state information. For such controller class, we
show that optimal designs separate into an estimation and a state feedback design problem
when perfect packet acknowledgements are available at the controller. Interestingly, our results
also show that the affine part of the controller converges, as the time goes to infinity, to an LTI
filter under the same conditions which guarantee mean-square stability in the well-known LQG
control problem over erasure channels. However, our infinite horizon proposal is computationally
inexpensive and its steady-state behaviour can be characterized straightforwardly.
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1. INTRODUCTION

In recent years, the study of Networked Control Systems
(NCSs), i.e., control systems where communication takes
place over non-transparent channels, has increased consid-
erably. The understanding of design trade-offs in NCSs has
many practical implications and presents several theoret-
ical challenges (Antsaklis and Baillieul [2007]). Of course,
the study of NCSs depends on the type of communication
channel under analysis. In this paper, we focus on control
systems closed over analog erasure channels (Schenato
et al. [2007], Silva and Pulgar [2011], Elia [2005]).

In scenarios where the sensor-to-controller link is an era-
sure channel, the obvious question that arise is: What
control signal should be sent to the actuator when sensor
data have been missed? In Schenato et al. [2007] the
optimal estate estimator is presented in an LQG frame-
work. Thus, the control signals are constructed using an
estimation of the plant state based on previous data (see
also Sinopoli et al. [2004]). The corresponding estimation
error covariance in Schenato et al. [2007], depend explic-
itly on the sensor-to-controller data-dropout process and,
accordingly, do not converge as time grows unbounded. In
Schenato [2009] two simpler approaches are studied: hold-
input scheme and zero-input scheme. In the first scheme
the missed data is replaced with the last control signal sent
to the controller, whereas in the second scheme, the control
signal is set to zero. A generalization of these two scheme,
and other alternative approaches can be found in Moayedi
et al. [2013], Tugnait [1981], Liang et al. [2010], Zhang
et al. [2011], Silva et al. [2013]. We remark the approach
considered in Silva et al. [2013], where a state estimator
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that embeds a data-dropout compensator is proposed. The
class of controller studied in Silva et al. [2013] is such
that, beside elementary use of instantaneous channel in-
formation, all the processing is affine. The structure of the
optimal estimator proposed in Silva et al. [2013] is akin to
the one presented in Schenato et al. [2007], however in the
former case the estimation error covariance do not depends
explicitly on the sensor-to-controller data-dropout process,
and thus an easy characterization of the steady state
estimator can be made. Moreover, the approach in Silva
et al. [2013] generalizes the proposals mentioned above.

In this paper we consider NCSs where both sensor-to-
controller and controller-to-actuator links are subject to
data-loss simultaneously. Such a setup was considered pre-
viously in the Schenato et al. [2007], Moayedi et al. [2013],
Garone et al. [2012], Chen et al. [2012]. A remarkable
advance was made in Schenato et al. [2007], where it is
shown that, if optimal LQG controllers are sought using
TCP-like protocols, i.e., assuming the existence of packet
acknowledgement from the actuator side to the controller
side, then the separation principle holds. In such case, the
optimal control is linear and the controller gain converges
provided the controller-to-actuator link is sufficiently reli-
able. However, as was mentioned in the above paragraph,
the optimal estimator gain do not converge in this case
and thus the expected stationary cost can not be easily
characterized. A non trivial extension of the results in
Schenato et al. [2007] to the multiple channel case can
be found in Garone et al. [2012]. In Moayedi et al. [2013]
the problem is addressed considering a generalized hold-
input strategy to replace missed data. Thus, the optimal
control derived in that work is constrained for that specific
class of control strategy. In Chen et al. [2012], the LQG
control of system with random input and output gains is
addressed. The setup in Chen et al. [2012] consider TCP-
like protocols and allows the simultaneous design of both
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channel and controller. Given that framework, optimal
estimator and controller are derived and it is found that
separation principle partially holds.

