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Abstract: This paper presents a robust tracking controller equipped with a fast friction
estimator for a 6-DOF parallel electrical manipulator in the joint-task space. Parallel manipu-
lator control scheme mainly stems from two frameworks: the task space control and the joint
space control. The former requires the system states obtained via costly direct measurements
or time-consuming forward kinematics. The latter’s performance is subject to the inaccurate
dynamic model. To minimize their weaknesses, the joint-task space framework is constructed
by transforming the dynamics on the task space into the joint space. With this transformation,
the desired positional data are used to calculate the nominal value of dynamics. On the other
hand, the friction property depends on the uncertain load condition due to the spiral drive way
of the electrical cylinders. A fast friction estimator is then designed to estimate the uncertain
friction fast and effectively. The robust control scheme is proposed based on the Lyapunov design
method to guarantee a practical stability under uncertainties such as inertia, modeling errors,
friction, and measurement errors. Experimental results are presented to show the effectiveness
of the proposed scheme.

Keywords: 6 DOF manipulator; Joint-Task space; Robust tracking control; Fast friction
estimation; Electrical cylinder.

1. INTRODUCTION

Parallel robot manipulators are widely used in entertain-
ment and machine tool industries, due to its high power-
to-weight ratios, great system stiffness, rapid responses
and high accuracy (Chen [2013], Kim [2005]). However,
the control of parallel electrical manipulator is challenging
because of its highly nonlinear and complex dynamics,
uncertain load disturbances and forward kinematics prob-
lem (Lebret [1993]). Some advanced control algorithms for
parallel manipulator have been studied to achieve accu-
rate trajectory tracking performance (Kim [2005], Chen
[2013]). However, the feasibility of certain algorithm de-
pends on the frameworks of the control scheme and what
actuators are used in the parallel manipulator.

Parallel manipulator control scheme mainly stems from
two frameworks: the task space control (Kim [2005], Davli-
akos [2008]) and the joint space control (Pi [2010]). The
former is based on the dynamics described by the task
space and needs the real-time states of the moving plat-
form. This information can be obtained via costly direct
measurements or state estimation methods such as for-
ward kinematics. However, the 6-DOF sensors can defi-
nitely bring additional cost. Forward kinematics of 6-DOF
⋆ This work was supported by National High Technology Researc-
hand Development Program of China(863 Program, 2011AA041002)

parallel manipulator can be solved by numerical solution
such as Newton-Raphson method with the information on
actuator lengths (Parikh [2005]), but it can increase the
calculation and communication burden of the computer.
The joint space scheme is designed to make the actu-
al actuator lengths track the desired lengths computed
by an inverse kinematics. This control scheme is much
simple as collection of multiple, independent single-input
single-output(SISO) control systems using the information
on each actuator length only (Pi [2010]). However, the
controller design aiming for a high performance requires
an almost accurate dynamic model of the parallel ma-
nipulator, even if some parameters are not fully known.
Specially, a robust control scheme in the joint space has
been proposed for parallel manipulator based on Lyapunov
redesign method (Kim [2000]). Yet, the uncertainties are
too conservative due to the inclusion of gravity and known
dynamic characteristics. In this article, the control schemes
handle the dynamics represented both in the joint space
and in the task space.

On the other hand, the friction disturbances in electrical
actuator systems cannot be neglected, and always impact
on system performance greatly (Xu [2008], Lu [2009]).
Furthermore, there are uncertainties in the friction proper-
ties, which depend on the load condition, due to electrical
cylinders spiral drive way (Hao [2013]). Friction model-
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ing and compensation have been studied extensively in
other manipulator systems. Unfortunately, these friction
observers are based on joint coordinates and cannot be
directly applied to the parallel mechanism due to its highly
coupled nonlinear dynamics. The Freidland-Park friction
observer in the joint space coordinates has been used to
provide friction estimates that help to improve the con-
trol performance for a 6-DOF parallel manipulator (Kim
[2005]). Yet, the uncertainties in friction estimates are too
conservative due to the conclusion of known equivalent
load of each cylinder and the assumption that the parallel
manipulator is an equivalent SISO system.

