
     

ROBUST MODEL-BASED SOFT SENSOR: DESIGN AND APPLICATION  
 
Rajamani Doraiswami*, and Lahouari Cheded** 


*Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton,  
        New Brunswick, Canada.  
 **Systems Eng. Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, KSA, 

Abstract: A model-based robust soft sensor is proposed here. The soft sensor is based on a Kalman filter 
(KF), which is designed to estimate the inaccessible variables using the output measurements in the face 
of the measurement noise, disturbances, and model perturbations. The performance of the soft sensor 
critically depends upon the reliability and accuracy of the identified  system model it is based on. To 
overcome the degradation due to model mismatch, a reliable offline identification scheme, based on the 
powerful concept of emulator which significantly improved the accuracy of the proposed scheme, is 
proposed here. It involves performing a number of experiments using emulators, which are transfer 
function blocks connected to the system input or the output, and which are used to introduce model 
perturbations to mimic likely operating scenarios. It is shown that the KF residual is a function of the 
product of the model perturbation and the control input sensitivity function. The proposed new soft 
sensor is successfully evaluated on a simulated and laboratory-scale physical velocity control system. 
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1. INTRODUCTION 

A soft sensor can be broadly defined as a software-based 
sensor, and are used in industrial applications to replace 
hardware sensors, which are  costly, difficulty to maintain, 
and even impossible to physically access. Soft sensors are 
maintenance-free and play additional role in numerous 
applications such as fault diagnosis, fault-tolerant control 
systems, and quality control, aerospace, pharmaceutical, and 
process control, mining, oil and gas, and healthcare industries 
(Fortuna, Graziani, & Xibilia, 2007), (Kadlec, Gabrys, & S, 
2009). It is anticipated that the wave of soft sensing will 
sweep through the measurement world through its increasing 
use in smart phones nowadays. Soft sensing is already 
providing the core component of the new and emerging area 
of smart sensing.  The design and use of a soft sensor is 
illustrated in this paper in the specific and important area of 
robust and fault-tolerant control.  
A soft sensor uses a software algorithm that derives its 
sensing power from the use of an Artificial Neural networks, 
a Neuro-fuzzy system, Kernel methods (support vector 
machines), a multivariate statistical analysis, a Kalman filter 
or other model-based or model-free approaches  (Angelov & 
Kordon, 2010).  A model-based approach using a Kalman 
filter for the design of a soft sensor is proposed here.  
 
1.1 Soft sensor 
The Kalman filter estimates unmeasured or inaccessible 
variables. It is an optimal minimum-variance estimator of the 
unknown variable from the noisy input and output of the 
system. The estimate is computed by fusing the a-posteriori 
information provided by the measurement, and the a-priori 
information contained in the model that generated the 
measurement, and is thus the best compromise between the 

estimates generated by the model (i.e. the predicted 
estimates) and those obtained from the measurement (i.e. the 
actual measurements), depending upon the plant noise and 
the measurement noise covariance.  
A Kalman filter is a copy of the mathematical model of the 
plant driven by the residual, which is the error between the 
measured output of the plant and its estimate generated by the 
Kalman filter. The Kalman gain is used as an effective design 
parameter to handle the uncertainty associated with the model 
of the physical system. Model uncertainty is effectively 
introduced in the determination of the gain by choosing a 
variance of the plant noise higher (lower) than the 
measurement noise variance if the dynamic part of the state-
space model is less (more) reliable. In (Doraiswami & 
Cheded, 2012), an expression relating the KF residual and the 
deviation of the plant model from its nominal one is derived. 
This relationship is exploited herein to a) ensure high system 
performance and stability by re-identifying the plant 
whenever the residual exceeds some threshold and b) to 
develop a fault-tolerant system  (Doraiswami & Cheded,  
2013).  
 