In this paper, we consider the remote control of a noisy
multiple-input multiple-output LTI plant where both the
sensor-to-controller and the controller-to-actuator links
are affected by data dropouts. We constrain ourselves to a
class of controllers where all processing is affine, except for
the use of sensor-to-controller channel state information to
trigger a data dropout compensation mechanism. We give
a solution to both finite and infinite horizon quadratic op-
timal control problems in the considered setup. Our results
show that under TCP-like protocols separation principle
also holds, and thus the optimal control design consist on
solving a state feedback control problem and an estimation
problem. We also show that the optimal estimator for this
problem coincides with that presented in Silva et al. [2013],
where control signals are not subject to data-loss. This
allowed us to explore the infinite horizon case and conclude
that the affine part of the optimal controller converges to
an LTI system and thus a computationally inexpensive
steady-state controller can be found. The steady state
performance of our proposal is also easily characterized
and, interestingly, coincides with the upper bound on
the expected performance of the optimal LQG controller
presented in Schenato et al. [2007].

The remainder of this paper is organized as follows: Section
2 describes the problem addressed in this paper. Section
3 studies an estimation problem. Section 4 characterizes
optimal finite horizon controllers. Section 5 focuses on
infinite horizon problems and Section 6 draws conclusions.

Notation: N denotes the natural numbers, and N0 , N ∪
{0}. For any sequence x, xk denotes its kth sample, and xk

is used as shorthand for x0, . . . , xk. A
T and ρ(A) denote

the transpose and the spectral radius of the matrix A. For
any real-valued vector x and positive semidefinite matrix
M , ||x||2M , xTMx. If x is a second order random variable,
then Px denotes its covariance. Thus, if x is a second order
process, then Pxk

denotes the covariance of its kth sample.
If x is an asymptotically wide-sense stationary second
order process, then Px denotes its steady-state covariance.
The cross-covariance between the second order random
variables x and y is denoted by Pxy. Ê {a|b} denotes the
best linear least squares estimator of a, given b [Doob,
1953, p. 155].

2. SETUP AND PROBLEM DEFINITION

Consider a discrete-time LTI plant P modelled by

xk+1 = Axk +Buk + vk, k ∈ N, x0 = xo, (1a)

yk = Cxk + ek, (1b)

where x is the state, xo is the initial state, u is the control
input, v models process noise, y is a sensor output, e is
measurement noise, and (A,B,C) are known matrices of
appropriate dimensiones. We assume that xo is a zero-
mean second-order random variable with covariance ma-
trix Po ≥ 0, independent of (v, e), and that (v, e) are
zero-mean mutually independent i.i.d. sequences, having
constant covariance matrices Pv ≥ 0 and Pe > 0. In (1),
all signal are allowed to have arbitrary (but compatible)
dimensions.

yc

plant

controller

channelchannel
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C
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Fig. 1. Considered networked control architecture.

The plant P has to be controlled by a remote controller
which communicates with the plant over two erasure
channels. The plant input u is assumed to be constructed
in a way such that

uk = θcku
c
k, (2)

where θc is a sequence taking values in {0, 1} which models
data-dropouts in the controller to actuator link, and uc is
the controller output. The controller output, in turn, is
constructed via

uc
k = Cu

k (ȳ
k−1, uk−1), ȳk = θskyk + (1− θsk)ŷk, (3a)

ŷk = Cŷ
k(ȳ

k−1, uk−1), (3b)

where Cu
k and Cŷ

k are (possibly time-varying) affine map-
pings of their arguments, and θs is a sequence taking
values in {0, 1} that models data-dropouts in the sensor
to controller link. The networked architecture described
above is depicted in Figure 1. Two remarks are in order.
First, the considered architecture assumes that the sensor-
to-controller channel state is perfectly known at the con-
troller. Such information is used to trigger a data dropout
compensator which replaces missing data by suitable es-
timates in ŷ (see also Silva and Solis [2013]). Second, the
controller has access to one-step delayed (but otherwise
perfect) controller-to-actuator channel state information.
That is, the controller-to-actuator link is assumed to use
a TCP-like protocol Schenato et al. [2007].

We will assume that the random processes θc and θs

are i.i.d., mutually independent, and independent of
(xo, v, e). We also define ps , P {θsk = 1} and pc ,
P {θck = 1}. Thus, ps (resp. pc) corresponds to the suc-
cessful transmission probability in the sensor-to-controller
(resp. controller-to-actuator) link. We assume that both
ps and pc are contained in (0, 1).

The goal of this paper is to characterize the (possibly time-

varying) mappings Cu
k and Cŷ

k in (3) which minimize the
finite horizon cost function

VN , E

{
||xN ||2QN

+
N−1∑
i=0

(
||xi||2Q + ||ui||2R

)}
, (4)

where ||x||2R , xTRx, and Q ≥ 0, QN ≥ 0 and R > 0 are
weighting matrices.