In this paper, the control schemes handle the dynamics
represented both in the joint-task space by transforming
the dynamics on the task space into joint space. The
dynamic matrices are modeled as nominal value plus
deviation. In order to reduce calculation amount and
make the Jacobian valid, the desired positional data are
used to calculate the nominal value. Thus the proposed
scheme can manage the dynamics based on both on the
joint space and task space, and the calculation amount
is extremely minimized. In addition, an adaptation law
based on Lyapunov design method is proposed to estimate
the friction. To estimate the uncertain friction fast and
effectively, the projection mapping, which has variable
bounds, is designed to satisfy good robust performance.
With the friction estimates available, the robust joint-task
space control (RJTSC) scheme is proposed based on the
Lyapunov design method to guarantee a practical stabil-
ity under uncertainties such as inertia, modeling error,
friction, and measurement errors. To test the proposed
control scheme, RJTSC with fast friction estimator, robust
joint space control (RJSC) and PID joint space control
(PIDJSC) both with conservative friction estimator are
compared by experimentation. The results show that the
proposed RJTSC has a better performance.

The paper is organized as follows. The kinematics and
dynamics of a 6-DOF manipulator are described in Section
2. Section 3 presents a fast friction estimation method and
the proposed robust joint-task space control strategy and
the accompanying stability analysis are addressed. Friction
property identification method and experiments results are
shown in Section 4.

2. SYSTEM MODEL

2.1 Dynamics of Electrical Cylinder

Each electrical cylinder consists of motor, nut and screw.
The nut is driven by the motor through the electromagnet-
ic torque transforming rotary motion into linear motion.
The force transmissions inside the cylinder are shown in
Fig.1. Te, FL respectively represent the electromagnetic
torque and the load force. The force on the nut includes
two parts: the friction f which is oriented along the move-
ment and the normal force FB which is perpendicular to
the contact surface. Thus, the force equation is given by

2πTe

P
= FL +

√
π2D2 + P 2

P
f. (1)

where P , D respectively represent the lead and the di-
ameter of the nut. Define the ith actuator force ui as

BF

f

LF

eT

Fig. 1. Force transmissions inside the cylinder

ui = 2πTe/P and the equivalent friction ufi as ufi =√
π2D2 + P 2f/P . In the following, u = [ui]

T ∈ R6 de-
notes the actuator forces vector, and uf = [ufi]

T ∈ R6

is an equivalent friction vector for actuators and joints.
In order to simplify the modeling problem, the following
traditional static friction model is used:

Ff (ẏ) = sgn(ẏ)Fc + ẎFv. (2)

where ẏ = [ẏi]
T ∈ R6 is the six link velocity vector.

Ff (ẏ) ∈ R6 is the friction function vector which ap-
proximates the friction curve. Fc ∈ R6 and Fv ∈ R6

respectively represent the Coulomb friction coefficient and
the viscous friction coefficient. The direction and velocity
matrix are defined as sgn(ẏ) = diag{sgn(ẏi)} ∈ R6×6 and

Ẏ = diag{ẏi} ∈ R6×6. With the friction model (2), the
equivalent friction vector can be written as:

uf (ẏ) = Ff (ẏ)− df . (3)

where df is the friction model approximation error vector.
It should be stressed here that the friction coefficients Fc

and Fv are time varying because the force perpendicular to
the contact surface is changing with load force. Obviously,
since the value and the changing rate of the load are all
unknown, the friction coefficients need to be estimated as
fast as possible.