1.2  Reliable Identification of the system 
The Kalman filter is designed using the identified nominal 
model of the system. Hence the performance of the the soft 
sensor depends critically upon the accuracy of the identified 
model. In general, a model of the physical system varies with 
the operating conditions. A model identified at a given 
operating point may not be accurate when the operating 
condition changes. This will then result in the degradation of 
the performance of both the soft sensor and the controller. To 
overcome this performance degradation, a set of models in 
the neighbourhood of a given operating point is generated by 
performing a number of virtual experiments using the 
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powerful tool of emulators. A model termed optimal nominal 
model is identified using the subspace method, which is the 
optimal fit to the set of models thus obtained. To generate the 
set of models, emulators are connected at the input or at the 
output. These neighbouring operating points are determined 
by varying the parameters of the emulators.    
Soft sensors offer several attractive benefits, such as: 
Reduced cost and weight:  
Reliability: It is maintenance-free and software-based and is 
devoid of physical accessibility and danger (e.g. nuclear 
reactors)     
Sensing versatility and product quality: It can estimate 
almost any desired variable and does so with a high accuracy, 
thus ensuring a high quality of a product (composition, 
texture, molecular weight, etc.) indirectly using available 
measurements coupled with a process model 
Fusion of Measurements: Soft sensors are especially useful 
in data fusion, where measurements of different process 
characteristics and dynamics are combined to generate 
measurement of physical variables that may be inaccessible 
to hardware sensors.  
Process estimators and controllers: It can be used for 
performance monitoring, fault diagnosis, as well as for 
implementing a controller estimating unmeasured plant 
outputs. 
The proposed scheme has been successfully evaluated on 
both a simulated and physical DC servomotor. 
 
2.  MATHEMATICAL FORMULATIONS 
 
The state-space model of a system is given by: 

                
( 1) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
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where  x k  is a 1nx  state, ( )u k  the scalar control input 

,  ky  a 1yn x vector formed of all measured (accessible) 

outputs, v  a measurement noise, w  a disturbance,  ry k the 

plant output that needs to be estimated as it is either 
inaccessible or unmeasurable, A , B , C  and rC are 

respectively  nxn , 1nx , yn xn and 1xn  matrices, and v , w and 

ry  are scalars; wE and vF  are, respectively, the 1nx  

disturbance and the 1yn x measurement noise entry vectors. 

The measurement noise v and disturbances are zero-mean 
white noise with variances Q and R respectively.  
2.1 Transfer function model  
The transfer function model of the system relating the 
reference input ( )r z , the disturbance   zw  and the 

measurement noise  zv  to the output  zy is given by:  
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1yn x transfer matrices, and ( )D z z I A is a scalar. 

Rewriting (2) by cross-multiplying by ( )D z , we get: 

                    ( ) ( ) ( ) ( )D z z z u z z y N                      (3) 

where    ( ) ( ) ( )w vz z z D z z N w F v  is the equation error 

formed of two colored noise processes generated by the 
disturbance  zw and the measurement noise ( )v z  . 

 
2.2 Uncertainty model  
The structure and the parameters of a physical system may 
vary due to changes in the operating regime. The difference 
between the actual system and its model, termed model 
uncertainty, is considered in identification. Commonly, the 
transfer function model of the system is expressed as an 
additive or multiplicative combination of the assumed model 
and a perturbation term. The perturbation term represents in 
effect the modelling error.  A model, termed the numerator-
denominator perturbation model, is employed herein, where 
the perturbations in the numerator and denominator 
polynomials are treated separately instead of being clubbed 
together as a single perturbation term in the overall transfer 
function (Kwakernaak, 1993). The numerator-denominator 
perturbation model (Kwakernaak, 1993) takes the following 
form: 
                                    0ez z zG G G                                 (4) 

where    
 

0
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N
G is the nominal transfer function,  

 0 zN is the nominal numerator (matrix) polynomial,  0D z  

the nominal denominator (scalar) polynomial, and ( )e zG the 

y yn xn multiplicative perturbation, termed here as the emulator  
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 N z RH  and  D z RH  represent, respectively, the 

pertutbations in the numerator and denominator polynomials 
of the nominal model 0 ( )zG ,  N z  and  D z   are 

respectively, a stable frequency-dependent  y yn xn  matrix, and 

a scalar; I is an y yn xn identity matrix. 

