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Abstract: In this paper, the state estimation problem for continuous-time linear systems with
two types of sampling is considered. First, the optimal state estimator under periodic sampling
is presented. Then the state estimator with event-based updates is designed, i.e., when an event
occurs the estimator is updated linearly by using the measurement of output, while between the
consecutive event times the estimator is updated by minimum mean-squared error criteria. The
average estimation errors under both sampling schemes are compared quantitatively for first and
second order systems, respectively. A numerical example is given to compare the effectiveness
of two state estimators.
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1. INTRODUCTION

Recently, event-based control and estimation have received
a lot of attention in the system and control community
(Lemmon, 2010; Heemels et al., 2012). Event-based mecha-
nism occurs naturally in many situations, such as relay sys-
tems (Dodds, 1981), pulse modulation (Holmes and Lipo,
2003), and biological systems (Keener and Sneyd, 2008);
particularly it has been boosted in wireless sensor networks
where the communication resource is limited and even
scare (Xu and Hespanha, 2004; Imer and Basar, 2005).
Åström and Bernhardsson (2002) highlighted some advan-
tages of event-based sampling over periodic sampling and
motivated the development of systematic design and anal-
ysis of event-based controllers and estimators (Tabuada,
2007; Henningsson et al., 2008; Rabi et al., 2008; Li et al.,
2010; Wang and Lemmon, 2011; Meng and Chen, 2012;
Meng et al., 2013; Wang et al., 2014). In this paper, we
focus on the event-based estimation problem.

To reduce data transmission rate in sensor networks,
some estimation schemes and algorithms on event-based
mechanism such as “Send on Delta” were presented and
considered (Miskowicz, 2006; Suh et al., 2007). Åström
(2007) provided some comments on Kalman filter under
event-based sampling. Rabi (2006) and Rabi et al. (2012)
investigated the state estimation problem for first order
linear systems with a constraint on the sampling rate,
and compared the estimation errors under event-based and
periodic sampling. However, to our knowledge, there has
been no work carrying out the comparison of periodic and
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event-based sampling for state estimation of higher order
systems, which is definitely worth studying.

The previous work (Sijs and Lazar, 2011; Wu et al., 2013;
You and Xie, 2013) gave some approximating algorithms
for event-based estimator under the assumption that the
predicted estimate or the innovation is Gaussian. Sijs and
Lazar (2011) considered the state estimation under general
event based sampling, and provided a stable approxima-
tion algorithm by using Gaussian sums. Wu et al. (2013),
and You and Xie (2013) devised scheduling schemes that
the output is communicated based on measurement inno-
vation, and provided recursive algorithms for the discrete-
time state estimation with the assumption of Gaussian
prediction. However, the above Gaussian assumption is
not guaranteed to be true. Without the assumption, Shi
et al. (2013) considered the discrete-time event-triggered
state estimation problem in the framework of maximum
likelihood estimation. In this paper, some results for
continuous-time linear state estimation are provided with-
out the Gaussion assumption.

The objective of the paper is to compare periodic
and event-based sampling for the state estimation of
continuous-time linear stochastic systems. First, we present
the optimal state estimator under periodic sampling. Then
we design the state estimator with event-based updates.
Specifically, when an event occurs the estimator is updated
linearly by using the upcoming measurement, while be-
tween the consecutive event times the estimator is updated
by MMSE (minimum mean-squared error) criteria. The
main idea of the event-based sampling is that the output
measurement is transmitted to the estimator only if the
measurement innovation is significant enough. Later, we
compare the mean-square estimate errors of two state
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estimators under the same average sampling rates for
first order systems and symmetric second order systems,
respectively. Finally, we give a numerical example to com-
pare the estimation errors of two state estimators.

The following notations will be used in the paper. For a
sequence of numbers aj , j = 1, . . . ,m, diag{a1, . . . , am}
denotes the diagonal matrix with aj in the diagonal
and zero elsewhere. For a stochastic process x(t), t ≥ 0,
σ(x(s), s ≤ t) denotes the σ-algebra generated by x(s), s ≤
t. E[·] and E[·|·] denote the mathematical expectation and
the conditional expectation, respectively.