2.2 Dynamics of Parallel Electrical Manipulator

The dynamics and kinematics of a 6-DOF parallel manip-
ulator has been studied extensively. Hence, the dynamic
model is briefly described in this paper. Fig.2 explains
two coordinate systems: the {B} coordinate system is the
inertial coordinate system, the {T} is the body coordinate
system fixed to the top moving platform. The linear mo-
tions denoted as surge (q1), sway (q2), and heave (q3) are
along XB−YB−ZB axis for base coordinate system. The
angular motions labeled as roll (q4), pitch (q5) and yaw
(q6) are XT−YT−ZT Euler angles. The body coordinate
system {T} and the inertial coordinate system {B} are
superimposed in the initial state qi = 0, i = 1, · · · , 6. The
following dynamic model can be derived using the Euler-
Lagrangian method:

M(q, σ)q̈+C(q, q̇, σ)q̇+G(q, σ) = JT (q)(u− uf ). (4)

where M(·) ∈ R6×6 is inertia, C(·) ∈ R6×6 is Coriolis
and centrifugal force. G(·) ∈ R6 is gravitational force,
and J(·) ∈ R6×6 is Jacobian. δ denotes uncertainties, and
q = [qi]

T ∈ R6 is the displacement vector of the top
moving platform. The dynamic model (4) is represented by
the displacement vector q. Furthermore, in Section 3, the
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Fig. 2. Definition of coordinate systems for parallel manip-
ulator

desired positional data are used to calculate the nominal,
and the proposed control is designed to be robust to the
uncertainties.

The dynamic equation on the joint space is derived from
the following property by using the Jacobian matrix J(·).

q̇ = J−1(q)ẏ. (5)

Then the dynamic equation on the joint space can be
constructed as:

M1(q, σ)ÿ +C1(q, q̇, σ)ẏ +G1(q, σ) = u− uf . (6)

where

M1(q, σ) = J−T (q)M(q, σ)J−1(q). (7)

C1(q, q̇, σ)=J−T (q)M(q, σ)J̇−1(q)+J−T(q)C(q, q̇, σ)J̇−1(q). (8)

G1(q, σ) = J−T (q)G(q, σ). (9)

Two assumptions may be summarized as follows:

Assumption 1: The Jacobian is not singular.

Assumption 2: If σ represents uncertainties that include
inertia, modeling error, and measurement noise, σ ∈

∑
,

where
∑

is compact set.

In Lebret [1993], it can be proved that Ṁ − 2C satisfies
the skew symmetric property. For the proof of the skew-
symmetric property of Ṁ1− 2C1, the following Lemma is
introduced which is adopted from Kim [2000].

Lemma 1: The matrix M and M1 are positive definite
and symmetric. The Ṁ− 2C and Ṁ1 − 2C1 satisfy skew-
symmetric property, which means for any vector x ∈ R6,
we have xT (Ṁ− 2C)x = 0 and xT (Ṁ1 − 2C1)x = 0.

3. FAST FRICTION ESTIMATION AND ROBUST
CONTROL DESIGN

3.1 Fast Friction Estimation

Adaptive robust design based on Lyapunov method is used
to construct the friction estimator. The key element of the
adaptive robust design is to use the practical prior process
information to construct projection type adaptation law
for a controlled learning process even in the presence of
disturbances. As in (Xu [2008]), the standard projection
mapping is given to keep the parameter estimates within
the known bounded set. Obviously, the bounds are prior
known constants near the constant parameters. However,

in electrical cylinder, the friction coefficients are time vary-
ing based on the load force. So the constant bounds must
be chosen large enough to cover the extent of the varying
function, this maybe lead to a slow estimation because of
the large searching space. On the other hand, when the es-
timates diverge from the real value a lot, the adaption law
should be redesigned to accelerate the estimating speed.
Meanwhile, the robust performance should still be satis-
fied. Therefore, the projection type adaptation law should
both be sensitive to bounds and have robust performance.
To solve these problems, the projection mapping for time
varying parameters is designed as:

projθ̂(•) =


• θ̂ ∈

◦
Ωθt or nT

θ̂
• ≤ 0

(I − Γ
nθ̂n

T
θ̂

nT
θ̂
Γnθ̂

) • θ̂ ∈ ∂Ωθmax and nT
θ̂
• > 0

•+ εΓa θ̂ ∈
⌣

Ωθt

(10)

where • ∈ Rn is any n-dimension vector and Γ(t) ∈ Rn×n

can be any time-varying positive definite symmetric ma-

trix. In(10),
◦
Ωθt and

⌣

Ωθt denote the interior and the
external of the set Ωθt at time t separated by the time
varying bound ∂Ωθt. ∂Ωθmax denotes the maximum bound
of Ωθt independent of time t. In other words, the pro-
cessing bound ∂Ωθt of Ωθt varies with t and the global
bound ∂Ωθmax is constant. We assume that the mapping
between ∂Ωθt and observable states can be prior designed
according to the required performance. nθ̂ represents the

outward unit normal vector at θ̂ ∈ ∂Ωθmax. ε is a positive
real number and a ∈ Rn is a vector synthesized later.
Throughout the article, θ̂ denotes the estimate of θ, and θ̃
denotes the estimation error, which is defined by θ̃ = θ̂−θ.

