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Abstract: The paper addresses the disturbance decoupling problem for MIMO discrete-
time nonlinear systems. A sufficient conditions are derived to solve the problem by dynamic
measurement feedback, i.e. the feedback that depends on measurable outputs only. The solution
to the disturbance decoupling problem, described in this paper, is based on the input-output
linearization, which is used to linearize certain functions. Two examples are added to illustrate
the results.

1. INTRODUCTION

The disturbance decoupling problem (DDP) is one of the
fundamental problems in control theory. There are a lot
of papers, that solve the problem by state feedback, see
Aranda-Bricaire and Kotta [2001, 2004], Fliegner and Ni-
jmeijer [1994], Grizzle [1985], Monaco and Normand-Cyrot
[1984] for nonlinear discrete-time systems and Conte et al.
[2007], Isidori [1995], Nijmeijer and van der Schaft [1990]
for nonlinear continuous-time systems. For output or mea-
surement feedback, the problem lacks the full solution.

The first paper that applied measurement feedback to
solve the DDP was Isidori et al. [1981], where sufficient
solvability conditions were given for continuous-time sys-
tems, and the feedback that was used was restricted to
the so-called pure dynamic measurement feedback. In
Kaldmäe et al. [2013], similar results as in Isidori et al.
[1981] were given for discrete-time systems (though, more
general feedback was used), using algebraic approach (lat-
tice theory), that is able to address also certain type
of non-smooth systems. A more general feedback, where
the state of the compensator is not a function of the
state of the system, but can be chosen independently of
it, was used in Xia and Moog [1999] and Kaldmäe and
Kotta [2012b], where sufficient conditions for the solv-
ability of the problem by dynamic measurement feedback
were given for continuous- and discrete-time SISO systems,
respectively. For static measurement feedback solutions see
Pothin et al. [2002] and Kaldmäe and Kotta [2012a].

In this paper, we extend the results of Kaldmäe and Kotta
[2012b] for MIMO discrete-time systems 1 . However, the
extension is not direct since we relax certain integrability
conditions. The result of this paper depends heavily on
the solution of the input-output linearization problem,
see Kaldmäe and Kotta [2014]. We show that a feedback

⋆ This work was supported by the European Union through the
European Regional Development Fund, by the ETF grant nr. 8787
and by the Estonian Research Council, personal research funding
grant PUT481.
1 Note that there are no solutions for MIMO continuous-time
systems.

that linearizes certain functions also solves the disturbance
decoupling problem. It is our conjecture that our results
can be generalized directly for continuous-time systems,
though the computations are different because the differ-
ential operator and forward-shift operator act differently
on the set of functions.

2. PRELIMINARIES

2.1 Algebraic tools

In this paper, x stands for x(t) and for k ≥ 1, x[k] stands
for kth-step forward time shift of x, defined by x[k] := x(t+
k). Similar notations are used for the backward shift and
the other variables.

Consider a nonlinear system, described by the equations

x[1] = f(x, u, w)

y = h∗(x) (1)

z = h(x),

where x ∈ X ⊂ Rn is the state, u ∈ U ⊂ Rm is the
controlled input, w ∈ W ⊂ Rι is the disturbance input,
y ⊂ Y ∈ Rp is the controlled output and z ⊂ Z ∈ Rq is the
measured output. It is assumed that the functions f , h∗
and h are meromorphic. Also, we assume, that the system
(1) is submersive, meaning that generically, i.e. everywhere
except on a set of measure zero,

rank
[ ∂f

∂(x(t), u(t))

]
= n. (2)

Also, throughout the paper it is assumed that i = 1, . . . , p.

Let K denote the field of meromorphic functions which
depend on finite number of variables from the set
{x, u[k], w[k]; k ≥ 0}. Introduce the forward-shift operator
δ : K → K, defined by the equations (1); in particular

δx := f(x, u, w)

and for k ≥ 0, δu[k] := u[k+1], δw[k] := w[k+1]. Moreover,
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δφ(x, u, w, . . . , u[k], w[s]) :=

φ(f(x, u, w), u[1], w[1], . . . , u[k+1], w[s+1])

for φ ∈ K. Under the submersivity assumption (2), the
pair (K, δ) is a difference field. In general, this difference
field is not inversive, i.e. the operator δ is not inversive
in K. However, one can always find an overfield K∗ of K,
called the inversive closure of K, which is inversive. See
Aranda-Bricaire et al. [1996], Aranda-Bricaire and Kotta
[2004] for details how to compute K∗. From now on, we
assume that difference field (K, δ) is inversive and denote
it by K. Note that then there exists an operator δ−1, which
is called backward-shift operator. By δk and δ−k we denote
the k-fold application of operators δ and δ−1, respectively.

