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Abstract: Design methodologies of adaptive H∞ consensus control of multi-agent systems
composed of a class of infinite-dimensional systems are provided in this paper. The proposed
control schemes are derived as solutions of certain H∞ control problems, where the effects of
neglected infinite-dimensional modes and the imperfect knowledge of the leader are regarded
as external disturbances to the process. It is shown that the resulting control systems are
robust to uncertain system parameters and that the desirable consensus tracking is achieved
approximately via adaptation schemes.

1. INTRODUCTION

Among plenty of cooperative control problems of multi-
agent systems, distributed consensus tracking of multi-
agent systems with limited communication networks, has
been a basic and important topic, and various research
results have been reported for various processes and under
various conditions such as Kingston et al. [2005], Olfati-
Saber et al. [2007], Ren et al. [2007], Cao and Ren [2011]. In
those research works, adaptive control or sliding mode con-
trol methodologies were also applied in order to deal with
uncertainties of agents, and stability of control systems
was assured via Lyapunov function analysis. Furthermore,
robustness properties of the control schemes were also
discussed. However, those results are restricted to simple
and low-order systems, or finite-dimensional mechanical
systems, and those approaches do not have been applied to
the control of infinite-dimensional (or high-order) systems
via finite-dimensional (or low-order) compensators.

On the contrary, there have been several researches in
the fields of adaptive control for infinite-dimensional sys-
tems (Miyasato and Kitamori [1985], Kobayashi [1988],
Miyasato [1990], Orlov [1997], Böhm et al. [1998], Krstić
[1999], Hong and Bentsman [1994], Ilchmann et al. [2002],
Krstić et al. [2006]). In our previous work (Miyasato
[2006]), we developed design methods of adaptive control
for distributed parameter systems of parabolic type via
finite-dimensional controllers. In the proposed method-
ologies, stabilizing control signals are added to regulate
the effects of infinite-dimensional modes, and those are
derived as a solution of certain H∞ control problem where
the effect of infinite-dimensional modes are regarded as
external disturbances to the processes.

The purpose of the present paper is to apply our previous
result (Miyasato [2006]) to the consensus tracking prob-
lems, and present design methods of adaptive consensus
control of multi-agent systems composed of distributed
parameter systems of parabolic type (a class of infinite-
dimensional systems) with finite-dimensional inputs and
outputs. The proposed control strategy is composed of

finite dimensional compensators, and is derived as a so-
lution of certain H∞ control problem, where the effects
of neglected infinite-dimensional modes and the imperfect
knowledge of the leader are regarded as external distur-
bances to the processes. It is shown that the resulting
control systems are robust to uncertain system parameters
and neglected infinite-dimensional modes, and that the
desirable consensus tracking is achieved approximately
via adaptation schemes. This is also an extension of the
work (Miyasato [2013]) to distributed parameter systems
of parabolic type.

2. MULTI-AGENT SYSTEM AND INFORMATION
NETWORK

First, mathematical preliminaries on information network
graph of multi-agent systems are summarized (Ren et al.
[2007], Cao and Ren [2011]). We consider a weighted
undirected graph G = (V, E , A) as a model of interaction
among agents. V = {1, · · · , N} is a node set, which
corresponds to a set of agents, and E ⊆ V × V is an edge
set. An edge (i, j) ∈ E indicates that the agent i and j
can communicate with each other. Associated with E , we
introduce a weighted adjacency matrix A = [aij ] ∈ RN×N ,
and the entry aij of it is defined such as aij = aji >
0 (when (i, j) ∈ E) and aij = aji = 0 (otherwise). A
path is a sequence of edges in the form (i1, i2), (i2, i3), · · ·
(ij ∈ V), and the undirected graph is called connected, if
there is always an undirected path between every pair of
distinct nodes. For the adjacency matrix A = [aij ], the
Laplacian matrix L = [lij ] ∈ RN×N is defined by lii =∑N

j = 1

j 6= i

aij and lij = −aij (i 6= j). The Laplacian matrix

is symmetric and positive-semidefinite, and furthermore,
has a simple 0 eigenvalue with the associated eigenvector
1 = [1 · · · 1]T, and all other eigenvalues are positive, if the
corresponding undirected graph is connected.