The main result of this paper is to show that the controller
with the structure in (3) which minimizes the functional
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(4) can be designed by invoking a separation principle.
With that objective in mind, we first solve, in Section 3
below, an estimation problem which will be shown to play
a key role when characterizing optimal designs.

3. AN OPTIMAL ESTIMATION PROBLEM

Consider the plant P in (1) and a class of state estimators
such that the estimate x̂k of xk is constructed via

x̂k = F x̂
k (ȳ

k−1, uk−1), ȳk = θskyk + (1− θsk)ŷk, (5a)

ŷk = F ŷ
k (ȳ

k−1, uk−1), (5b)

where F x̂
k and F ŷ

k are (possibly time-varying) affine map-
pings of their arguments and, consistent with the setup
described in Section 2, u satisfies (2) with uc

k being an
affine function of (ȳk−1, uk−1), and both θc in (2) and
θs in (5a) are as in Section 2. Denote the minimal state
estimation error covariance that is achievable with an
estimator in the class described by (5a) by Pk|k−1, and
the corresponding optimal estimate of xk by x̂k|k−1. Anal-
ogously, Pk|k and x̂k|k denote the corresponding minimum
variance and optimal estimates when the state estimates
are affine functions of (ȳk, uk).

Theorem 1. Consider the plant P in (1) under the assump-
tions of Section 2, and the class of estimators described by
(5a) under the assumptions stated above. Then,

x̂k|k = (I − JkC)x̂k|k−1 + Jkȳk, (6a)

x̂k+1|k = Ax̂k|k +Buk, (6b)

Pk|k = Pk|k−1 − psJkCPk|k−1, (6c)

Pk+1|k = APk|kA
T + Pv, (6d)

where x̂0|−1 = 0, P0|−1 = Po, ŷk = Cx̂k|k−1, and

Jk , Pk|k−1C
T
(
CPk|k−1C

T + Pe

)−1
. (7)

Proof. Recall the notation Ê {·|·} introduced in the last
paragraph of Section 1 and define

x̂†
j|i , Ê

{
xj |ȳi, ui

}
, (8)

P †
j|i , E

{(
xj − x̂†

j|i

)(
xj − x̂†

j|i

)T
}
. (9)

In general, x̂k|k ̸= x̂†
k|k. Indeed, x̂

†
k|k is a function of any

given sequence ȳ, not necessarily the optimal one. We will

first characterize x̂†
k|k, x̂

†
k+1|k, P

†
k|k and P †

k+1|k. Then, as

a second step, we will turn our attention to x̂k|k, x̂k+1|k,
Pk|k and Pk+1|k. We state the following technical lemma
in order to prove our result.

Lemma 2. Consider the setup, notation and assumptions
of Theorem 1 and its proof. Then,

(a) ϵuk = (θck − pc)u
c
k and Ê {xk|ϵuk} = µxk

.

(b) ϵȳk = θskỹk − ps
(
Cx̂k|k−1 − ŷk

)
with ỹk , yk − ŷk, and

Ê
{
xk|ϵȳk

}
= µxk

+ J̄kϵ
ȳ
k with J̄k as in (12).

(c) E
{(

xk − x̂†
k|k−1

)
ϵȳk

T
}
= psP

†
k|k−1C

T .

Proof. Omitted due space constraints.

Clearly,

x̂†
k|k = Ê

{
xk|ȳk, uk

}
(a)
= Ê

{
xk|ȳk, uk−1

}
+ Ê {xk|ϵuk} − µxk

(b)
= Ê

{
xk|ȳk, uk−1

}
, (10)

where ϵuk , uk − Ê
{
uk|ȳk, uk−1

}
, (a) follows from ele-

mentary properties of Ê {·|·} [Doob, 1953, p. 155], and (b)
follows from Lemma 2(a). By using a similar argument, we
now have from (10) that

x̂†
k|k = Ê

{
xk|ȳk−1, uk−1

}
+ Ê

{
xk|ϵȳk

}
− µxk

,

(a)
= x̂†

k|k−1 + J̄kϵ
ȳ
k, (11)

where ϵȳk , ȳk − Ê
{
ȳk|ȳk−1, uk−1

}
,

J̄k , psP
†
k|k−1C

T

×
(
p2sCP †

k|k−1C
T + p2sPe + ps(1− ps)Pỹk

)−1

, (12)

and (a) follows from Lemma 2(b). (We also note that our
assumptions imply p2sPe > 0.) By using (11) we can write