Define the vector space of one-forms as E = spanK{dφ |
φ ∈ K}. Also, define X := spanK{dx},W := spanK{dw[k],
k ≥ 0}. The operators δ and δ−1 are extended to E by the
rules

δ
(∑

j

ajdφj

)
=
∑
j

δ(aj)d(δφj)

δ−1
(∑

j

ajdφj

)
=
∑
j

δ−1(aj)d(δ
−1φj),

where aj , φj ∈ K. A one-form ω is called exact, if it is a
differential of some function ξ ∈ K, i.e ω = dξ. Let y =
(y1, . . . , yp) be the controlled output vector of the system
(1). The relative degree ri of an output yi with respect to

input u is defined by ri := min{k ∈ N | dy[k]i /∈ X +W}.
If there does not exist such integer k, then set ri := ∞.

In general, a one-form ω is a linear combination over
K of finite number of standard basis elements of E , i.e.
{dx,du[k], dw[k]; k ≥ 0}. However, it is often possible to
find a linearly independent set of exact one-forms with
less elements than those basis elements of E in terms of
which ω can be expressed.

Definition 1. A number γ ∈ N is called the rank of a one-
form ω, if γ is minimal number of linearly independent
exact one-forms necessary to express a one-form ω. The
set of these exact one-forms is called the basis of ω.

Next we define two subspaces Ω and Ωu of X in the
following way:

Ω= {ω ∈ X | ∀k ∈ N : (3)

δkω ∈ spanK{dx, dy
[ri]
i , . . . , dy

[ri+k−1]
i }}.

and

Ωu = {ω ∈ X | ∀k ∈ N : δkω ∈ spanK{dx,du, (4)

. . . , du[k−1], dy
[ri]
i , . . . , dy

[ri+k−1]
i }}.

By definitions, Ω ⊆ Ωu. For SISO systems Ω = Ωu, since
du can be written as a linear combination of dx and dy[r],
where r is the relative degree of output y with respect to
input u.

Following lemmas give procedures for computing sub-
spaces Ω and Ωu.

Lemma 1. Kaldmäe and Kotta [2012a] The subspace Ω
may be computed as the limit of the following algorithm:

Ω0 =X (5)

Ωk+1 = {ω ∈ Ωk | δω ∈ Ωk + spanK{dy
[ri]
i }}.

Lemma 2. The subspace Ωu may be computed as the limit
of the following algorithm:

Ω0 =X (6)

Ωk+1 = {ω ∈ Ωk | δω ∈ Ωk + spanK{du,dy
[ri]
i }}.

Suppose Ω = spanK{dθ1, . . . , dθs}. Next define the k-
time forward-shift of subspace Ω elementwise by Ω[k] =

spanK{dθ
[k]
1 , . . . , dθ

[k]
s } for k ≥ 1.

2.2 Problem statement

The DDP by measurement feedback can be stated as
follows. Find a dynamic measurement feedback of the form

η[1] = F (η, z, v) (7)

u=H(η, z, v),

where η ∈ Rρ and v ∈ Rm, such that controlled outputs yi
of the closed-loop system do not depend on disturbance w
at any time instant, i.e.

dy
[k]
i ∈ spanK{dx,dη} k < r̃i

dy
[k]
i ∈ spanK{dx,dη, dv, . . . , dv[k−r̃i]} k ≥ r̃i,

where r̃i is the relative degree of output yi of the closed
loop system with respect to u.