In this manuscript, we consider a consensus control prob-
lem of leader-follower type, and y0 is a leader which each
agent i ∈ V (a follower) should follow. For the leader
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and the followers, ai0 is defined such as ai0 > 0 (when
leader’s information is available to follower i), and ai0 = 0
(otherwise), and from ai0 and L, the matrix M ∈ RN×N

is defined by M = L + diag (a10 · · · aN0). M is symmetric
and positive definite, if 1. at least one ai0 (1 ≤ i ≤ N) is
positive, and 2. the graph G is connected (Cao and Ren
[2011]). Hereafter, we assume those assumptions 1 and 2.

3. PROBLEM STATEMENT

We consider a multi-agent system composed of distributed
parameter systems (DPS) of parabolic type. Let Ωi be a
bounded open domain in a finite dimensional Euclidian
space, and L2(Ωi) is defined as the Hilbert space of all
square integrable functions with the inner product

(ui, vi) =
∫
Ωi

ui(xi)vi(xi)dxi. (1)

We consider a single-input, single-output distributed pa-
rameter system of parabolic type in L2(Ωi) (Kobayashi
[1987], Kobayashi [1988]) described by

d

dt
ui(t) = Aiui(t) + gifi(t), (2)

yi(t) = (ci, ui(t)) ≡ Ciui(t), (3)

(i = 1, · · · , N),
where ui(t) (∈ L2(Ωi)) is a state, fi(t) (an input) and
yi(t) (an output) are scalar functions on t ∈ [0, ∞),
gi (∈ L2(Ωi)) is an input influence function, and ci (∈
L2(Ωi)) is a sensor influence function. The operator Ai is
a self-adjoint operator bounded from above with compact
resolvent whose eigenvalues λij

∞ > γ ≥ −λi1 > −λi2 > · · · , ( lim
j→∞

λij = ∞), (4)

are assumed to be simple. The normalized eigenfunctions
of Ai are denoted by φij such that

Aiφij = −λijφij , (j = 1, 2, · · ·). (5)
The set φij (j = 1, 2, · · ·) forms a complete orthonormal
system in L2(Ωi). Then, Ai generates a strongly continu-
ous semigroup written as

Ui(t) ·= exp(Ait) · =
∞∑

j=1

e−λijt( ·, φij)φij , (6)

and a unique solution for the system (2) is described as
follows:

ui(t) = Ui(t)ui0 +

t∫
0

Ui(t − τ)gifi(τ)dτ, (7)

where ui0 = ui(0).

For the controlled process (2), (3), only the input fi(t)
and the output yi(t) are assumed to be available for
measurement, but the state ui(t) and system parameters
included in Ai, gi, ci are unknown.

The control objective is to design an adaptive consensus
control system for a swarm of infinite-dimensional systems
(2), (3) in which consensus tracking is achieved via adapta-
tion schemes such that yi → yj , yi → y0, (i, j = 1, · · · , N).

Throughout this paper, the index i corresponds to each
agent, and i = 1, · · · , N .

4. SYSTEM REPRESENTATION

In the present section, we derive an input-output repre-
sentation of the process (2), (3). First, let λ̃iN (> 0) be a
given damping constant. We take an integer Ni such that

0 < λ̃iN < λNi+1, (8)

and define orthogonal projection operators PiN , QiN by

PiN ·=
Ni∑
j=1

( ·, φij)φij , (9)

QiN ·= (I − PiN ) · =
∞∑

j=Ni+1

( ·, φij)φij . (10)

Then, ui(t) and yi(t) in (2), (3) are expressed as follows:

ui(t) = PiNui(t) + QiNui(t) ≡ uiN (t) + ũiN (t), (11)

yi(t) = Ci{uiN (t) + ũiN (t)} ≡ yiN (t) + ỹiN (t), (12)

Ci · ≡ (ci, · ). (13)

The controlled process (2), (3) is decomposed into two
subsystems [Si1] and [Si2] described in the following equa-
tions:

[Si1]

d

dt
ūiN (t) = ĀiN ūiN (t) + ḡiNfi(t), (14)

yiN (t) = C̄iN ūiN (t), (15)

ūiN (0) = [(ui0, φi1), (ui0, φi2), · · · , (ui0, φiNi)]
T, (16)

uiN (t) = ūiN (t)T[φi1, φi2, · · · , φiNi ]
T, (17)

ĀiN = diag (−λi1, −λi2, · · · , −λiNi) (∈ RNi×Ni), (18)

ḡiN = [gi1, gi2, · · · , giNi ]
T (∈ RNi), gij = (gi, φij), (19)

C̄iN = [ci1, ci2, · · · , ciNi ] (∈ R1×Ni), cij = (ci, φij),(20)

ūiN (t) ∈ RNi . (21)

[Si2]

d

dt
ũiN (t) = ÃiN ũiN (t) + g̃iNfi(t), (22)

ỹiN (t) = C̃iN ũiN (t), (23)

ũiN (0) = QiNui0, (24)

ÃiN = AiQiN , (25)

g̃iN = QiNgi, (26)

C̃iN = CiQiN , (27)

ũiN (t) ∈ L2(Ωi). (28)

[Si1] is a finite dimensional system (Ni dimension), and its
solution is written as follows:

ūiN (t) = ŪiN (t)ūiN (0) +

t∫
0

ŪiN (t − τ)ḡiNfi(τ)dτ, (29)

ŪiN (t) = exp(ĀiN t) = diag(e−λi1t, e−λi2t, · · · , e−λiNi
t).

(30)

On the other hand, [Si2] is an infinite dimensional system
and its solution is given by
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ũiN (t) = ŨN (t)ũiN (0) +

t∫
0

ŨiN (t − τ)g̃iNfi(τ)dτ, (31)

ŨiN (t) · = exp(ÃiN t) · =
∞∑

j=Ni+1

e−λijt( ·, φij)φij . (32)

ŪiN (t) and ŨiN (t) are evaluated in the following:

‖ŪiN (t)‖RNi ≤ e−λi1t, (33)

‖ŨiN (t)‖L2(Ωi) ≤ e−λ̃iN t. (34)

The next assumption is introduced for [Si1].

Assumption 1. The subsystem [Si1] (C̄iN , ĀiN , ḡiN ) (Ni

dimension) is completely controllable and observable, that
is

cij 6= 0, gij 6= 0, (1 ≤ j ≤ Ni). (35)

Then, on Assumption 1, we can construct a finite dimen-
sional observer for [Si1], and it is denoted by [S

′

i1].

[S
′

i1]

d

dt
ˆ̄uiN (t) = F̄iN ˆ̄uiN (t) + ḡiNfi(t) + K̄iNyiN (t), (36)

yiN (t) = C̄iN ūiN (t), (37)

ŷiN (t) = C̄iN ˆ̄uiN (t), (38)
ˆ̄uiN (0) = ˆ̄uiN0 (∈ RNi), (39)

where F̄iN (∈ RNi×Ni) is a stable matrix defined by

F̄iN = ĀiN − K̄iN C̄iN , (40)
and K̄iN (∈ RNi×1) is an observer gain matrix selected
properly. Since F̄iN is stable, the following relation holds.

‖ūiN (t) − ˆ̄uiN (t)‖RNi , |yiN (t) − ŷiN (t)|
∼ ‖ exp(F̄iN t)‖RNi → 0. (41)

Here we introduce the following signal fif (t)

d

dt
fif (t) =−λi0fif (t) + fi(t), (42)

where λi0 is a positive constant. Then, we derive the input-
output representation of the process (2), (3) from the
subsystems [S

′

i1] and [Si2] in the following:

d

dt
yi(t) =

d

dt
yiN (t) +

d

dt
ỹiN (t)

=
d

dt
ŷiN (t) +

d

dt
ỹiN (t) + εi(t)

= C̄iN F̄iN ˆ̄uiN (t) + C̄iN ḡiNfi(t) + C̄iNK̄iNyiN (t)

+C̃iN ÃiN ũiN (t) + C̃iN g̃iNfi(t) + ε(t)

