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Abstract: We develop a positive observer for general (i.e. non necessarily positive) linear time
varying systems, in both the continuous and discrete time cases. A nice feature of the approach
is that no change of coordinates is needed. The observer size is twice the size of the observed
system and it is stable whenever the observed system is stable. The design is based on a stable
internally positive representation of linear systems that is also an original contribution of the
paper. This positive observer can be used to develop interval observers and controllers for
systems with several kinds of uncertainties.

1. INTRODUCTION

The problem of designing positive estimates of the state of
a dynamical system arises in two different but related areas
of investigation. In the first place, this problem has been
considered in the context of positive system. In this case
the goal is to provide nonnegative estimates of nonnegative
states (see for example Ait Rami et al. [2011], Back and
Astolfi [2008], Härdin and Van Schuppen [2007], Shu et al.
[2008], Van der Hof [1998] and the references therein). The
motivation lies in the fact that only nonnegative quantities
have physical meaning in the state estimation and control
problems of positive systems. A recent area where the
problem of positive estimation has also been considered
is that of interval observers. A large number of works
has been recently devoted to the design of observer that
provide an estimate expressed by means of upper and lower
bounds to the evolution of the state, in presence of several
kinds of uncertainties, for example state or measurement
disturbances, parametric uncertainties, unknown delays
and so on (see for example Ait Rami et al. [2013], Efimov et
al. [2013a,b,c], Gouze et al. [2000], Mazenc and Bernard
[2011], Moisan et al. [2009], Räıssi et al. [2012]). In this
case, it is interesting to provide an estimate of the state
estimate of general (not necessarily positive) systems that
satisfies to a positivity constraints on the estimation error,
since this allows to express inequalities between the system
and the estimates and to exploit the property of trajectory
ordering that positive systems possess.

In this paper we consider the problem of providing an
estimate of non (necessarily) positive systems by means of
an observer with nonnegative state. The estimate, which
in general is obviously nonpositive, is obtained as a linear
combination of the nonnegative state of the observer. Of
course, this approach may solve both problems outlined
above: it can be applied to positive systems, providing
a nonnegative estimate of nonnegative states, and to
non positive systems to exploit the properties of positive
systems in the design of interval observers.

The key tool underlying our approach is that of Internally
Positive Representation (IPR) of linear systems, first pro-

posed in Germani et al. [2010]. The idea was originally
applied to the positive realization problem, when the sys-
tem must be realized using only positive operations (i.e.
no difference is allowed). In this setting, the main problem
is to preserve the stability of the original system. In the
context of state estimation algorithms, to the contrary, we
can design observers that perform any operation as long
as the state is nonnegative. In this paper we show that
this added flexibility allows to design stable IPRs of any
linear system, and in particular to build positive observers
of nonpositive systems.

2. INTERNALLY POSITIVE REPRESENTATION OF
LTV SYSTEM

2.1 Notation

Let R+ and C+ denote the set of nonnegative reals and
the set of complex numbers with nonnegative real parts,
respectively. R− and C− denote the sets of nonpositive
reals and of complex numbers with nonpositive real parts.
<(z) and =(z) denote the real and imaginary part of a
complex z respectively. σ(A) denotes the spectrum of a
square matrix A. A is a Hurwitz matrix if <(σ(A)) ⊂
(R−\{0}) and is a Schur matrix if |σ(A)| is inside the
unit disk in C. Throughout this paper the inequalities
and the min and max operators on vectors and matrices
must be understood component-wise: given two matrices
A = (aij) and B = (bij) of the same dimensions, A ≥ B
is equivalent to aij ≥ bij , and max(A,B) is the matrix
where each entry is max(aij , bij). M ≥ 0 denotes a matrix
composed by nonnegative elements (mij ≥ 0). |M | denotes
the matrix where each entry is |mij |. A � 0 (A � 0) denote
that A is positive definite (positive semi-definite). A � B
(A � B) denote that A − B is positive definite (positive
semi-definite).