2. PROBLEM FORMULATION

Consider the following linear stochastic system:

dx(t) =Ax(t) +DdW (t), (1)

y(t) =Cx(t), (2)

where x(t) ∈ Rn, y(t) ∈ Rm are the state and the
output, respectively. E[x(0)] = µ, E[(x(0) − µ)(x(0) −
µ)T ] = Σ > 0. The stochastic disturbance W (t) ∈ Rd

is a standard Wiener process defined on a probability
space (Ω,F ,P). Assume C ∈ Rm×n has full row rank.
(A,D) is controllable. The output y(t) is transmitted
to the estimator by a sensor with limited computational
capability at sampling times τ0, . . . , τN , . . ..

In this paper, we will design and compare two types of
estimators for the state x(t) based on the measurements
y(τ0), . . . , y(τk), and sampling times τ0, . . . , τk, where τk ≤
t < τk+1, k = 0, 1, . . .. To be specific, for the first estimator
the sampling times are deterministic and periodic, while
for the second estimator the sampling times are a sequence
of random times based on the event occurrence.

3. STATE ESTIMATORS

From (1), we have for any k = 0, 1, . . .,

x(t) = eA(t−τk)x(τk) +

∫ t

τk

eA(t−s)DdW (s), τk ≤ t. (3)

Let Ft = σ{x(s), s ≤ t}, and Yt = σ{y(s), s ≤ t}. Let
Ht = σ{y(τ0), . . . , y(τk), τ0, . . . , τk} for τk ≤ t < τk+1.
Noting Ht ⊂ Yt ⊂ Ft and Ht = Hτk , τk ≤ t < τk+1, from
(3) we obtain that

E[x(t)|Ht] = E[eA(t−τk)x(τk)|Hτk ]

+E
[
E[
∫ t

τk

eA(t−s)DdW (s)|Fτk ]
∣∣Hτk

]
= eA(t−τk)E[x(τk)|Hτk ], τk ≤ t < τk+1. (4)

From the fundamental result of state estimation (Åström,
2006; Oksendal, 2003), we have the MMSE (minimum
mean-squared error) update between two consecutive sam-
pling times:

x̂(t) = eA(t−τk)x̂(τk), τk ≤ t < τk+1,

where x̂(t) is the estimator for x(t).

In what follows, we develop the recursive algorithms for
x̂(τk), k = 0, 1, . . . . By (2) and (3), it follows that

x(τk+1)=eA(τk+1−τk)x(τk) +

∫ τk+1

τk

eA(τk+1−s)DdW (s),

y(τk)=Cx(τk), k = 0, 1, . . . .
(5)

First, consider the case of periodic sampling, i.e., τk = kh.
Following the argument to the standard Kalman filter
derivation (Anderson and Moore, 1979; Åström, 2006), we
get the algorithm for the periodic estimator:

Algorithm I. Periodic estimator:

x̂[(k + 1)h] = x̂′[(k + 1)h]

+Kk+1

{
y[(k + 1)h]− Cx̂′[(k + 1)h]

}
,

x̂′[(k + 1)h] = eAhx̂(kh),

Kk+1 = P ′
k+1C

T (CP ′
k+1C

T )−1,

Pk+1 = P ′
k+1 −Kk+1CP ′

k+1;

P ′
k+1 = eAhPke

ATh

+

∫ (k+1)h

kh

eA[(k+1)h−s]DDT eA
T [(k+1)h−s]ds,

x̂′(0) = µ, P ′
0 = Σ. (6)

We now consider the case that the sampling times are the
following event-based times:

τ0 = 0,

τk+1 = inf{t > τk; ∥z(t−)∥ ≥ δ}, k = 0, 1, . . . , (7)
where δ > 0 is a tuning parameter, z(t) = y(t)− Cx̂(t) is
the so-called innovation process, and z(t−) = lims↑t z(s)
is the left limit of z(t).