Lemma 3. If the relative degrees ri of outputs yi with
respect to u are finite then system (1) is disturbance
decoupled if and only if

dy
[ri]
i ∈ Ωu + spanK{du}. (8)

Proof: Necessity. Since ri is the relative degree of output
yi with respect to input u,

dy
[ri]
i = ω0 +

m∑
j=1

bi,jduj ,

where bi,j ∈ K and ω0 ∈ spanK{dx}. We show that
ω0 ∈ Ωu. Assume contrary that ω0 /∈ Ωu. Then there exists
k ∈ N such that

δkω0 /∈ spanK{dx,du, . . . , du[k−1]}.
This means that one-form ω0 is not disturbance decoupled
and thus yi also is not disturbance decoupled. This is a
contradiction and thus ω0 ∈ Ωu.

Sufficiency. If (8) is true, then by Lemma 2 Ω
[1]
u ⊆

Ωu + spanK{du}. Thus, Ωu is invariant with respect to
the system dynamics and since dy ∈ Ωu, the system is
disturbance decoupled.

3. MAIN RESULTS

3.1 Input-output linearization

Since our solution of the DDP depends on the solution
of the input-output (i/o) linearization problem, we start
with the statement of the i/o linearization problem. For
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more information, see Kaldmäe and Kotta [2014]. In this
section, let l = 1, . . . , q.

Consider a discrete-time multi-input multi-output (MIMO)
nonlinear system, described by the difference equations

z
[nl]
l = Φl(zτ , . . . , z

[nlτ ]
τ , uj , . . . , u

[nl−1]
j ) (9)

for τ = 1, . . . , q, j = 1, . . . ,m, where Φl are supposed to be
meromorphic functions of their arguments and the indices
in (9) satisfy the relations

n1 ≤ n2 ≤ · · · ≤ nq, nlτ < nτ

nlτ < nl, τ ≤ l (10)

nlτ ≤ nl, τ > l.

Also, we assume, that system (9) is submersive, i.e. the
map Φ = (Φ1, . . . ,Φq)

T satisfies generically the condition

rank
[ ∂Φ

∂(z, u)

]
= q,

where z = (z1, . . . , zq) and u = (u1, . . . , um).

In this section, let K be the field of meromorphic func-
tions in variables z, u and a finite number of their
independent forward shifts, i.e. variables from the set

C = {zl, . . . , z[nl−1]
l , u

[k]
j ; k ≥ 0}. Also, let Ek :=

spanK{dzl, . . . , dz
[k−1]
l , duj , . . . , du

[k−1]
j } for any k ∈ N

and rl denotes the relative degree of the output zl with
respect to the input u.

Given a discrete-time MIMO nonlinear control system of
the form (9), we say that system (9) is i/o linearized
by feedback (7), if the differentials of the input-output
equations of the closed-loop system satisfy the relations

dz
[nl]
l ∈ spanR{dz[nlτ ]

τ , . . . , dzτ , dv} (11)

for τ = 1, . . . , q. In case when

dz
[nl]
l ∈ spanR{dv},

system (9) is said to be strictly i/o linearized.

We say that functions φl(z, . . . , z
[s−1], u, . . . , u[s−1]) are

linearizable (strictly linearizable) if the system

z
[s]
l = φl(z, . . . , z

[s−1], u, . . . , u[s−1])

is i/o linearizable (strictly i/o linearizable).

Let

ω̃l := dz
[nl]
l mod spanR{dz[nlτ ]

τ , . . . , dzτ},
where τ = 1, . . . , q. 2 For solvability of the i/o linearization
problem, it is necessary that 3

ω̃l ∈ Enl−rl+1, (12)

since otherwise nonlinearities appear before the input u
starts to affect the output yi.

First, let ωl∗ , l∗ = 1, . . . , q∗, be the basis elements of
spanR{ω̃l}. In the rest of this section assume that l∗, τ =
1, . . . , q∗ and j = 1, . . . ,m.

Let σl∗ be such that

ωl∗ ∈ Eσl∗ .

Next, define the one-forms

2 In the case of strict linearizability, one has to take ω̃l := dz
[nl]
l

.
3 Note that if rl = 1, then the condition (12) is always satisfied.