2.2 Positive representation of vectors and matrices

Given a matrix (or vector) M , the symbols M+ and M−

denote its positive and negative parts, defined as

M+ = max(M, 0), M− = max(−M, 0). (1)
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M+ contains the positive entries of M and 0 elsewhere,
whereas M− contains the absolute value of the nega-
tive entries of M and 0 elsewhere. As a consequence,
M = M+ −M− and |M | = M+ + M−. In denotes the
identity matrix in Rn. The following matrices will be used
throughout the paper:

∆n = [In − In], In =

[
In
In

]
. (2)

Note that ∆nIn = 0. The following definitions were
originally introduced in Germani et al. [2010], Cacace et
al. [2012a].

Definition 1. A positive representation of a vector x ∈ Rn
is a positive vector X ∈ R2n

+ such that

x = ∆nX. (3)

The min-positive representation of a vector x ∈ Rn is the
positive vector π(x) ∈ R2n

+ defined as

π(x) =

[
x+

x−

]
. (4)

The min-positive representation of a matrix M ∈ Rm×n is

the positive matrix M̃ ∈ R2m×2n
+ defined as

M̃ =

[
M+ M−

M− M+

]
. (5)

Note that x+ and x− are orthogonal, and therefore ‖x‖ =
‖π(x)‖. Moreover

x = ∆n π(x), and ∆mM̃ = M∆n = [M, −M ], (6)

for any x ∈ Rn and M ∈ Rm×n. From these equalities,

∆mM̃ π(x) = M x, ∀x ∈ Rn, M ∈ Rm×n. (7)

For any given v ∈ Rn+, the vector π(x) + In v is a positive

representation of x ∈ Rn, because (recall that ∆nIn = 0)

x = ∆n

(
π(x) + In v

)
. (8)

Definition 2. A matrix M is said to be Metzler if all its
off-diagonal elements are nonnegative.

Given a square matrix M ∈ Rn×n we define its Metzler
representation [M ] ∈ R2n×2n as

[M ] =

[
dM + (M − dM )+ (M − dM )−

(M − dM )− dM + (M − dM )+

]
. (9)

where dM denotes the matrix having the same diagonal as
M and 0 elsewhere. It is easy to check that [M ] is Metzler
and that it enjoys the same property (6) of the positive
representation, that is,

∆n[M ] = M∆n, so that ∆n[M ]π(x) = M x. (10)

2.3 Positive systems

Consider a continuous-time linear time variant system ΣL

ΣL :

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)

x(0) =x0,

(11)

with x(t) ∈ Rn, u(t) ∈ Rp, y(t) ∈ Rq, and therefore
A(t) ∈ Rn×n, B(t) ∈ Rn×p, C(t) ∈ Rq×n.

The system (11) is said to be internally positive if for any
given nonnegative initial condition x0 ∈ R+ and input
function u(t) ≥ 0 the corresponding state and output

trajectories are nonnegative, i.e. x(t) ∈ Rn+ and y(t) ∈ Rq+,
for all t ≥ 0.

A sufficient condition for ΣL to be internally positive is
the following (see Farina and Rinaldi [2011]).

Theorem 3. If A(t) is Metzler, B(t) ≥ 0 and C(t) ≥ 0 for
all t ≥ 0, then the system (11) is internally positive.

Proof. The trajectory x(t) is continuous and initially pos-
itive. Its components are bounded to be positive, because if
one component becomes null, xi(t) = 0, with A(t) Metzler
and nonnegative forcing terms it is necessarily ẋi(t) ≥ 0.
2

Positive systems have the notable property to be ordered
with respect to initial conditions and forcing inputs. The
following result is well known.

Theorem 4. Consider a system ΣL (11) where A(t) is
Metzler and B(t) ≥ 0. Let x1(t) denote the state trajectory
corresponding to the initial state x01 and input u1(t).
Similarly, let x2(t) denote the trajectory corresponding
to x02 and u2(t). If x01 ≤ x02 and u1(t) ≤ u2(t), then
x1(t) ≤ x2(t) ∀t ≥ 0.