Remark 3.1. The main idea of the specification for the
event-based times τk, k = 0, 1, . . . is that the output is
transmitted to the estimator only when the measurement
innovation (the error between the measurement and the
predicted value of output) is large enough; otherwise it is
not regarded “significant enough” and hence not be sent
to the estimator. It is still not clear whether the innovation
process z(t) is approximately Gaussian or not. However,
∥z(τk−)∥ = δ, and z(τk−) is non-Gaussian. Actually, for
the one-dimensional case, z(τk−) is binomial, and for the
two-dimensional case, z(τk−) is supported on a circle.

From (4), we have

x̂(τk+1−)
∆
= lim

t↑τk+1

x̂(t) = eA(τk+1−τk)x̂(τk). (8)

At the time τk+1, an event occurs and a new measurement
is received by the estimator. Then by Theorem 3.2.1 in
Anderson and Moore (1979), we get the linear MMSE
update as follows:

x̂(τk+1) = x̂(τk+1−) +Kk+1z(τk+1−), k = 0, 1, . . . (9)

where
Kk+1 = P−

k+1C
T (CP−

k+1C
T )−1, (10)

P−
k+1 = eA(τk+1−τk)Pke

AT (τk+1−τk)

+

∫ τk+1

τk

eA(τk+1−s)DDT eA
T (τk+1−s)ds, (11)

Pk = P−
k −KkCP−

k . (12)
Here, (11) is obtained from

x̃(τk+1−) = eA(τk+1−τk)x̃(τk) +

∫ τk+1

τk

eA(τk+1−s)DdW (s),
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which follows by (5) and (8).

By the above result we get the following algorithm for the
event-based estimator.

Algorithm II. Event-based estimator:

x̂(τk) = x̂(τk−) +Kk

[
y(τk)− Cx̂(τk−)

]
,

x̂(τk+1−) = eA(τk+1−τk)x̂(τk),

Kk = P−
k CT (CP−

k CT )−1,

Pk = P−
k −KkCP−

k ,

P−
k+1 = eA(τk+1−τk)P−

k eA
T (τk+1−τk)

+

∫ τk+1

τk

eA[τk+1−s]DDT eA
T [τk+1−s]ds,

x̂(0−) = µ, P−
0 = Σ. (13)

Different from Algorithm I, the updating times τk, k =
1, 2, . . . in Algorithm II are random. From (7), they depend
on the output y(t), which implies that the gains Kk, k =
1, 2, . . . are also random and dependent on y(t).

Remark 3.2. Noting τ0 = 0,Σ > 0, it follows that
z(τ0) = y(τ0) − Cx̂(τ0) = 0, which leads to τ1 >
0. Since (A,D) is controllable, it follows that for any

t > 0,
∫ t

0
eAsDDT eA

T sds is positive definite, which gives

that
∫ τ1
τ0

eA(τ1−s)DDT eA
T (τ1−s)ds is positive definite. This

together with the fact that C has full row rank implies that
CP−

1 CT is invertible and positive definite. From (13), it
follows that z(τ1) = y(τ1) − Cx̂(τ1) = 0, which together
with (7) leads to τ2 > τ1. Thus, by the induction we obtain
that τk+1 is strictly greater than τk, which guarantees the
sequence of sampling times τk, k = 0, 1, . . . are well defined.

4. THE CASE OF FIRST ORDER SYSTEMS

In this section, consider the first order system described
by

dx(t) = ax(t)dt+ σdw(t), (14)

y(t) = cx(t), (15)

where x(t), y(t) ∈ R, c ̸= 0, and σ ̸= 0. w(t) is a one-
dimensional Wiener process. We will compare the average
estimation errors for both sampling schemes.

For the system above, by Algorithm II we obtain that

x̂(τk) =
1

c
y(τk), Kk =

1

c
, Pk = 0.

From (4), it follows that

x̂(t) =
1

c
ea(t−τk)y(τk), τk ≤ t < τk+1.