P †
k|k = E

{(
xk − x̂†

k|k

)(
xk − x̂†

k|k

)T
}

= P †
k|k−1 + J̄kPϵȳ

k
J̄T
k − E

{(
xk − x̂†

k|k−1

)
ϵȳk

T
}
J̄T
k

− J̄kE
{
ϵȳk

(
xk − x̂†

k|k−1

)T
}

= P †
k|k−1 − psJ̄kCP †

k|k−1, (13)

where we used the definition of J̄k and Lemma 2(c).

On the other hand, the linearity of Ê {·|·}, and the fact
that vk is independent 1 of (ȳk, uk) and has zero mean,
imply that

x̂†
k+1|k = Ê

{
Axk +Buk + vk|ȳk, uk

}
= Ax̂†

k|k +Buk. (14)

Thus,

P †
k+1|k = E

{(
xk+1 − x̂†

k+1|k

)(
xk+1 − x̂†

k+1|k

)T
}

= AP †
k|kA

T + Pv, (15)

where we used that fact that vk is independent of
(xk, ȳ

k, uk) and has zero mean.

We will now characterize the choice for ȳ which minimizes

P †
k|k and P †

k+1|k. We use induction. Clearly, x̂0|−1 = µo and

P0|−1 = Po. Assume that x̂k|k−1 and Pk|k−1 are known
for some k ∈ N0. Such estimate and covariance matrix
depend on a specific optimal choice for the mappings F ŷ

i ,

i ∈ {0, . . . , k − 1}. For such choice of mappings, x̂†
k|k−1 =

x̂k|k−1 and P †
k|k−1 = Pk|k−1. The question now arises as

how to choose F ŷ
i , i ∈ {0, . . . , k} so as to render P †

k|k

minimum thus yielding P †
k|k = Pk|k. It follows from the

definition of J̄k and the properties of Schur complements

[Bernstein, 2005, p. 281] that P †
k|k is a nondecreasing

1 This, and other analog claims made in the paper, follow by
inspection from our assumptions, the structure assumed for the plant
model and estimators, and from the fact that uc

k is an affine function

of (ȳk−1, uk−1).
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function of both P †
k|k−1 and Pỹk

. It is also clear that the

mappings F ŷ
i , i ∈ {0, . . . , k−1} affect P †

k|k through P †
k|k−1

only, and that F ŷ
k affects P †

k|k through Pỹk
only.

Given our discussion above, it is immediate to conclude

that the choice for F ŷ
i , i ∈ {0, . . . , k−1} that was optimal

when calculating x̂k|k−1 is also optimal when calculating

x̂k|k. Since ŷk is an affine function of (ȳk−1, uk−1), it also

follows that the new mapping F ŷ
k must be such that (see

(1) and recall that e is zero mean) ŷk = Cx̂k|k−1. For such
choice,

Pỹk
= E

{(
yk − Cx̂k|k−1

) (
yk − Cx̂k|k−1

)T}
= CPk|k−1C

T + Pe, (16)

where we used the fact that ek is independent of
(xk, ȳ

k−1, uk−1) and zero mean. If (16) is replaced in (12),
then J̄k = Jk. Hence, once the above described choice for

F ŷ
i , i ∈ {0, . . . , k}, is made, (6a) and (6c) follow from

(11) and (13). The above choice for F ŷ
i , i ∈ {0, · · · k}, also

minimizes P †
k|k. Thus, (6b) and (6d) follow from (14) and

(15). The proof is thus completed.�

Theorem 1 characterizes the optimal mappings F x̂
k and

F ŷ
k that define the optimal estimator within the consid-

ered class. Unsurprisingly, the fact that the controller-to-
actuator link uses a TCP-like protocol, makes the optimal
filter in Theorem 1 identical to a related optimal filter
studied by us in Silva et al. [2013] for a networked control
architecture where only the sensor-to-controller link is
subject to data dropouts. Furthermore, the structure of
the optimal filter is akin to that studied in Schenato et al.
[2007]. As foreshadowed in the Introduction, the difference
lies in the fact that the covariances Pk|k and Pk+1|k, and
the corresponding filter gain Jk, are now deterministic
quantities and not random variables. Our filter has a
prescribed structure and is hence suboptimal. However,
it is interesting to note that the corresponding estimation
error covariance Pk|k coincides with the upper bound on
the expected covariance of the intermittent Kalman fil-
ter presented in Sinopoli et al. [2004]. Our results show
that such upper bound corresponds to the minimal state
estimation error covariance that is achievable when one
constrains the estimators to have the structure in (5a).