Proof. Consider the differences ξ(t) = x2(t) − x1(t) and
ν(t) = u2(t) − u1(t). These obey the differential equation

ξ̇(t) = A(t)ξ(t) +B(t)ν(t). Being ξ(0) ≥ 0 and ν(t) ≥ 0 by
assumption, according to Theorem 3 we have ξ(t) ≥ 0 for
all t ≥ 0, i.e. x1(t) ≤ x2(t). 2

2.4 Internally positive representations (IPRs)

Internally Positive Representations (IPRs) of LTI systems
have been defined and investigated in Germani et al.
[2010], Cacace et al. [2012a] for discrete-time systems, and
in Cacace et al. [2012b, 2014] for continuous-time systems.
In this section we extend these results to LTV systems.

An IPR of system ΣL (11) is an internally positive system,
endowed with four transformations (forward and backward

state transformations T fX , T bX , input and output transfor-
mations TU and TY , see Cacace et al. [2012b]), that provide
the same state and output trajectories of the system (11).
An IPR of (11) is such that when its positive initial state

is computed as X(0) = T fX(x(0)), and its positive input
as U(t) = TU (u(t)), ∀t ≥ 0, then the state and output
trajectories (X(t), Y (t)) of the IPR are positive and such
that x(t) = T bX

(
X(t)

)
and y(t) = TY

(
Y (t)

)
, t ≥ 0 (see

Cacace et al. [2012b] for more details).

In general, any system admits infinite IPRs. In this paper
we use the following IPR.

I :

Ẋ(t) = [A(t)]X(t) + B̃(t)U(t)

Y (t) = C̃(t)X(t)

T fX = π(x), TU = π(u),

T bX = ∆nX, TY = ∆qY,

(12)

where X(t) ∈ R2n
+ , U(t) ∈ R2p

+ , Y (t) ∈ R2q
+ . [A(t)] ∈

R2n×2n is the Metzler representation of A(t) defined

by (9), B̃(t) and C̃(t) are the positive representations
of B(t) and C(t) defined by (5). The forward state-

transformations T fX = π(x) and the input transformation
TU = π(u) in (12) are used to compute the initial state
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X(0) = π
(
x(0)

)
and the input U(t) = π

(
u(t)

)
of the V-

IPR, thus ensuring positivity.

Theorem 5. System I defined in (12) is an IPR of system
ΣL defined in (11).

Proof. To prove the theorem we have to show that x(t) =
∆nX(t) and y(t) = ∆qY (t). The first equality implies the

second one, since ∆qY (t) = ∆qC̃(t)X(t) = C(t)∆nX(t),
see (6). Let z(t) = ∆nX(t), z(t) ∈ Rn. Therefore

ż(t) = ∆n[A(t)]X(t) + ∆nB̃(t)U(t)

= A(t)z(t) +B(t)u(t), (13)

z(0) = ∆nX(0) = x(0), (14)

and it follows that z(t) = x(t).2

In other words, I (12) is a positive system with state

and output evolving in R2n
+ and R2q

+ , respectively, whose
projections onto Rn and Rq, defined by ∆n and ∆q, give
back the state and output of the original system ΣL (11),
that in general is not positive.

Due to the larger state space, the stability of ΣL does not
imply the stability of I. In the case of LTI systems, when
A is Hurwitz, [A] is not necessarily Hurwitz. In Cacace et
al. [2014] it is shown how IPRs of size larger than 2n can
be constructed to attain the same stability properties of
the starting system. We do not pursue that approach in
this paper. Some results about the stability of the IPR I
of LTI systems via a coordinate change that transforms
A in the Real Jordan Form are contained in Cacace et
al. [2012b]. When A is not in Real Jordan Form sufficient
conditions for the stability of I in the general case are not
known.

3. THE POSITIVE OBSERVER

The idea behind the positive observer is to design a stan-
dard observer for the linear system ΣL. We can subse-
quently construct an IPR of the kind (12) for this observer.
The resulting positive system will behave, when projected
onto Rn, as an observer of ΣL. The approach is quite
straightforward, but unfortunately, for the reasons ex-
plained in the previous section, the IPR could be unstable
even when the original system is stable. In other words,
the projection onto Rn of the IPR is necessarily stable
and it yields an estimation error which is asymptotically
stable, but the state of the IPR could diverge thus the
algorithm cannot be implemented in practice. An original
contribution of this work is to provide a modified version of
(12) which has the same stability properties as the original
system.