ω̄l∗,λ ∈ spanK{dz[σl∗−λ], . . . , dz[σl∗−1],du[σl∗−λ],

. . . ,du[σl∗−1]},
where λ = 1, . . . , σl∗ − 1, such that

ωl∗ − ω̄l∗,λ ∈ Eσl∗−λ (13)

and
ω̄l∗,σl∗

:= ωl∗ . (14)

It means that the one-forms ω̄l∗,λ depend on the (σl∗−λ)th
and higher order terms of the one-forms ωl∗ . Let γl∗,λ be
the rank of a one-form ω̄l∗,λ for λ = 1, . . . , σl∗ . Then there

exist γl∗,λ functions ϕ̃k
l∗,λ

(z[σl∗−λ], . . . , z[σl∗−1], u[σl∗−λ], . . . ,

u[σl∗−1]) such that

ω̄l∗,λ ∈ spanK{dϕ̃1
l∗,λ, . . . , dϕ̃

γl∗,λ

l∗,λ
}.

Finally, define the function ϕk
l∗,λ

as a (σl∗ − λ) step

backward shift of the function ϕ̃k
l∗,λ

, i.e.

ϕk
l∗,λ := (δ−1)σl∗−λϕ̃k

l∗,λ = δλ−σl∗ ϕ̃k
l∗,λ

for λ = 1, . . . , σl∗ and k = 1, . . . , γl∗,λ.

Theorem 1. Kaldmäe and Kotta [2014] Under the assump-
tion (12) the system (9) is input-output linearizable by
dynamic output feedback of the form (7) if and only if

dim(spanK{dϕk
l∗,λ}) = rankK

∂ϕk
l∗,λ

∂(u, δϕk
l∗,λ∗)

, (15)

for λ = 1, . . . , σl∗ , λ
∗ = 1, . . . , σl∗ − 1, k = 1, . . . , γl∗,λ

and functions ϕ1
l∗,σl∗

are independent from all the other

functions.

3.2 Sufficient conditions for solvability of the DDP

The theorem below gives sufficient solvability conditions
of the DDP by dynamic measurement feedback.

Theorem 2. Under the assumption that all the relative
degrees ri of outputs yi with respect to u are finite, the
DDP by dynamic measurement feedback is solvable for
system (1), if

(i) there exist one-forms ωi ∈ spanK{dz, . . . , dz[s−1], du,
. . . ,du[s−1]} with rank ωi =: γi such that

dy
[ri+s−1]
i − ωi ∈ Ω+ · · ·+Ω[s−1]

for some s ≥ 1;
(ii) for ωi =

∑γi

j=1 βi,jdαi,j(z, . . . , z
[s−1], u, . . . , u[s−1])

from (i), the functions αi,j are strictly linearizable
by dynamic measurement feedback.

Proof: We show that the feedback that linearizes strictly
the functions αi,j in (ii), solves the disturbance decoupling
problem.

Note that the relative degree of yi with respect to input
v is r̄i = ri + s − 1. Since for the closed-loop system
ωi ∈ spanK{dv}, one gets from (i) that

dy
[r̄i]
i ∈ Ω+ · · ·+Ω[s−1] + spanK{dv}.

Next, we show that Ω̄ = Ω + · · · + Ω[s−1], where Ω̄ is the
subspace Ω for the closed-loop system. From the definition
of the subspace Ω,

Ω + · · ·+Ω[s−1] ⊆ spanK{dx,dy
[ri]
i , . . . , dy

[ri+s−2]
i }.
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Since r̄i = ri + s− 1, then in the closed-loop system

Ω + · · ·+Ω[s−1] ⊆ spanK{dx,dη}.
Thus,

Ω + · · ·+Ω[s−1] = {ω̄ ∈ spanK{dx, dη} | ∀k ∈ N :

ω̄[k] ∈ spanK{dx,dη, dy
[ri+s−1]
i , . . . ,dy

[ri+s−k−2]
i }}

= Ω̄.

The last equality comes from the definition (3) of the
subspace Ω̄.

Since Ω̄ ⊆ Ω̄u, then by Lemma 3, system (1) is disturbance
decoupled.

Corollary 1. For SISO systems, the conditions of Theorem
2 are necessary and sufficient.