By construction, our proposal outperforms several filters
in the literature, which are special cases of the proposed

filter class when the mappings F ŷ
i are suitably chosen

(see, e.g., Tugnait [1981], Sun et al. [2008], Liang et al.
[2010], Zhang et al. [2011]). We also note that the optimal
predictor estimate x̂k+1|k in Theorem 1 is essentially the
filter proposed in Zhang et al. [2012]. However, in Zhang
et al. [2012], the structure of the filter recursions is fixed
and not deduced as in Theorem 1.

4. OPTIMAL CONTROLLER DESIGNS

In this section we return to the problem of finding the
controllers in (3) which minimizes the cost functional in
(4). Our main result is stated next.

Theorem 3. Consider the NCS of Figure 1, where the plant
P is described by (1), the control input is given by (2), and

the controller satisfies (3). If the assumptions of Section 2

hold, then the mappings Cu
k and Cŷ

k which minimize VN in
(4) are such that, for every k ∈ {0, · · · , N − 1},

uc
k = −Lkx̂k|k−1, ŷk = Cx̂k|k−1, (17)

where x̂k|k−1 is as in Theorem 1,

Lk ,
(
R+BTSk+1B

)−1
BTSk+1A, (18)

and Sk satisfies the backwards recursion

Sk = ATSk+1A+Q

− pcA
TSk+1B

(
R+BTSk+1B

)−1
BTSk+1A, (19)

k ∈ {N − 1, . . . , 0}, with SN = QN . In addition, the

minimal cost, say V opt
N is given by

V opt
N = µT

o S0µo + trace {S0Po}+
N−1∑
k=0

trace {Sk+1Pv}

+
N−1∑
k=0

trace
{(

ATSk+1A+Q− Sk

)
Pk|k

}
, (20)

where Si is above and Pk|k is as in Theorem 1.

Proof. We use a standard dynamic programming argu-
ment. Given (1), the cost function in (4) can be written
as

VN
(a)
= E

{
||AxN−1 +BuN−1||2QN

}
+ E

{
||vN−1||2QN

}
+ E

{
||xN−1||2Q + ||uN−1||2R

}
+ E

{
N−2∑
i=0

(
||xi||2Q + ||ui||2R

)}
(b)
= E

{
||vN−1||2QN

}
+ E

{
||xN−1||2SN−1

+
N−2∑
i=0

(
||xi||2Q + ||ui||2R

)}
+ E

{∣∣∣∣(uc
N−1 + LN−1xN−1

)∣∣∣∣2
pc(R+BTQNB)

}
, (21)

where

LN−1 ,
(
R+BTQNB

)−1
BTQNA, (22)

SN−1 , ATQNA+Q

− pcA
TQNB

(
R+BTQNB

)−1
BTQNA. (23)

In (21), (a) follows from the fact that vN−1 is indepen-
dent 2 of (xN−1, uN−1) and zero mean. On the other hand
(b) can be justified as follows: Since uN−1 = θcN−1u

c
N−1,

a straightforward manipulation that exploits the defini-
tion of θc and the fact that θcN−1 is independent of
(xN−1, u

c
N−1) yields

E
{
||AxN−1 +BuN−1||2QN

+ ||xN−1||2Q + ||uN−1||2R
}

= E
{ ∣∣∣∣AxN−1 + pcBuc

N−1

∣∣∣∣2
QN

+ ||xN−1||2Q

+
∣∣∣∣uc

N−1

∣∣∣∣2
pcR+pc(1−pc)BTQNB

}
= E

{
||xN−1||2SN−1

}
+ E

{∣∣∣∣(uc
N−1 + LN−1xN−1

)∣∣∣∣2
pc(R+BTQNB)

}
, (24)

2 Recall Footnote 1 on page 3.
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where the last equality follows from a standard completion-
of-squares argument. Equality (b) in (21) thus follows.