 
2.3 Selection of the emulator model 
The emulator ( )e zG is chosen such that the perturbed model 

 zG matches the actual model of the system. In many 

practical problems, for computational simplicity, the 
perturbation model is chosen to mimic the macroscopic 
behaviour of the system characterized by gain and phase 
changes in the system transfer function. The y yn xn  

multiplicative perturbation ( )e zG is a diagonal matrix: 

               1 2( ) ( ) ( ) . ( )
ye e e enz diag G z G z G z   G           (6) 

where ( )eiG z is chosen to be a constant gain ( i ), a gain and  

a pure delay of d time instants ( d
i z  ), an all-pass first-order 

filter  (
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 ), where i , and ij are termed 

herein as the emulator  parameters.  
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3.  IDENTIFICATION OF THE SYSTEM 
 
The output  ry k is considered here either inaccessible or not 

measurable during the operational phase of the system. 
However, during the offline identification phase, the output 

 ry k is either measured (for example the angular velocity 

may be measured using a physical tachometer) or computed 
from other outputs. The direct or indirect availability of the 
measured value of ( )ry k will ensure that, during the 

identification phase, the identified model will capture 
accurately the map relating ( )ry k to the input ( )u k and the 

measured output  ky .  In the other words, during offline 

identification, it is assumed that ( )ry k is an element of the 

measured output vector  ky . For notational simplicity, 

whenever there is no confusion the augmented and the 
measured outputs are denoted by the same output 
variable  ky .   

 
3.1 Perturbed-parameter experiments 
The performance of the soft sensor depends upon the 
accuracy of the identified nominal model, which is used to 
design the Kalman filter. To ensure this accuracy, a reliable 
identification scheme is employed here. The system model is 
identified by performing a number of parameter-perturbed 
experiments. Each experiment consists of perturbing one or 
more emulator parameters. The input is chosen to be 
persistently exciting to allow the model to capture as much as 
possible of the system dynamics. We can emulate an 
operating scenario by including the emulator ( )ejG z at the 

input of the system ( )u k , and varying the emulator 
parameters i , and ij as shown in the Fig. 1, (Doraiswami & 

Cheded,  2013). The use of the emulator entails carrying out 
all the necessary experiments which consist of perturbing, 
one-at-a-time, all the parameters of the emulator ( )e zG , and 

collecting both the input data ( )u k (usually the input is 
chosen to be same for all experiments), and the output  ( )y k . 

Consider the thj experiment of perturbing the thj emulator 
parameter. The perturbed model of the system obtained using 
(4) , which relates the thi output ( )iy z , the input ( )u z and the 

thi equation error ( )i z , then becomes: 

                      ( ) ( ) ( ) ( )j j j j
i i iD z y z N z u z z                          (7) 

where ( )jD z and ( )j
iN z aree the denominator and numerator 

polynomials, respectively, resulting from the variation of the 
thj emulator parameter.   

 
3.2 Optimal nominal model 
The objective here is to find an optimal nominal model whose 
input-output data set is a best fit to those similar data sets 
generated from the parameter-perturbed experiments to 
mimic the operating scenarios of the actual system. The 
input-output data from the experiments given by (7) are 
collected and a model that is a best fit to data is then 
identified. Let  0 ky  be an exp 1yn n x  vector of 1yn x  outputs 

  j ky  collected from all experiments, exp1,2,3,...,j n , that 

is given by:           0 1 2 n exp...
TT T T

k k k k    
y y y y ,  

where    1 2 y

T
j j j j

nk y y y   y  is the 1yn x  output from the 

thj  experiment. Now let  0ˆ ky  be the output of the optimal 

model subjected to the same input  0 0 0, ,p p pA B C .Our 

objective here is to find an optimal nominal model such that 
 0ˆ ky is close to  0 ky  in some optimal sense, for example 

such that the norm 
20 0ˆ( ) ( )k ky y  is minimum. Since the soft 

sensor is a Kalman filter, it is preferable that the optimal 
nominal model be identified in a state-space form.  