Before introducing the positive observer, we therefore
provide a stable IPR of a stable ΣL (11). For the sake of
concision we state the result for the autonomous case, but
its extension to u(t) 6= 0 is immediate. Given X(t) ∈ R2n,
we denote by X1(t) = [In0n]X(t), X2(t) = [0nIn]X(t) the
first and last n components of X(t).

Theorem 6. Given system ΣL in (11), suppose that u(t) ≡
0, ΣL is asymptotically stable and ‖A(t)‖ ≤ c. Therefore
there exists κ ≥ 0 such that the following is an asymptot-
ically stable IPR of ΣL.

Is :
Ẋ(t) = [A(t)]X(t)− κInfX(t)

Y (t) = C̃(t)X(t)
(15)

with X(0) = π(x(0)), x(t) = ∆nX(t), y(t) = ∆qY (t), and
fX(t) = min(X1(t), X2(t)).

Proof. Notice that the input, state, and output transfor-
mations of (15) are the same as in (12), but (15) contains
a (nonlinear) forcing term obtained as the component-wise
minimum between the first n and the last n components
of X(t). Since ∆nIn = 0, using the same approach as
in the proof of Theorem 5 we have x(t) = ∆nX(t), thus
(15) satisfies one necessary condition to be an IPR of
ΣL. We still have to prove that X(t) is nonnegative and
asymptotically stable. Since x(t) = ∆nX(t) is equivalent
to x(t) = X1(t)−X2(t), from

X1(t) ≥ fX(t) ≥ X1(t)− |x(t)| (16)

X2(t) ≥ fX(t) ≥ X2(t)− |x(t)|, (17)

we have fX(t) = X1(t) − |x(t)| + r1(t), fX(t) = X2(t) −
|x(t)|+ r2(t) with r1(t) ≥ 0, r1(t) ≥ 0. Moreover, |x(t)| ≥
r1(t) and |x(t)| ≥ r2(t). Consequently, we can write (15)
as

Ẋ(t) = ([A(t)]− κI2n) X(t) + κ

[
|x(t)| − r1(t)
|x(t)| − r2(t)

]
. (18)

It is now easy to conclude that, since [A(t)] − κI2n is
Metzler for all t ≥ 0 and the forcing term is positive,
X(t) ≥ 0, and (15) is an IPR. In order to show that
this IPR is also asymptotically stable, since by hypothesis
x(t)→ 0 and thus the forcing term vanishes, it is sufficient
to show that the autonomous equation

Ẋ(t) = ([A(t)]− κI2n)X(t) (19)

with A(t) bounded in norm and κ arbitrarily chosen is
asymptotically stable. c > ‖A(t)‖ implies that there exists
c̄ > ‖[A(t)]‖. Choose the Lyapunov function V (t) =
XT (t)X(t),

V̇ (t) = 2XT (t)([A(t)]− κI2n)X(t)

≤ 2‖[A(t)]‖‖X(t)‖2 − 2κ‖X(t)‖2

≤ 2(c̄− κ)‖X(t)‖2 (20)

Therefore, with κ > c̄ (15) is asymptotically stable.. 2

Remark 7. System (15) is actually a nonlinear system due
to the presence of the min(.) function, but its projection
on Rn through ∆n obeys the linear equation in (11). The
idea underlying the forcing term added in (15) is to force to
0 the “minimum common” part of X1(t) and X2(t), since
their difference is already stable. In other words, X(t) in
(15) is forced to exponentially tend to the min-positive
representation of x(t).

Remark 8. Notice the IPR (15) is in the original coordi-
nate. No coordinate change is needed to make the system
positive and stable. This is a remarkable difference with
the positive representation approaches proposed so far.

Theorem 5 paves the way to design a positive observer.
It is only necessary to use a stabilizing gain for a stan-
dard linear observer, which is always possible under the
usual observability conditions. A stable IPR (15) can be
subsequently derived.