Now, if we define QN−1 , SN−1, then (21) and the
definition of VN yields

VN = VN−1 + E
{
||vN−1||2QN

}
+ E

{∣∣∣∣(uc
N−1 + LN−1xN−1

)∣∣∣∣2
pc(R+BTQNB)

}
= VN−1 + trace {QNPv}
+ trace

{
pc

(
R+BTQNB

)
E
{
MMT

}}
≥ VN−1 + trace {QNPv}

+ trace
{
pc

(
R+BTQNB

)
LN−1PN−1|N−2L

T
N−1

}
, (25)

where M , uc
N−1 + LN−1xN−1 and, consistent with the

notation in Section 3 and the proof of Theorem 1 (see
(10)), PN−1|N−2 denotes the minimum state estimation
error variance when one estimates xN−1 by using an affine
function of either (ȳN−2, uN−2). Indeed, the inequality in
(25) follows from the fact that uc

N−1 is an affine function

of (ȳN−2, uN−2) and by using well-known linear least
squares estimation results [Söderström, 2002, Section 5.3].
Equality in (25) holds if

uc
N−1 = −LN−1x̂N−1|N−2, (26)

where, again consistent with the notation in Section 3,
x̂N−1|N−2 denotes the best affine least squares estimator

of xN−1, given measurements of either (ȳN−2, uN−2).

The argument in the above paragraph shows that the
optimal choice for uc

N−1 is given by (26). For such choice,
(see (25))

VN = VN−1 + trace {QNPv}
+ trace

{
pc

(
R+BTQNB

)
LN−1PN−1|N−2L

T
N−1

}
. (27)

Since PN−1|N−2 does not depend on uc (see Theorem 1),

it follows that to find the optimal choice for uc,N−2, it
suffices to minimize VN−1. To do so, it suffices to mimic the
argument leading to (25) and (26) and (17)–(19) follows by
induction. The expression for the optimal cost also follows
by induction from (27), (23) and the definition of Lk.�

Theorem 3 shows that the optimal design of the proposed
controllers can be separated into two stages: First, one
constructs plant state estimates by using Theorem 1.
Then, as the second step, one uses the state estimates
so obtained, to feed a static gain which is calculated by
solving a modified Ricatti recursion. It follows from a
straightforward modification of the results in Schenato
[2009], that the optimal controller gain in Theorem 3
defines the (unqualified) optimal control law when perfect
communication between the plant and the controller is
available, the state is measured without noise, and the
link between the controller and the actuators is given
by (2). Given our comments after Theorem 1 and the
results in Silva et al. [2013], we thus conclude that a
complete separation exists between estimation and control
in the considered networked architecture. This conclusion
hinges on the availability of channel state information
at the controller. If either the sensor-to-controller or the
controller-to-actuator channel states are unknown to the
controller, then separation does not hold (see also Chen
et al. [2012]). These observations are consistent with
results pertaining to the well-known optimal LQG optimal

control problem over erasure channels Schenato et al.
[2007]. They apply, however, to a constrained architecture
where besides elementary use of channel state information,
all processing is constrained to be affine from the onset.

We finally remark that the optimal cost in (20) corre-
sponds to the upper bound, presented in Schenato et al.
[2007], on the expected minimal cost achieved by the
optimal LQG controller. The latter is consistent with our
comments in Section 3, where we noted that the minimum
estimation error covariance of the optimal filter in Theo-
rem 1 upper bounds the expected error covariance of the
intermittent Kalman filter in Sinopoli et al. [2004].

5. OPTIMAL INFINITE HORIZON ESTIMATORS
AND CONTROLLERS

This section presents conditions under which the optimal
filter gain Jk in (7) and the optimal controller gain Lk

in (18) converge. To that end, we study the convergence
properties of the modified Riccati recursions (see (6c), (6d)
and (19))

Pk+1|k = APk|k−1A
T + Pv − psAJkCPk|k−1A

T , (28)

with Jk as in (7), k ∈ N0, P0|−1 = Po, and

Sk = ATSk+1A+Q− pcA
TSk+1BLk, (29)

with Lk as in (18), k ∈ {N − 1, . . . , 0} and SN = QN .