= C̄iN F̄iN (F̄iN + λi0I)

t∫
0

{exp F̄iN (t − τ)}ḡiNfif (τ)dτ

+C̄iN F̄iN

t∫
0

{exp F̄iN (t − τ)}K̄iNyiN (τ)dτ

+C̄iN F̄iN ḡiNfif (t) + C̄iNK̄iNyiN (t)

+C̃iN ÃiN ũiN (t) + Cigifi(t) + εi(t), (43)

where the integration by parts is taken by utilizing (42).
The term εi(t) is a linear combination of decaying ex-
ponentials and is determined by the initial conditions of
the process (2), (3), the subsystem [S

′

i1] and fif (t); it is
evaluated as follows:

|εi(t)| ∼ ‖ exp(F̄iN t)‖RNi , e−λi0t → 0. (44)

Hereafter, all exponentially decaying terms are denoted by
εi in the manuscript. The substitution of the next relation

yiN = yi(t) − ỹiN (t), (45)

into (43) yields

d

dt
yi(t)

= C̄iN F̄iN (F̄iN + λi0I)

t∫
0

{exp F̄iN (t − τ)}ḡiNfif (τ)dτ

+C̄iN F̄iN

t∫
0

{exp F̄iN (t − τ)}K̄iNyi(τ)dτ

+C̄iN F̄iN ḡiNfif (t) + C̄iNK̄iNyi(t)

+C̄iN F̄iN

t∫
0

{exp F̄iN (t − τ)}K̄iN{−ỹiN (τ)}dτ

+C̄iN{−KiN ỹiN (t)} + C̃iN ÃiN ũiN (t)

+Cigifi(t) + εi(t). (46)

Here we introduce the following finite-dimensional (Ni

dimension) state variable filters.
d

dt
v̄i1(t) = F̄iN0v̄i1(t) + ḡi0fif (t),

d

dt
v̄i2(t) = F̄iN0v̄i2(t) + ḡi0yi(t),

(47)

where (F̄iN0, ḡi0) (F̄iN0 ∈ RNi×Ni , ḡi0 ∈ RNi) is a con-
trollable pair, and F̄iN0 is chosen such that the following
equality holds.

det(sI − F̄iN ) = det(sI − F̄iN0). (48)

For any stable F̄iN0 (∈ RNi×Ni), there exists K̄iN satis-
fying (48), since (C̄iN , ĀiN ) is observable. Then, owing to
controllability of (F̄iN0, ḡi0), the following relation holds
for properly selected θi1, θi2 (∈ RNi) (Ioannou and Sun
[1996]).

C̄iN F̄iN (F̄iN + λ0I)

t∫
0

{exp F̄iN (t − τ)}ḡiNfif (τ)dτ

+C̄iN F̄iN

t∫
0

{exp F̄iN (t − τ)}K̄iNyi(τ)dτ

= θT
i1v̄i1(t) + θT

i2v̄i2(t) + εi(t). (49)

By considering (49), (46) is rewritten into

d

dt
yi(t) = θT

i1v̄i1(t) + θT
i2v̄i2(t) + θi3fif (t) + θi4yi(t)

+θi0fi(t) + δi(t) + εi(t), (50)
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θi3 = C̄iN F̄iN ḡiN , (51)

θi4 = C̄iNK̄iN , (52)

θi0 = Cigi, (53)

δi(t) = C̄iN F̄iN

t∫
0

{exp F̄iN (t − τ)}K̄iN{−ỹiN (τ)}dτ

+C̄iN{−KiN ỹiN (t)} + C̃iN ÃiN ũiN (t). (54)
The input-output representation of the controlled process
is given by (50), and it is composed of two parts, that
is; θT

i1v̄i1(t) + θT
i2v̄i2(t) + θi3fif (t) + θi4yi(t) + θi0fi(t), and

δi(t). The former half is constructed by finite dimensional
systems (47), and is considered as a primal part of the
process. On the contrary, the latter half δi(t) is derived
from the infinite dimensional system [Si2], and is dealt
with as a residual part.