 0 zN  0

1

D z
( )ejG z

 j zy u z

 j z


 j

eu z

 
Fig.1 Emulation of operating scenarios 

 
3.3 Subspace identification 
The subspace identification has received a lot of attention in 
recent years, as it is numerically efficient and robust, and 
requires minimal a-priori information such as the structure of 
the system, i.e. the model order of the numerator and the 
denominator polynomials and the delay (Qin, 2006), 
(Wahlberg, Jansson, Matsko, & Molander, 2007). The only 
design parameter is the threshold value for the truncation the 
singular values required in the subspace identification 
method. This method estimates directly the state-space model 
for the system and is well suited for application including 
Kalman filtering. However, although the identified state- 
space model is similar to that of the system (i.e. the rank, the 
eigenvalues, the determinant and the trace are all identical), 
the states of the system and those associated with the 
identified model may not have the same physical meaning.  It 
is easier for a practitioner to implement this scheme as there 
are only a few design parameters to choose.  The 
subspacealgorithm does not require non-linear searches in the 
parameter space and is based on computationally-reliable 
tools such as the SVD. Subspace identification is non-
recursive, is based on robust SVD-based numerical methods 
and avoids problems associated with optimization and 
possible local minima. The model order selection process is a 
simple one and is based merely on truncating the ‘low 
singular values’ of the estimated Hankel matrix. Two 
versions of the subspace method, namely the prediction and 
the innovation forms are given here. The prediction and the 
innovation forms use respectively, the predictor model 
structure and the innovation model structure of the Kalman 
filter. The predictor form is numerically stable when the 
system model is poorly damped or the system is close to be 
unstable.   

Given the input ( )u k  and the output 0( )ky , the 
subspace method identifies directly the state-space model 
denoted by  0 0 0, ,A B C , and the Kalman gain K . The model 

order n  is also estimated.  The identified model is given by  

                       
0 0

0

0
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Assumptions: It is assumed that  0 0,A B is controllable and 

 0 0,A C are both observable, so that a controller and a (steady 

state) Kalman filter may be designed to meet the requirement 
of performance and stability.  
For notation simplicity the state space of the actual, the 
nominal and the identified nominal models is indicated by the 
same state ( )kx .  
 
3.4 Illustrative example 
A simple example of a second-order system is considered 
here for illustration purposes.  
The nominal model of the system 0 ( )G z  is: 

          
1

0 01
0 1

0 01

( )
( )

( ) 1

N z b z
G z

D z a z



 


                                     (9) 

The emulator model ( )eG z is:  
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                                 (10) 

where 01 1b  , 01 0.8a  , and  is the emulator parameter, and  

  11N z z     ,   1
D z z    are the perturbation terms.  

The actual model of the system  G z given by (4) becomes: 

        
1 1 1 2

01 1 2
1 1 1 2

01 1 21 1 1

z b z b z b z
G z

z a z a z a z




   

   

 
 

   
             (11) 

where 1 01b b  , 2 01 1b b  , 1 01 0.8a a      , 2 01 0.8a a    . 

The output of the system ( )y z becomes: 
               ( ) ( ) ( ) ( )y z G z u z z                                    (12) 
where 1 0.9b  ; 2 1b  ; 1 1.7a  ; 2 0.72a  .The number of data 

samples is 100N  ; var( ) 0.01  , and the input used was a 
square wave. Ten experiments were performed by varying the 
emulator parameter  in the range 0.1to 1 in equal steps 
of 0.1 .  The perturbed model (7) becomes: 

    1 2 1 2
10 10 01 101 ( ) ( ) ( )j ja z a z y z b z b z u z z             (13) 

where 1 0.1( 1)j     for 1,2,3,...,10j  .  

Fig. 2 shows the thj -output ( )jy k and the optimal estimate 

0ˆ ( )y k  and the identification errors  20

1

ˆ( ) ( )
N

j

k

y k y k


  for the 

proposed scheme and  20

1

ˆ( ) ( )
N

j j

k

y k y k


 for the conventional 

one. The top three subfigures A, and B, and C and D show 
respectively the results of the conventional and the proposed 
identification approaches. The actual outputs (in dotted 
lines), and their optimal estimates (in solid lines) are 
displayed when the chosen emulator parameters are 
respectively 0.99  ,and 0.8  . The bottom subfigure E 
shows the errors in the identification for the proposed and the 
conventional cases.  
 
Comment:The proposed identification based on performing a 
number of emulator parameter perturbed experiments is 
significantly superior to that of the conventional scheme 
based on performing a single experiment at a given operating 
point as shown in Fig. 2. The proposed identified optimal 
model was able to capture the variation in the system model 
significantly better. This constitutes one of the major 

contributions of this paper.  
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Fig.2 Output, optimal estimate and identification errors 

 
4. MODEL OF THE KALMAN FILTER 
 
There are two approaches to estimate an unmeasured 
variable, namely an observer and a Kalman filter. The KF is 
chosen as its performance in the presence of noise and the 
disturbances are superior: the variance of the residual of the 
KF is minimum, the auto correlation of the residual of the KF 
is a zero mean white noise process, which implies the KF has 
captured all the information about the system model and what 
is leftover, namely the residual, is information-less random 
process. These key properties are exploited in developing 
fault tolerant system. If there is an increase in the variance of 
the residual and/or a deviation from the white noise type 
behaviour of the residual, it indicated that there is a fault, a 
variation in the system nominal model  , ,A B C .  