Lemma 2: Suppose that the parameter estimate θ̂ is
updated using the following projection type adaptation
law:

˙̂θ = Projθ̂(Γτ). (11)

where τ is the estimation function and Γ = diag{τ1,
τ2, · · · , τn} > 0 is any continuously differentiable positive
symmetric adaptation rate matrix. With this adaptation
structure, the following desirable properties hold:

P1: The parameter estimates are always within the set Ωθ

with the known bound ∂Ωθmax.

P2: θ̃T
[
Γ−1Projθ̂(Γτ)− τ

]
≤ 0

P3: For time varying parameters, if θ̂ ∈
⌣

Ωθt, ∃ε ∈ R, a ∈
Rn such that θ̂ coverage to

◦
Ωθt.

Proof.Case1: If the parameters θi ∈ θ are constant, make
their bounds fixed to the maximum θimin and θimax. Then
according to (Xu [2008]), P1 and P2 can be verified.

Case2: And now we consider the parameters θj ∈ θ are
time-varying. P1 also holds because Ωθt is a subset of Ωθ.

When θ̂j ∈
◦
Ωθt, P2 can be verified as in Case 1. And when

the estimates lie out of Ωθt i.e.θ̂j ∈
⌣

Ωθt, there will be a

hyper plane strongly separating θ̂j and Ωθt. We denote
this hyper plane as Hσ

a , where vector a is the normal of
Hσ

a towards the side of Ωθt and σ is defined as the inner
product of a and any other vector x at the hyper plane,
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i.e., ⟨a, x⟩ = σ. And when θ̂j ∈
⌣

Ωθt the real value θj and

the estimated value θ̂j are separated by the hyper plane,
then we have⟨

a, θ̂j

⟩
≤ σ ≤ ⟨a, θj⟩ ⇒

⟨
a, θ̃j

⟩
≤ 0. (12)

Considering the last line in (10), we have θ̃Tj [Γ
−1Projθ̂j (Γτ)

−τ ] = εθ̃Tj a ≤ 0, ∀τ , which means P2 also holds. For vector
a is the normal of Hσ

a towards the side of Ωθt and ε is a
positive real number without changing the direction of a,
P3 holds.

As a result, the following bounds-varying projection type
on-line adaptation laws are used to estimate the unknown
friction coefficients:

˙̂Fc = Proj{−(ė+S1e)
T sgn(ẏ)Γ1}. (13)

˙̂Fv = Proj{−(ė+S1e)
T ẎΓ2}. (14)

where Γ1,Γ2 > 0 ∈ R6×6 are diagonal matrices.

Remark 1: Here, we assume that the time varying bound
∂Ωθt is known function of observable states. In practice,
the load force can be estimated using the following method
explained in remark 3. Therefore, using the load force
estimate, ∂Ωθt can be calculated by the mapping between
∂Ωθt and the load force. The mapping is designed accord-
ing to the experiments for friction characteristic identifi-
cation in section 4.

3.2 Robust Tracking Control Law

The main focus of this subsection is to design a robust
controller based on the joint-task space coordinates to
guarantee a high tracking control performance in the
presence of uncertainty. The control block diagrams for
RJTSC strategy and another control schemes (RJSC,
PIDJSC) are described in 3.The following assumptions 3
and 4 are made for the robust control design.