In the rest of this section, the residual term δi(t) is to be
evaluated. First, we define the next state variable filters
whose dimensions are all one.

d

dt
wi1(t) = −λ̃iNwi1(t) + |fif (t)|,

d

dt
wi2(t) = −λifwi2(t) + wi1(t),

d

dt
wi3(t) = −λifwi3(t) + |fif (t)|,

(55)

where λif is chosen such that the following relation holds.

‖ exp(F̄iN t)‖ ≤ MiF e−λif t,

‖ exp(F̄iN0t)‖ ≤ MiF0 e−λif t, (56)

(0 < MiF , MiF0 < ∞).
In order to evaluate δi(t) in (50), it is assumed that
the sensor influence function ci and the input influence
function gi are smooth in the following meaning.

Assumption 2. The following relations hold.
∞∑

j=1

|λk
ijcijgij | < ∞ (k = 1, 2),

∞∑
j=1

λ2
ijc

2
ij < ∞. (57)

Then, δi(t) in (50) is evaluated as follows:

Lemma 3. On Assumption 2, δi(t) is evaluated from
above as follows:

|δi(t)| ≤ giδ(t)Tdiδ + |εi(t)|, (58)

giδ = [ |fif (t)|, wi1(t), wi2(t), wi3(t) ]T , (59)

diδ = [ Mi1, Mi2, Mi3, Mi4 ]T , (60)

0 < Mi1 ∼ Mi4 < ∞,

εi(t) ∼ e−λ̃iN t, e−λif t, e−λi0t → 0.

(Proof) See Miyasato [2006].

Remark 4. In this manuscript, the Ni dimensional state
variable filters (47) are utilized as finite dimensional con-
trollers. On the contrary, δi(t) corresponds to a spill-over
term which is not considered fully in the conventional
controller designs of DPS.

Hereafter, the input-output representation of each agent
is written in the following form.

d

dt
yi(t) = ΘT

i ωi(t) + θi0fi(t) + δi(t) + εi(t), (61)

Θi =
[
θT

i1, θT
i2, θi3, θi4

]T
, (62)

ωi(t) =
[
vi1(t)T, vi2(t)T, fif (t), yi(t)

]T
. (63)

5. ADAPTIVE H∞ CONSENSUS CONTROL

5.1 Assumptions

By utilizing the system representations in the previous
section, the proposed adaptive H∞ consensus control
schemes are constructed via finite dimensional controllers.
The next assumptions are introduced.

Assumption 5. θi0 6= 0, and sgn θi0 is known. In the
following, it is assumed that θi0 > 0 without loss of
generality.

Assumption 6. There exist Mif0 and Mif1 such that

|fif (t)| ≤ Mif0 + Mif1 sup
0≤τ≤t

{|yi(τ)||} ,

(0 ≤ Mif0 < ∞, 0 < Mif1 < ∞). (64)
Remark 7. Assumption 5 states that the relative degree
of the process is one, and Assumption 6 asserts that the
process has a stable inverse.

5.2 Control Law and Error Equation

The communication structure among agents and a leader
is prescribed by the information network graph G with
the adjacency matrix A, the Laplacian matrix L, and the
matrix M . Associated with the information network graph
G, we employ the following control law.

fi(t) = p̂i(t)

−Θ̂i(t)Tωi(t) − α

N∑
j = 0

j 6= i

aij{yi(t) − yj(t)}

+ni0ẏ0(t)] + vi(t)

≡ p̂i(t)fi0(t) + vi(t), (65)
where aij (1 ≤ i ≤ N, 0 ≤ j ≤ N) is defined as the entry of
the adjacency matrix A and ai0. (̂·) is denoted as a current
estimate of (·), and pi is defined by

pi = 1/θi0. (66)
Concerned with ai0, ni0 is defined as follows:

ni0 =
{

1 : ai0 > 0,
0 : otherwise. (67)

Furthermore, vi is a stabilizing signal to be determined
later based on H∞ control criterion. A tracking error
between the leader y0 and the follower yi is defined by