Assumption 1. System ΣL in (11) is uniformly com-
pletely observable (Bucy [1967], Jazwinski [1970]), that
is, there exist positive scalars α, β, δ such that its state
transition function Φ(t1, t2) satisfies for all t ≥ 0,
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αIn ≤
∫ t+δ

t

Φ(τ, t+ δ)TCT (τ)C(τ)Φ(τ, t+ δ)dτ ≤ βIn.

(21)

Theorem 9. If system ΣL in (11) satisfies Assumption 1
and ‖A(t)‖ ≤ c then there exists κ ≥ 0 such that for any
x̂(0), the system

ΩL :

Ẋ(t) = [A(t)−K(t)C(t)]X(t) + B̃(t)π(u(t))

+ K̃(t)π(y(t))− κInfX(t),

x̂(t) = ∆nX(t), X(0) = π(x̂(0))

Ṗ (t) = (A(t)−K(t)C(t))P (t)

+ P (t) (A(t)−K(t)C(t))
T

+Q(t),
(22)

with K(t) = P (t)CT (t), fX(t) = min(X1(t), X2(t)), P (0)
and Q(t) symmetric positive definite, is such that X(t) is
nonnegative and bounded when x(t) is bounded. Moreover,
x̂(t) is an asymptotic observer for ΣL, i.e. limt→∞ ‖x(t)−
x̂(t)‖ = 0.

Proof. Using (10) and x̂(t) = ∆nX(t) it is immediate to
see that x̂(t) obeys the equation

˙̂x(t) =∆nẊ(t) = (A(t)−K(t)C(t)) x̂(t)

+B(t)u(t) +K(t)y(t)

= A(t)x̂(t) +B(t)u(t) +K(t) (y(t)− ŷ(t)) , (23)

and it is therefore the standard asymptotic observer of ΣL.
Denoting AK(t) = [A(t)−K(t)C(t)] the Metzler represen-
tation of A(t)−K(t)C(t) and using the same inequalities
as in Theorem 6, the equation for X(t) becomes

Ẋ(t) = (AK(t)− κI2n)X(t) + κπ(∆X(t))

+ B̃(t)π(u(t)) + K̃(t)π(y(t)) (24)

where we have used the property X(t) = InfX(t) +
π(∆X(t)), which is easy to verify. Since AK(t) − κI2n is
Metzler and the remaining terms are positive, it follows
that X(t) ≥ 0. In order to prove that (24) is bounded
when x(t) is bounded it is sufficient to prove that there is
a choice of κ for which the autonomous equation

Ẋ(t) = (AK(t)− κI2n)X(t) + κπ(∆X(t)) (25)

is asymptotically stable. With the change of coordinates
Z(t) = MX(t),

M =

[
In In
In −In

]
, M−1 =

1

2

[
In In
In −In

]
(26)

(25) becomes

Ż(t) =

[∣∣A(t)−K(t)C(t)
∣∣− κIn κIn

0 A(t)−K(t)C(t)

]
Z(t)

(27)
Due to the uniform observability hypothesis, the second
block

Ż2(t) =
(
A(t)−K(t)C(t)

)
Z2(t) (28)

is asymptotically stable. Moreover, P (t) admits upper and
lower bounds of the kind pmIn ≤ P (t) ≤ pMIn, and K(t)
is bounded in norm. The same holds for A(t)−K(t)C(t).
It is therefore possible to determine c̄ > ‖A(t)−K(t)C(t)‖
for all t. Following a simple Lyapunov proof as in Theorem
6, it is immediate to conclude that with κ > c̄ the first
block is also asymptotically stable. 2

Remark 10. The assumption of uniform complete observ-
ability is not restrictive, since it is needed to design a
generic (i.e. non positive) observer. Theorem 9 states that,

with an appropriate choice of κ, ΣL and ΩL have the same
stability properties.

Remark 11. Notice that a variable κ(t) can be used in
Theorem 9 as long as it satisfies the requirement that the
solution of (27) is asymptotically stable.