Inverse 
Kinematic 
Solution

RJTSC law
6 DOF 
Parallel 

Manipulator

Fast Friction 
EstimatorDesired 

6 DOF State qd +

-

Measured Cylinder Length

Jacobian 
Matrix

Inverse 
Kinematic 
Solution

RJSC/PIDJSC law
6 DOF 
Parallel 

Manipulator

Friction 
EstimatorDesired 

6 DOF State qd +

-

Measured Cylinder Length
(a)

(b)

Fig. 3. Control block diagrams for (a) RJSC and PIDJSC
(b) RJTSC

Assumption 3: There exist positive constants σ and σ̄
such that

σ ≤ M1(q, σ) ≤ σ̄ ∀q ∈ R6 ∀σ ∈
∑

. (15)

Assumption 4: Each matrix in the dynamics (6) can be
represented as nominal with deviation:

M1(q, σ) = M0(qd, 0) + δM1(q, σ). (16)

C1(q, q̇, σ) = C0(qd, q̇d, σ) + δC1(q, q̇, σ). (17)

G1(q, σ) = G0(qd, 0) + δG1(q, σ). (18)

Remark 2: If the measurements or the estimates of
the positional data q contain uncertainties, the control
function with the inverse of JT (·) is no longer valid. In
order to reduce calculation amount and make the Jacobian
valid, the desired positional data qd is used to calculate
the nominal in Assumption 4. In actual operation, the
difference between qd and q is small and bounded, so it is
possible to apply a MIMO robust control scheme. Later in
Section 4, the experimental results show that the estimates
are reasonable.

Remark 3: With the assumption 4 and the friction
estimate, the load force can be estimated

F̂L=M0(qd, 0)ÿ+C0(qd, q̇d, 0)ẏ+G0(qd, 0). (19)

The load force estimate F̂L is chosen to calculate the time
varying bound ∂Ωθt in Lemma 2.

Define the joint displacement tracking error e ∈ R6 and
its derivative ė ∈ R6 as

e = y − yd, ė = ẏ − ẏd. (20)

where yd represent the desired actuator displacement.
Then, the system dynamics (6) with definition of joint
displacement tracking error becomes

M1(q, σ)ë+C1(q, q̇, σ)ė = −M0(qd, 0)ÿd −C0(qd, q̇d, 0)ẏd

−G0(qd, 0) + u− Ff (ẏ) + h1
.(21)

h1(·) = −δM1(q, σ)ÿd − δC1(q, q̇, σ)ẏd − δG1(q, σ) + df . (22)

Theorem 1: Suppose that there exists a bounding func-
tion ρ1(·) that satisfies condition (23). Then, the system
(21) is practically stable if the control law (25) is applied
with the assumptions 1-4.

∥φ(·)∥ ≤ ρ1(·). (23)

where

φ(·) = h1(·) + δM1S1ė+ δC1S1e. (24)

u = u1 + u2. (25)

where

u1 = M0(ÿd − S1ė) +C0(ẏd − S1e)

+G0 + sgn(ẏ)F̂c + ẎF̂v −Kpe−Kvė
. (26)

u2 =

 −
w1

∥w1∥
ρ1(·) if ∥w1∥ ≥ ε1

−
w1

ε1
ρ1(·) if ∥w1∥ < ε1

(27)

where Kp,Kv ∈ R6×6, Kp,Kv are symmetric positive-
definite matrices, S1 = diag(S1i) ∈ R6×6, S1i > 0, Kp +

S1Kv > 0,

[
Kp 0
0 S1Kv

]
> 0, and w1(·) = (ė+S1e)ρ1(·).

Proof.Define Lyapunov function candidate V1 as

V1 =
1

2
(ė+ S1e)

TM1(ė+ S1e)

+
1

2
eT (Kp + S1Kv)e+

1

2
F̃T

c Γ1F̃c +
1

2
F̃T

v Γ2F̃v.
(28)

By assumption 3, the positive definitiveness and decrescent
property of the first two terms of V1 can be proved identical
to the one in Kim [2005]. Considering Γ1,Γ2 > 0 ∈ R6×6,
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the quadratic form 1
2 F̃