   If there is fault, it is detected, isolated and 
accommodated. On the other hand if there is no fault, 
implying that the there is a variation in the model of the 
system. In this case the Kalman gain 0K is tuned on-line, that 

is KF is an adaptive filter. In the extreme case of variations, 
the system is re-identified to obtain a highly accurate nominal 
using either a hard sensor or some other measurement device. 
However, these model variations are may be infrequent.  
 An observer is a simple estimating device and may 
be used in situations where the signal to noise ratio is large. 
In this case the KF and the observer are essentially the same.  
 
KF-based soft sensor design: The soft sensor provides the 
estimate ˆry  of the un-measurable (inaccessible) variable ry as 

the output of the KF. Fig. 3 shows the interconnection 
between the plant and the KF. The inputs to the KF are the 
control input u  and measured outputs of the plant y . The KF 
contains a copy of the model of the plant, which is driven by 
the residual, an error between the plant output y and its 
estimate ŷ . 0K is the Kalman gain which minimizes the 

covariance of the estimation error e .   
 
 
4.1 Model of the Kalman filter (KF):  
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The model of the KF is given by: 
                

   0 0 0 0 0 0 0

0 0
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where  0 0 0, ,A B C  is the identified nominal model of the 

plant  , ,A B C ,  0 kx  an 1nx  state,  ˆ ky  an 1yn x estimate of 

the plant output  ky , e  the residual, and 0K  the Kalman 

gain which minimizes the covariance of the estimation 
error e . 
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Fig. 3: Kalman filter and plant model driven by the residual 
 
4.2 Residual and model-mismatch 
In (Doraiswami & Cheded, 2012), the relation between the 
residual ˆe y y  and the KF inputs u and y  was shown to be  

                     0

0

( )
( ) ( ) ( )

( )

D z
e z G z u z z

F z
    (15) 

The expression of the residual is employed to ensure high 
performance and stability of the soft sensor . The plant is re-
identified whenever the residual exceeds some threshold. The 
residual will be a zero-mean white noise process if and only 
if there is no model mismatch.  
Comment: The property of the residual (15) is exploited 
judiciously to ensure high performance and stability of the 
soft sensor in the face of model perturbation. The system is 
re-identified whenever the residual exceeds a prescribed 
threshold value. Further, the status of the system is also 
monitored in the process (Doraiswami & Cheded, 2012). 
 
4.3 Augmented model of the plant and the Kalman filter 
Let  , ,pk pk pkA B C denote the state-space model of the 

augmented plant formed of the plant itself  , ,A B C  and the 

KF   0 0 0 0 0, ,A K C B K C relating the input  u k and the 

estimate of the inaccessible output ( )ry k . Let pkG be the 

transfer function of the augmented state-space 
model  , ,pk pk pkA B C , and 0p kG be the transfer function of the 

augmented nominal plant  0 0 0, ,pk pk pkA B C formed of the 

nominal plant  0 0 0, , rA B C and the KF   0 0 0 0, , rA K C B K C . 

 
5. EVALUATION ON A SIMULATED SYSTEM 
The proposed scheme is evaluated on a DC servo motor. DC 
motors are versatile and extensively used in industry. Large 
DC motors are used in machine tools, printing presses, 

conveyors, fans, pumps, hoists, cranes, paper mills, textile 
mills, rolling mills, transit cars, locomotives, and so forth. 
Small DC motors are used primarily as control devices, such 
as servomotors for positioning and tracking. The DC motor 
system has two state variables namely the angular 
velocity ry  , and the armature current y i . It is assumed 

that ry  is inaccessible and y is measured. The objective here 

is to estimate the angular velocity ry of the DC motor using 

the KF which contains a copy of the identified plant model, 
that is driven by the error between the measured plant output 
y and its estimate ŷ , namely by the residual ˆy y  , and 

which generates the desired estimate ˆry of ry . As such, the 

soft sensor is in fact a Kalman filter which estimates the 
angular velocity ry  using the input u to the amplifier of the 

DC motor, and the armature current y i . This current is 
measured using a static sensor which is inexpensive and 
which does not require any maintenance. The KF-based soft 
sensor designed here replaces the otherwise needed hardware 
velocity sensor (e.g. tachometer).  