Lemma 4. (Schenato [2008, 2009]). Consider both modi-
fied Riccati recursions in (28)-(29) under the assumptions
of Theorem 1 and Theorem 3. Assume, in addition, that
the pairs (A,C) and (A,Q1/2) are observable, and that the

pairs (A,P
1/2
v ) and (A,B) are controllable. Then:

(1) If ρ(A) < 1, then both modified Riccati recursions
converge.

(2) If ρ(A) > 1, then there exists pinfs (resp. pinfc ) such that
the modified Riccati recursion in (28) (resp. in (29))
converges if and only if ps > pinfs (resp. pc > pinfc ).

(3) If the modified Riccati recursions converge, then
their limits, say P∞ and S∞, are independent of the
initial conditions Po and SN , and correspond to the
unique positive semidefinite solutions of the modified
algebraic Riccati equations (MARE) that arise when
one sets Pk+1|k = Pk|k−1 = P∞ and Sk = Sk+1 = S∞
in (28)-(29).�

The following corollary is a immediate consequence of
Lemma 4:

Corollary 5. Consider the setup and assumptions of Theo-
rem 1 and Theorem 3. Assume, in addition, that the pairs
(A,C) and (A,Q1/2) are observable, and that the pairs

(A,P
1/2
v ) and (A,B) are controllable. The estimator gain

Jk in (7) and the controller gain Lk in (18) converge when
k tends to infinity if and only if ps > pinfs and pc > pinfc , or
ρ(A) < 1. If that is the case, then:

(1) The limiting optimal choices for the mappings F x̂
k and

F ŷ
k in (5a) are such that

x̂k|k = (I − JC)x̂k|k−1 + Jȳk, (30a)

x̂k+1|k = Ax̂k|k +Buk, (30b)

ŷk = Cx̂k|k−1, (30c)
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where ȳ is as in (5a), J , P∞CT
(
CP∞CT + Pe

)−1
,

and P∞ is the unique positive semidefinite solution of
the MARE

P∞ = AP∞AT + Pv − psAJCP∞AT . (31)

(2) The limiting optimal choices for the mappings Cu
k and

C ŷ
k in (3) admit the state space representation

ξk+1 = A(I − JC)ξk +AJȳk +Buk, (32a)

uc
k = −Lξk, (32b)

ŷk = Cξk, (32c)

where L ,
(
BTS∞B +R

)−1
BTS∞A, and S∞ is the

unique positive semidefinite solution of the MARE:

S∞ = ATS∞A+Q− pcA
TS∞BL. (33)

(3) The average cost V̄∞ , limN→∞
1
N VN converges to

V̄ opt
∞ , with

V̄ opt
∞ , tr

{
S∞Pv

+
(
ATS∞A+Q− S∞

)(
P∞ − psJCP∞

)}
, (34)

with J, S∞ and P∞ as above.

Corollary 5 provides conditions which guarantee that the
derived estimators and controllers in Sections 3 and 4
converge as the horizon N tends to infinity. The fact that
there exists a separation between estimation and control
in the finite horizon case, allowed us to study convergence
of the estimator and the controller in an independent way
(see Lemma 4 and Corollary 5). The derived convergence
conditions are the same conditions obtained previously in
Schenato [2008, 2009] for different setups.

It is also important to highlight that the limiting controller
described by Corollary 5 is in fact optimal. That is, if the
LTI filter in (32) is used to map (ȳ, u) into (uc, ŷ) in the
NCS of Figure 1, then the steady-state average cost V̄∞
will be minimal among all LTI filters that map (ȳ, u) into
(uc, ŷ) and render the resulting NCS mean-square stable. 3

6. CONCLUSIONS

This paper has solved finite and infinite horizon optimal
control problems for noisy LTI plants when both sensor-to-
controller and controller-to-actuator communication take
place over analog erasure channels. We have focused on
a class of controllers that embed a data dropout com-
pensator and where, besides elementary use of sensor-
to-controller channel state information, all processing is
affine. We have shown that separation holds, and that, as
the horizon length goes to infinity, the affine part of the
optimal controller converges to an LTI system and thus
a computationally inexpensive controller can be found.
Moreover, the steady-state performance of that filter can
be easily characterized. Future work should focus on mul-
tichannel architectures and on architectures without feed-
back in the controller-to-actuator link.
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