We now check the average estimation errors

J = lim sup
T→∞

1

T
E

[∫ T

0

|x(t)− x̂(t)|2dt

]
, (16)

for periodic and event-based sampling, respectively. First,
under the periodic sampling scheme (i.e., τk = kh), the
average estimation error is

JP = lim sup
n→∞

1

nh

n−1∑
k=0

∫ (k+1)h

kh

E
[
|x(t)− x̂(t)|2

]
dt

= lim sup
n→∞

1

nh

n−1∑
k=0

∫ (k+1)h

kh

E
[∣∣∣ ∫ t

kh

σea(t−s)dw(s)
∣∣∣2] dt.

Thus, we have for the case a = 0,

JP = lim sup
n→∞

1

nh

n−1∑
k=0

∫ (k+1)h

kh

σ2(t− kh)dt =
σ2h

2
,

and for the case a ̸= 0,

JP = lim sup
n→∞

1

nh

n−1∑
k=0

σ2

∫ (k+1)h

kh

e2a(t−kh) − 1

2a
dt

=
σ2(e2ah − 2ah− 1)

4a2h
.

In what follows, we calculate the average estimation error
under the event-based sampling. In this case, the sampling
times are τ0 = 0, and

τk+1 = inf{t > τk; |z(t−)| ≥ δ}, k = 0, 1, . . . ,

where z(t) = y(t) − cx̂(t) = σ
∫ t

τk
ea(t−s)dw(s), τk ≤ t <

τk+1. It can be verified that z(τk) = 0, and z(t) satisfies

dz(t) = az(t) + cσdw(t), τk ≤ t < τk+1. (17)

Let Zt = σ(z(s), s ≤ t). Noting z(t) is a time-homogeneous
strong Markovian process (Oksendal, 2003) and z(τk) = 0,
k = 0, 1, 2, . . ., we obtain that for any Borel-measurable
function f ,

E
[ ∫ τk+1

τk

f(z(t))dt
∣∣∣Zτk

]
= E

[ ∫ τk+1

τk

f(z(t))dt
∣∣∣z(τk)]

= E
[ ∫ τ1

τ0

f(z(t))dt
∣∣∣z(τ0)]

= E
[ ∫ τ1

0

f(z(t))dt
]
.

Thus,
∫ τk+1

τk
f(z(t))dt, k = 0, 1, . . . are independent and

identically distributed. From this together with (16), the
average estimation error is

JE = lim sup
n→∞

1

c2τn

n−1∑
k=0

E
[ ∫ τk+1

τk

|z(t)|2dt
]

= lim sup
n→∞

n

c2τn

1

n

n−1∑
k=0

E
[ ∫ τk+1

τk

|z(t)|2dt
]

=
E
[ ∫ τ1

0
|z(t)|2dt

]
c2E[τ1]

. (18)

From the probabilistic representation of solutions to dif-
ferential equations (See Lemma 3.1 in Wang et al. (2014)
or Oksendal (2003) ), it follows that E[τ1|z(0) = x] is the
solution of

c2σ2

2
h′′(x) + axh′(x) = −1,

with boundary conditions h(δ) = h(−δ) = 0, which gives

E[τ1] =2

∫ δ

0

1

c2σ2

∫ y

0

exp
[
− a(y2 − z2)

c2σ2

]
dzdy

=

∞∑
k=1

22k−1(−a)k−1(k − 1)!δ2k

(2k)!
.

Similarly, we have

E
[ ∫ τ1

0

|z(t)|2dt
]
= 2

∫ δ

0

∫ y

0

z2

c2σ2
exp

[
−a(y2 − z2)

c2σ2

]
dzdy.
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Fig. 1. JP /JE for a = −1, 0, 1 with the same average
sampling period

From this together (18), we get

JE =

∫ δ

0

∫ y

0
z2 exp

[
− a(y2−z2)

c2σ2

]
dzdy

c2
∫ δ

0

∫ y

0
exp

[
− a(y2−z2)

c2σ2

]
dzdy

,

which coincides with the result in (Rabi, 2006, Chapter 3).
Particularly, for the case a = 0,

E[τ1] =
δ2

c2σ2
, JE =

δ2

6c2
.