 
5.1 Off line identification 
During the identification phase, it is assumed that the angular 
velocity ry  is measured (in practice, during the identification 

phase, the angular velocity may be measured using a physical 
tachometer). The plant model uncertainty is assumed to be 
the result of variations in the amplifier gain, the current 
sensor gain, and the tacho-generator gain.  
The plant is identified by performing a number of 
experiments by varying the emulator parameters to mimic 
these variations. The emulator is chosen here to target only 
those model parameters that are likely to vary while in the 
case of the illustrated example(9), an unstructured emulator 
model was employed. Emulators are chosen to be static 
gains : 1,2,3i i  . The gains 1 , 2 and 3 are connected in 

cascade with the amplifier, the current sensor and the velocity 
sensor respectively as shown in Fig. 4.   

1

a asL R
1

m mJ s b

TK

TKAK
u i

w

1 2 3

 
Fig. 4: Identification by varying the emulator parameters 
 
5.2 Identified model of the plant 
The identified nominal state-space model  0 0 0, ,A B C was 

obtained using the subspace method, and the KF-based soft 
sensor was implemented using this identified model. The 
robustness of the soft sensor was evaluated by simulating 
perturbations in the actuator and the sensor by varying 

 0 1 B  B B and  0 1 C  C C respectively. Figure 5 shows 

the tracking performance and the status monitoring of the 
velocity control system. Subfigures A, C and E show 
respectively the   output ry  and its estimate ˆry , while 

subfigures B, D and F show the auto-correlation of the 
residual ˆr ry y  for different operating regimes: nominal, 

actuator perturbation and sensor perturbation.   
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Comments: Note that the estimates of the outputs are 
practically noise-free even though the 2 KF inputs, namely 
the current and control inputs are both noisy. The auto-
correlation function of the residual visually enables us to 
distinguish the normal from abnormal operating conditions 
resulting from plant perturbations. A high system 
performance and stability is ensured by re-identifying the 
plant and re-designing the KF whenever the residual exceeds 
some threshold. This allows for vital tasks of performance 
monitoring and fault diagnosis to be realized, thus developing 
a fault tolerant system.  
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Fig. 5 The velocity, the current and the correlations 

 
 
6.  EVALUATION ON A PHYSICAL SYSTEM 
 
The proposed scheme was evaluated on a laboratory-scale 
physical velocity control system in a similar way to that of 
the simulated system described earlier. The laboratory-scale 
physical DC motor interfaced to a personal computer using 
an analog-to-digital and a digital-to-analog converter, and its 
block diagram representation is similar to that given in Fig.4. 
Fig. 6 shows the actual and estimated current and angular 
velocity plots. The subfigure on the top shows the current and 
its estimate while that on the bottom shows the velocity and 
its estimate.  It can be deduced that the estimate of current 
and the angular velocity given by the KF-based soft sensor 
closely match those sensed by the current sensor and the 
tachometer, respectively.  The noise spikes in the current are 
due to the intermittent break in the electrical contact between 
the rotating commutator and the brush. Note that the noise 
spikes are absent in the soft sensor velocity estimate.  
 
7. CONCLUSION 
In this paper, a proposed KF-based soft sensor was analysed, 
designed and successfully implemented on both a simulated 
and physical velocity control system. The reliable and 
accurate identification scheme of the plant using a number of 
parameter-perturbed experiments was made possible by the 
use of the powerful concept of emulators which were 
employed to mimic likely operating scenarios. This was a key 
aspect of our soft sensor design that ensures high 
performance and robust stability of the soft sensor in the face 

of model uncertainty and variation in the operating 
conditions. Further, as the identified model is reliable, it can 
then readily lead to the development of an effective model-
based fault tolerant system. The KF plays a key role in 
providing a maintenance-free robust soft sensor. 
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Fig.6. Velocity, current, and their estimates 
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