ỹi(t) ≡ yi(t) − y0(t), (68)
and the substitution of (65) and (68) into (61) yields the
total representation of the multi-agent system
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˙̃y(t) = Ω(t){Θ − Θ̂(t)} + F0(t)Θ0{p̂(t) − p} − α M ỹ(t)

+Θ0v(t) + δ(t) + (N0 − 1)ẏ0(t) + ε(t), (69)

ỹ = [ỹ1, · · · , ỹN ]T, (70)

Ω = block diag (ωT
1 , · · · , ωT

N ), (71)

Θ = [ΘT
1 , · · · , ΘT

N ]T, (72)

F0 = diag (f10, · · · , fN0), (73)

Θ0 = diag (θ10, · · · , θN0), (74)

p = [p1, · · · , pN ]T, (75)

N0 = [n10, · · · , nN0]T, (76)

1 = [1, · · · , 1]T, (77)

v = [v1, · · · , vN ]T, (78)

δ = [δ1, · · · , δN ]T, (79)

ε = [ε1, · · · , εN ]T. (80)

5.3 Adaptive H∞ Consensus Control

A positive function W is defined by

W (t) =
1
2
ỹ(t)T M ỹ(t)

+
1
2

{
Θ̂(t) − Θ

}T

Γ−1
1

{
Θ̂(t) − Θ

}
+

1
2
{p̂(t) − p}T Θ0 Γ−1

2 {p̂(t) − p}

+
1
2

{
θ̂0(t) − θ0

}T

Γ−1
3

{
θ̂0(t) − θ0

}
, (81)

(Γ1 = ΓT
1 > 0, Γ2 = ΓT

2 > 0, Γ3 = ΓT
3 > 0),

where Γ2 is especially chosen as a diagonal matrix, and θ0

is defined as follows:

θ0 = [θ10, · · · , θN0]T. (82)

The tuning laws of Θ̂, p̂, θ̂0 are determined by
˙̂Θ(t) = Pr

{
Γ1Ω(t)T M ỹ(t)

}
,

˙̂p(t) = Pr
{
−Γ2F0(t)T M ỹ(t)

}
,

˙̂
θ0(t) = Pr

{
Γ3V (t)T M ỹ(t)

}
,

(83)

V = diag (v1, · · · , vN ), (84)

where Pr(·) are projection operations in which tuning
parameters Θ̂, p̂ and θ̂0 are constrained to bounded regions
deduced from upper-bounds of ‖Θ‖ and upper-bounds and
lower-bounds of each element of p and θ0, respectively
(Ioannou and Sun [1996]). Then, the time derivative of
W along its trajectory is given as follows:

Ẇ (t)≤−α ỹ(t)T M2 ỹ(t) + ỹ(t)T M Θ̂0(t)v(t)

+ỹ(t)T M {(N0 − 1)ẏ0(t) + ε(t)}
+ỹ(t)T M δ(t). (85)

From the evaluation of Ẇ (85), we introduce the next
virtual system,

˙̃y = f + g11d1 + g12d2 + g2v, (86)

f = −α Mỹ, (87)

g11 = Gδ, g12 = I,

Gδ = block diag (gT
δ1, · · · , gT

δN ),

g2 = Θ̂0, (88)

d1 =

 dδ1

...
dδN

 , d2 = (N0 − 1) ẏ0 + ε, (89)

where d1, d2 are regarded as external disturbances to the
process. Especially, d1 is related to the neglected infinite-
dimensional modes, and d2 corresponds to the imperfect
knowledge of the leader. We are to stabilize the virtual
system via a control input v by utilizing H∞ criterion
for those external disturbances d1, d2 (Krstić and Deng
[1998], Miyasato [2000]). For that purpose, we introduce
the following Hamilton-Jacobi-Isaacs (HJI) equation and
its solution W0.