We now compare the estimation effectiveness under both
sampling schemes. Specifically, the estimation error with
periodic sampling is compared to one with event-based
sampling under the assumption that average sampling
rates are the same, i.e. h = hE . For the case a = 0, we
have h = E[τ1] = δ2/(c2σ2) and

JP
JE

=
δ2/2c2

δ2/6c2
= 3.

The ratio JP /JE as a function of h or E[τ1] is plotted in
Figure 1 for a = −1, 0, 1. The figure shows that event-
based sampling gives substantially smaller estimation er-
rors under the same sampling rates. It can be seen that
the ratio for unstable systems is larger than one for stable
systems.

5. THE CASE OF SYMMETRIC SECOND ORDER
SYSTEMS

In this section, consider the following second order system
described by

dx(t) =Ax(t)dt+Ddw(t),

y(t) =Cx(t), (19)

where x(t), y(t) ∈ R2, A = diag{a, a}, C = diag{c, c}
and D = diag{σ, σ}. w(t) = (w1(t), w2(t))

T is a two-
dimensional Wiener process. Without loss of generality,
assume c = σ = 1. In this case, by Algorithm II and (4),
it follows that

Kk = I, Pk = 0, x̂(τk) = x(τk),

x̂(t) = eA(t−τk)x(τk), τk ≤ t < τk+1.

First, for the case of the periodic sampling the average
estimation error is

JP = lim sup
n→∞

1

nh

n−1∑
k=0

∫ (k+1)h

kh

E
[
∥x(t)− x̂(t)∥2

]
dt

= lim sup
n→∞

1

nh

n−1∑
k=0

∫ (k+1)h

kh

2E
[∣∣∣ ∫ t

kh

ea(t−s)dw(s)
∣∣∣2]dt

=

{
h a = 0
e2ah − 2ah− 1

2a2h
a ̸= 0.

In what follows, we calculate the average estimation error
under the event-based sampling. In this case, the sampling
times are τk+1 = inf{t > τk; ∥z(t−)∥ ≥ δ}, where z(t) =
x(t)− x̂(t). Then

z(t) =
(∫ t

τk

ea(t−s)dw1(s),

∫ t

τk

ea(t−s)dw2(s)
)T

satisfies

dz(t) = Az(t) + dw(t), z(τk) = (0, 0)T , τk ≤ t < τk+1.

As in Gardiner (2004) and Meng and Chen (2012), set

z1(t) = r(t)cos[ϕ(t)], z2(t) = r(t)sin[ϕ(t)],

with

r(t) =
√
z21(t) + z22(t).

Then by using Ito’s formula, we have that

dr(t) = [ar(t)+
1

2r(t)
]dt+dv(t), r(τk) = 0, τk ≤ t < τk+1,

where

v(t) = w1(t)cos[ϕ(t)] + w2(t)sin[ϕ(t)].

It can be verified that v(t) is a standard Wiener process,
since it is an orthogonal transformation of w(t).

From Lemma 3.1 in Wang et al. (2014) or Oksendal (2003),
we obtain that E[τ1|r(0) = x] satisfies

1

2
g′′(x) + (ax+

1

2x
)g′(x) = −1,

with boundary conditions g(δ) = g(−δ) = 0, which gives

E[τ1] = 2

∫ δ

0

∫ y

0

z

y
exp

[
− a(y2 − z2)

]
dzdy

=
∞∑
k=1

(−a)k−1δ2k

2kk!
.

Similarly, we have

E
[ ∫ τ1

0

∥z(t)∥2dt
]
= 2

∫ δ

0

∫ y

0

z3

y
exp

[
−a(y2 − z2)

]
dzdy

=
∞∑
k=1

(−a)k−1δ(2k+2)

(2k + 2)(k + 1)!
.

From this together (18), we get

JE =

∫ δ

0

∫ y

0
z3

y exp
[
−a(y2 − z2)

]
dzdy∫ δ

0

∫ y

0
z
y exp

[
−a(y2 − z2)

]
dzdy

.

Particularly, for the case a = 0,

E[τ1] =
δ2

2
, JE =

δ2

4
.