In the LTI case the choice of the forcing gain κ is straight-
forward.

Theorem 12. Let system ΣL in (11) be time-invariant,
A(t) = A, B(t) = B, C(t) = C, with (A,C) an observable
pair. If K is such that A −KC is Hurwitz, and if κ ≥ µ,
where µ = max(<(σ([A − KC]))), the system (22) has a
solution X(t) ≥ 0 that is bounded if x(t) is bounded, and
such that the error ε(t) = x(t)−∆nX(t) is exponentially
stable for any x̂(0).

4. THE CASE OF TIME-DISCRETE SYSTEMS

A positive observer for time-discrete systems can be de-
signed in the same way as in the time-continuous case by
using the appropriate IPR. The only difference is that the
positive representation of A is used in the place of the
Metzler representation. In the time-discrete case it is easier
to achieve stable IPRs. Instead of using an additional
forcing term, the min-positive representation replaces the
state of the IPR at each time step. In this section we
provide the equivalent of Theorem 5, 6 and 9 for the time-
discrete case.

Consider the linear time-varying system ΣD

ΣD :

x(t+ 1) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)

x(0) =x0.

(29)

The following IPR of ΣD was defined in Germani et al.
[2010]

ID :

X(t+ 1) = Ã(t)X(t) + B̃(t)U(t)

Y (t) = C̃(t)X(t)

T fX = π(x), TU = π(u),

T bX = ∆nX, TY = ∆qY,

(30)

Theorem 13. System ID defined in (30) is an IPR of
system ΣD defined in (29).

Proof. To prove the theorem we have to show that x(t) =
∆nX(t) and y(t) = ∆qY (t). As we know, the first equality
implies the second one, see (6). Let z(t) = ∆nX(t),
z(t) ∈ Rn. Therefore

z(t+ 1) = ∆nÃ(t)X(t) + ∆nB̃(t)(t)U(t)

= A(t)z(t) +B(t)u(t), (31)

z(0) = ∆nX(0) = x(0), (32)

and it follows that z(t) = x(t).2

In analogy with the time-continuous case, it is easy to show
that stability of ΣD does not imply stability of ID. The
problem is investigated in Germani et al. [2010], Cacace et
al. [2012a]. The time-discrete equivalent of Theorem 6 is
the following.

Theorem 14. Given system ΣD in (29), suppose that
u(t) ≡ 0 and ΣD is asymptotically stable. Then, the
following is an asymptotically stable IPR of ΣD.
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IDs :

ξ(t) = Ã(t)X(t)

X(t+ 1) = π(∆nξ(t))

Y (t) = C̃(t)X(t)

(33)

with X(0) = π(x(0)), x(t) = ∆nX(t), y(t) = ∆qY (t).

Proof. Notice that the input, state, and output transfor-
mations of (33) are the same as in (30), but (33) contains
a nonlinear equation in that X(t) is obtained as the min-
positive representation of ∆nξ(t). From (31) follows that
∆nX(t) = Ax(t − 1), t > 0, thus x(t) = ∆nX(t), and
(33) satisfies one necessary condition to be an IPR of ΣD.
Moreover, X(t) is a min-positive representation and it is
therefore nonnegative. Since x(t) is asymptotically stable,
asymptotic stability of X(t) is easily proved by showing
that X(t) = π(x(t)). This is true for t = 0, and, by
induction,

X(t+ 1) = π(∆nξ(t)) = π(∆nÃ(t)X(t))

= π(A(t)x(t)) = π(x(t+ 1)). 2 (34)

Assumption 2. System ΣD in (29) is uniformly com-
pletely observable (Bucy [1967], Jazwinski [1970]), that
is, there exist positive scalars α, β, N such that its state
transition function Φ(i, k) satisfies for all i ≥ N ,

αIn ≤
i∑

j=i−N
ΦT (j, i)CT (j)C(j)Φ(j, i) ≤ βIn. (35)

Theorem 15. If system ΣD in (29) satisfies Assumption 2
then for any x̂(0), the system ΩD,

ξ(t) = ÃK(t)X(t) + B̃(t)π(u(t))