LfW0 +
1
4

{
2∑

i=1

‖Lg1iW0‖2

γ2
i

− (Lg2W0)R−1(Lg2W0)T
}

+q = 0, (90)

W0 =
1
2
ỹT M ỹ, (91)

where q and R are a positive function and a positive
definite matrix respectively, and those are derived from
HJI equation based on inverse optimality (Krstić and Deng
[1998], Miyasato [2000]) for the given solution W0 and the
positive constants γ1, γ2. By substituting the solution W0

(91) into HJI equation (90), R and q are obtained such as

R =

(
Θ̂−1

0 GδG
T
δ Θ̂−T

0

γ2
1

+
Θ̂−1

0 Θ̂−T
0

γ2
3

+ K

)−1

, (92)

q = αỹT M2 ỹ +
1
4
ỹT M Θ̂0KΘ̂T

0 M ỹ, (93)

where K is a diagonal positive definite matrix (a design
parameter). From R, v is derived as a solution of the
corresponding H∞ control problem as follows:

v =−1
2
R−1(Lg2W0)T = −1

2
R−1Θ̂T

0 M ỹ, (94)

where the entries of Θ̂0 are constructed from the elements
of θ̂0 (83). Then, the time derivative of W is evaluated by

Ẇ ≤ −q − vTRv

+
(

v +
1
2
R−1Θ̂T

0 M ỹ

)T

R

(
v +

1
2
R−1Θ̂T

0 M ỹ

)

+γ2
1‖d1‖2 − γ2

1

N∑
i=1

∥∥∥∥∥∥dδi −

∣∣∣∑N
j=1 mij ỹj

∣∣∣ gδi

2γ2
1

∥∥∥∥∥∥
2

+γ2
2‖d2‖2 − γ2

2

N∑
i=1

|d2i| −

∣∣∣∑N
j=1 mij ỹj

∣∣∣
2γ2

2

2

, (95)

M = [mij ] ∈ RN×N , (96)

d2 = (N0 − 1) ẏ0 + ε = [d21, · · · , d2N ]T, (97)
and the next theorems are obtained.

Theorem 8. In the adaptive control system (65), (83),
(94), the stabilizing signal v is a sub-optimal control input
minimizing the upper bound on the cost functional J .
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J(t)≡ sup
d1,d2∈L2

 t∫
0

{q + vTRv}dτ + W (t)

−
2∑

i=1

γ2
i

t∫
0

‖di‖2dτ

 . (98)

Also we have the next inequality.
t∫

0

{q + vTRv}dτ + W (t) ≤
2∑

i=1

γ2
i

t∫
0

‖di‖2dτ + W (0).(99)

Theorem 9. The adaptive control system (65), (83), (94)
is uniformly bounded, and if (N0 − 1) ẏ0 = 0 (that is;
ẏ0(t) = 0 or the information of the leader ẏ0 is available
for all followers), then it follows that

lim
T→∞

sup
1
T

T∫
0

‖ỹ(t)‖2dt ≤ const · γ2
1 . (100)

Otherwise, if (N0 − 1) ẏ0 6= 0 (that is; ẏ0(t) 6= 0 and the
information of ẏ0 is not available for all followers), then
the next relation holds.

lim
T→∞

sup
1
T

T∫
0

‖ỹ(t)‖2dt ≤ const · (γ2
1 + γ2

2). (101)

Remark 10. Theorem 9 states that the approximate con-
sensus tracking with the ratio of γ1 or

√
γ2
1 + γ2

2 , is
achieved according to the availability of ẏ0 or the value
of ẏ0. Furthermore, the adaptive control scheme is con-
structed via Mỹ and local informations of each agents,
and can be implemented in a distributed fashion.

6. CONCLUDING REMARKS

Design methodologies of adaptive H∞ consensus control
of multi-agent systems composed of a class of infinite-
dimensional systems have been provided in the present
paper. The proposed control strategy is composed of finite
dimensional compensators, and is derived as a solution of
certain H∞ control problem, where the effects of neglected
infinite-dimensional modes and the imperfect knowledge
of the leader are regarded as external disturbances to the
process. It is shown that the resulting control systems
are robust to uncertain system parameters and neglected
infinite-dimensional modes, and that the desirable con-
sensus tracking is achieved approximately via adaptation
schemes. The proposed method would provide a basic
and useful strategy to deal with the coordinate control
of certain large-scale complicated processes.
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M. Krstić. On global stabilization of burgers’ equation
by boundary control. Systems and Control Letters, 37:
123–141, 1999.
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