We now compare the estimation errors for both sampling
under the assumption that average sampling rates are
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Fig. 2. JP /JE for a = −1, 0, 1 with the same average
sampling period

the same, i.e. h = E[τ1]. For the case a = 0, we have
h = E[τ1] = δ2/2, and

JP
JE

=
δ2/2

δ2/4
= 2.

The ratio JP /JE as a function of h or E[τ1] is plotted in
Figure 2 for a = −1, 0, 1. The figure shows that event-
based sampling gives smaller estimation errors and the
ratio for unstable systems is larger than one for stable
systems. Different from the case of first order systems,
the improvement of event-based sampling over periodic
sampling declines for unstable systems when the average
sampling period exceeds around 0.7.

6. AN ILLUSTRATIVE EXAMPLE

In this section, an example of the double integrator is
provided to demonstrate and compare the effectiveness of
two state estimators.

For the system in (1)-(2), set

A =

(
0 1
0 0

)
, D =

(
0 0
0 1

)
, and C = (1 0).

Then it follows that

dx(t) =

(
0 1
0 0

)
x(t)dt+

(
0

dw2(t)

)
y(t) = (1 0) x(t). (20)

Here x(t) = (x1(t), x2(t))
T is characterized as the position

and speed of an object, while only the position can be
measured. Noting

eAt =

(
1 t
0 1

)
, C(x(τk)− x̂(τk)) = 0,

we get that for τk ≤ t < τk+1, k = 0, 1, . . .,

z(t) =CeA(t−τk)(x(τk)− x̂(τk)) + C

∫ t

τk

eA(t−s)Ddw(s)

= (1 0)

(
1 t− τk
0 1

)(
x̃1(τk)
x̃2(τk)

)
+(1 0)

∫ t

τk

(
1 t− s
0 1

)(
0

dw2(s)

)

= (t− τk)x̃2(τk) +

∫ t

τk

(t− s)dw2(s)

=

∫ t

τk

[x̃2(τk) + w2(s)]ds, (21)

where x̃(τk) = x(τk)− x̂(τk). From this together with (7),

τk+1 = inf
{
t > τk;

∣∣∣ ∫ t

τk

[x̃2(τk) + w2(s)]ds
∣∣∣ = δ

}
.

Take δ = 0.3. By implementing Algorithm II, we get the
trajectory of the event-based estimator, which together
with the state x(t) is shown in Figure 3. Meanwhile, we
have limk→∞ τk/k = 0.64. Let h = 0.64. From Algorithm I,
we get the trajectory of the the periodic estimator, which is
also plotted in Figure 3. It can be seen that the event-based
estimator is more consistent with the state trajectory than
the periodic estimator, irrespective of the first state or the
second state.
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Fig. 3. Trajectories of the state, event-based estimator and
periodic estimator

The squared estimation errors ∥x̃(t)∥2 under event-based
and periodic sampling are shown in Figure 4. It can be
seen that the average estimation errors under event-based
sampling are smaller compared with the periodic sampling.
Indeed, the time-average value of squared estimation errors
under event-based and periodic samplings are 0.4107 and
0.5636, respectively.

7. CONCLUDING REMARKS

This paper considered the state estimation problem of
continuous-time linear systems with two types of sampling.
We first presented the optimal state estimator under
periodic sampling, and designed the state estimator with
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event-based updates. Then, we compared the average
estimation errors for both sampling schemes in first and
second order systems, respectively. A numerical example
was provided to compare the effectiveness of two state
estimators. It can be shown that in these cases the event-
based sampling does outperform periodic sampling for
state estimation. Specifically, for critically stable first order
systems, the ratio of the average estimation error with
periodic sampling to one with event-based sampling is 3;
for critically stable symmetric second order systems, the
ratio is 2. However, due to severe mathematical difficulties,
the quantitative comparison of average estimation errors
for the general case under both sampling schemes was not
provided in this paper, which needs to be investigated
further.
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Åström, K. (2006). Introduction to Stochastic Control
Theory. Courier Dover Publications.
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