T
c Γ1F̃c and 1

2 F̃
T
vΓ2F̃v are non-

negative and decrescent as

λmin(Γ1,Γ2)||F̃||2≤
1

2
F̃T

c Γ1F̃c+
1

2
F̃T

v Γ2F̃v≤λmax(Γ1,Γ2)||F̃||2. (29)

where F̃ = [F̃c, F̃v]
T . By Lemma 2, the estimates error

vector F̃ is bounded as

0 ≤ ||F̃||2 ≤ ||F̃cmax||2 + ||F̃vmax||2 = ||F̃||2max (30)

Therefore, V1 is positive definite and decrescent as

τ1||z1||2 ≤ V1 ≤ τ2||z1||2 + ||F̃||2max (31)

where z1 = [e, ė]T , and the positive coefficients τ1, τ2 are
identical to those in Kim [2005].The derivative of V1 along
the trajectory of the system (21) is given by

V̇1 = (ė+ S1e)
TM1(ë+ S1ė) + (ė+ S1e)

T Ṁ1(ė+ S1e)

+ eT (Kp + S1Kv)ė+ ˙̂F
T

c Γ−1
1 F̃c + ˙̂F

T

v Γ−1
2 F̃v

(32)

According to (13), (14), (25) the skew-symmetric property

on Ṁ1 − 2C1 shown in Lemma 1, and properties of
projection type shown in Lemma 2, it can be seen that

V̇1=(ė+S1e)
T(u2+h1+δC1S1e+δM1S1ė)−eTS1Kpe−ėTKvė

+

[
˙̂F
T

c Γ−1
1 +(ė+S1e)

T sgn(ẏ)

]
F̃c+

[
˙̂F
T

v Γ−1
2 +(ė+S1e)

T Ẏ

]
F̃v

≤ (ė+ S1e)
T (u2 + φ)− λmin(S1Kp,Kv)(||e||2 + ||ė||2)

(33)

The rest of the proof is identical to the one in Kim [2005],
and it can be proved that if ∥w1∥ ≥ ε1 the first term in
(33) becomes

(ė+ S1e)
T (u2 + φ) ≤ 0 (34)

If ∥w1∥ < ε1, those become from (27)

(ė+ S1e)
T (u2 + φ) ≤ ε1

4
(35)

Therefore, V̇1 is bounded by

V̇1 ≤ ε1
4
−λmin(S1Kp,Kv)(||e||2+||ė||2)=−η1||z1||2+

ε1
4
(36)

where η1 := λmin(S1Kp,Kv). Thus, V̇1 < 0 for all

∥z1∥ >
√

ε1
4η1

= Rz. Following (36), we can satisfy

the requirements of the practical stability with uniform
stability (ball size of Rz).

4. EXPERIMENT

4.1 Friction Property Identification

To identify the friction property, the loading system for
single electrical cylinder is setup as shown in Fig.4. The
electrical cylinder is placed vertically and connected to
the platform with ball joint. The electrical cylinder is
controlled by the Kollmorgen motor driver in constant
velocity motions. During the motion, the friction can be
indirectly measured by the difference between the output
force of the motor and the gravity of the weights. The
experiments have been conducted with different weights
and different velocities. Then the off-line friction curve is
carried out as Fig.5, in which the proposed dynamic fiction
model simplified to (2) neglecting low speed condition.
From friction curve, we get the nominal value of the

HOST PC

(AKD WorkBench )

MOTROR 

DRIVER

ELECTRICAL

CYLINDER

BALL

JOINT

PLATFORM

WEIGHTS

Fig. 4. The loading system for single electrical cylinder

friction parameters Fc = (94 + 0.204FL)/N , and Fv =
142.8N · s/m. The estimation parameters are Γ1 = 0.5 · I,
and Γ2 = 10 · I. With remark 3, the time varying bound
∂Ωθt is chosen as [94 + 0.19F̂L, 94 + 0.22F̂L].
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Fig. 5. The off-line friction curve with weigts 23.5-26.5Kg

4.2 System Setup

The control performance of the proposed RJTSC is e-
valuated on a 6-DOF parallel manipulator in Fig.6 via
experiments, which features monitor interface (PC-based
system), control unit (resolving CPU, control CPU and
amplifier) and six electrical cylinders. The control time
for the system is 1.57ms. The parameters of the parallel
manipulator are summarized in Table 1.