+ K̃(t)π(y(t))

X(t+ 1) = π(∆nξ(t))

x̂(t) = ∆nX(t), X(0) = π(x̂(0))

P (t+ 1) = AK(t)P (t)AK(t)T

−K(t)C(t)P (t)AK(t)T +Q(t),

K(t) = AK(t)P (t)C(t)T
(
C(t)P (t)C(t)T +R(t)

)−1
(36)

with AK(t) = A(t) − K(t)C(t) and ÃK(t) its positive
representation, Q(t), R(t) symmetric positive semidefinite
matrices to be chosen, is such that X(t) ≥ 0 is stable if
x(t) is stable and x̂(t) is an asymptotic observer for ΣD,
i.e. limt→∞ ‖x(t)− x̂(t)‖ = 0.

Proof. Using (6) and x̂(t) = ∆nX(t) we see that, since
∆nπ(v) = v, x̂(t) obeys the equation

x̂(t+ 1) =∆nX(t+ 1) = ∆n

(
ÃK(t)X(t)

+B̃(t)π(u(t)) + K̃(t)π(y(t))
)

= A(t)x̂(t) +B(t)u(t) +K(t) (y(t)− C(t)x̂(t)) ,
(37)

and in the hypotheses of the theorem it is therefore an
asymptotic observer for ΣD. X(t) is positive by construc-
tion. As in Theorem 14 we have X(t) = π(x̂(t)), and since
limt→∞ ‖x(t) − x̂(t)‖ = 0, X(t) is stable whenever x(t) is
stable. 2

5. EXAMPLE

In this section we consider an academic example to illus-
trate the basic features of the proposed approach. Consider
the LTV system ΣL in (11) of size n = 2 where

A(t) =

[
−1/2 + sin(t/2) 1 + sin(t)
−1− sin(t)/2 cos(4t)

]
, B(t) =

[
−6
1

]
,

C(t) = [1 + cos(t) 2 + sin(t)] , u(t) = sin(t/2)− 1.

This system is stable and its trajectories are shown in Fig.
1 for x(0) = [10, −20]T . In the same figure the plots of
x̂(t) from (22) with Q(t) = I2 are plotted, and, as it
could be expected, the observer convergence to the true
state is very fast. The parameter κ = 5 has been used in
(22) in order to have a stable IPR. The time course of
X1(t) and X3(t) is shown in Fig. 2 (left). Since X(t) ∈ R4,
x̂(t) = ∆2X(t) = [X1(t)−X3(t), X2(t)−X4(t)], thus the
difference X1(t)−X3(t) corresponds to x̂1(t). Notice that
both components are positive and stable. The necessity of
stabilizing the IPR is shown in Fig. 2 (right), where κ has
been set to 0. In both cases the difference X1(t)−X3(t) is
x̂1(t), the estimate of x1(t). Notice that in the right-hand
plot the difference is too small to be visible, but with κ = 0
the extended state X(t) is not stable.

6. CONCLUSION

In this paper we have extended the IPR proposed in pre-
vious papers. The extension introduced is quite straight-
forward but it allows to to derive a stable positive repre-
sentation of linear systems. from which positive observers
can be designed under the same observability conditions of
linear observers. Future work will focus on the use of this
positive observer to design interval observer for systems
with different kinds of uncertainties.
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Zolghadri. Interval Observers for Time-Varying
Discrete-Time Systems. IEEE Trans on Autom.
Contr., (to appear, published on-line 2013,
http://dx.doi.org/10.1109/TAC.2013.2263936).

L. Farina, and S. Rinaldi. Positive linear systems – Theory
and applications. John Wiley & Sons, 2011.

A. Germani, C. Manes, and P. Palumbo. Representation
of a Class of MIMO Systems via Internally Positive
Realization. Europ. Jour. of Control, 16(3): 291–304,
2010.

J.L. Gouze, A. Rapaport, and Z.M. Hadj-Sadok. Interval
observers for Uncertain Biological Systems. Journal of
Ecological Modeling, 133(1-2): 45-56, 2000.
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