PC104

IPX

MONITOR 

INTERFACE
RESOLVING 

CPU

CAN BUS

DSP

CONTROL CPUAMPLIFIER

DA

6-DOF PARALLEL 

ELECTRICAL MANIPULATOR

CONTROL UNIT

Fig. 6. Control system for a 6-DOF parallel manipulator

Table 1. Parameters of parallel manipulator
Parameter Description Value Unit
lminlmax Min/Max. Length 0.65/0.95 m

m Mass of Top 25.0 Kg
IxxIyyIzz Inertia of Top 0.45,0.49,0.71 Kgm2

RBRT Radius of Bottom/Top 0.35/0.24 m

The off-line forward kinematic solution is used to esti-
mate the 6 DOF states. The measured cylinder lengths
are compared to the inverse kinematic solution based on
the estimates from the off-line Newton-Raphson numeri-
cal method.The results show less than 0.001mm2, which
confirms that the tracking errors can be defined as the
difference between the desired states and the off-line esti-
mates in the following subsection.
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4.3 Comparative Experimental Results

The performance of the proposed RJTSC with fast fric-
tion estimator is presented in this subsection through
the dynamic friction model and off-line estimates of 6-
DOF states obtained in the previous subsections. RJSC
and PIDJSC both with conservative friction estimator are
applied as fair benchmarking controllers. The PIDJSC
gains Kp, Ki, Kd are experimentally tuned to be 100, 10,
and 5, respectively. The control gains for the RJTSC and
RJSC are Kp = 1.5 · I, Kv = 0.1 · I, S1 = 10 · I and
ε1 = 2.0. Although the RJTSC gains seem much smaller
than those of PIDJSC, it should be noted that the RJTSC
calculates the desired force from the nominal gain matri-
ces, while the PIDJSC produces just control input to the
position error. Fig.10-11 show tracking errors under sinu-
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Fig. 7. The rotational tracking errors

soidal inputs along six directions: roll (7.0◦/0.3Hz), pitch
(5.0◦/0.4Hz), yaw (6.0◦/0.2Hz), surge (0.05m/0.2Hz),
sway (0.05m/0.3Hz), heave (0.04m/0.2Hz) motions. As
shown in these figures, the tracking errors of the RJSC
and PIDJSC appear periodical trend with inputs and have
the rotational error bounds within ±0.3◦ and translation
error bounds within ±2mm. By contrast, the rotational
error bounds of the RJTSC are bounded within ±0.1◦ and
the translation error bounds are bounded below ±0.7mm.
The excellent control performance by the RJTSC stems
from its joint-task based designs and fast friction estima-
tion. In other words, the RJTSC cancels the nonlinearities
including the inertia force for a given acceleration, the
gravitational force, the Coriolis and centrifugal forces and
uncertain frictions.

5. CONCLUSION

This paper studies the robust tracking control problem of
a 6-DOF electrical parallel manipulator. A robust control
algorithm on the proposed joint-task space frameworks is
designed. With such a control structre, the model accuracy
can be guaranteed and the calculation amount is reduced
simultaneously. By using prior knowlege of friction proper-
ty related to the load condition, a fast friction estimator is
presented to estimate the uncertain friction due to electri-
cal cylinders spiral drive way. Friction property identifica-
tion and comparative experiments are carried out and the

0 1 2 3 4 5 6 7 8 9 10

-1

0

1

E
rr
o
r 
S
u
rg
e
 /
m
m
.

 

 

RJSC PIDJSC RJTSC

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

E
rr
o
r 
S
w
a
y
 /
m
m
.

 

 

RJSC PIDJSC RJTSC

0 1 2 3 4 5 6 7 8 9 10

-1

0

1

Time /s

E
rr
o
r 
H
e
a
v
e
 /
m
m
.

 

 

RJSC PIDJSC RJTSC

Fig. 8. The translation tracking errors

performance demonstrate the effectiveness of the proposed
approach. The proposed methodology can be applied in
almost all parallel systems with uncertain frictions.
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