Proof: It remains to prove the necessity. By Lemma 3, since
the closed-loop system is disturbance decoupled,

dy[r̄] ∈ Ω̄u + spanK{dv}, (16)

where r̄ is the relative degree of y in the closed-loop system
with respect to the new input v and Ω̄u is the subspace
Ωu for the closed-loop system. We choose s ≥ 1 such that
r̄ = r + s− 1.

Since for single input systems Ω = Ωu, one can show, as in
the proof of Theorem 2, that Ω̄u = Ω+ · · ·+Ω[s−1]. Now,
one can find the one-form ω ∈ spanK{dv}, with rank 1,
such that we get from (16)

dy[r+s−1] − ω ∈ Ω+ · · ·+Ω[s−1].

Assume that ω = βdα for some functions β, α ∈ K.
Clearly, the feedback that solves the disturbance decou-
pling problem, also linearizes strictly function α, since for
the closed-loop system ω ∈ spanK{dv}. Thus conditions
(i) and (ii) of Theorem 2 are satisfied.

Note that if we take s = 1 in Theorem 2, we get solvability
conditions for DDP by static measurement feedback. In
this case the strict linearizability of functions αi,j means
that system of equations αi,j(z, u) = vµ, µ = 1, . . . ,m, is
solvable in u.

4. EXAMPLES

Example 1. Consider the system

x
[1]
1 = u1

x
[1]
2 = x3u3 + x2x4u2 − x1

x
[1]
3 = u2

x
[1]
4 = x1w (17)

x
[1]
5 = u1u2x4 + x2

y1 = x2

y2 = x5

z = x4.

First, note that the relative degrees r1 and r2 of outputs
y1 and y2 with respect to u are both 1. One can also
computes subspaces Ω = spanK{dx2, dx5} and Ωu =

spanK{dx1,dx2, dx3,dx5}. Clearly, dyi /∈ Ωu+spanK{du}
for i = 1, 2. Therefore, system (17) is not disturbance
decoupled.

To find the one-forms ωi, defined in (i) of Theorem 2, we

calculate dy
[ri+si−1]
i for si = 1, 2, . . ., until

dy
[ri+si−1]
i ∈ Ω+ · · ·+Ω[si−1]

+ spanK{dz, . . . , dz[si−1], du, . . . , du[si−1]}.
For system (17), we calculate

dy
[1]
1 = u3dx3 − dx1 + zu2dx2 + x3du3 + x2d(zu2)

̸∈ Ω+ spanK{du,dz}
dy

[1]
2 =dx2 + d(u1u2z)

∈ Ω+ spanK{du,dz}.
Thus, s2 = 1. Compute Ω + Ω[1] = spanK{dx2,dx5, dx

[1]
2 ,

dx
[1]
5 }. Now,

dy
[2]
1 =d(u

[1]
3 u2 − u1) + z[1]u

[1]
2 dx

[1]
2

+x
[1]
2 d(z[1]u

[1]
2 )

∈ Ω+ Ω[1] + spanK{du,du[1],dz, dz[1]},
meaning that s1 = 2. Next, we can choose the one-forms
ωi as

ω1 =d(u
[1]
3 u2 − u1) + x

[1]
2 d(z[1]u

[1]
2 )

ω2 =d(u1u2z).

Obviously, rank ω1 = 2 and rank ω2 = 1. It remains to

check whether the functions α1,1 = u
[1]
3 u2 − u1, α1,2 =

z[1]u
[1]
2 and α2,1 = u1u2z are linearizable. One can find,

that the dynamic feedback

η
[1]
1 =

z(η2v1 + v3)

η22

η
[1]
2 = v2

u1 =
v3
η2

(18)

u2 =
η2
z

u3 = η1,

linearizes functions α1,1, α1,2, α2,1 and also decouples
disturbances from the controlled outputs y1 and y2. Really,
in the closed-loop system

y
[2]
1 = v1 + x

[1]
2 v2

y
[1]
2 = v3 + x2

and since Ω̄u = spanK{dx1, dx2,dx5, dx
[1]
2 , dη2}, the con-

ditions of Lemma 3 are satisfied. This means that the
closed-loop system is disturbance decoupled.

Example 2. The next example is taken from Kaldmäe
et al. [2013]. The system in Figure 1 is a typical subsystem
in many applications and consists of linear subsystems
W1 = k1/(1 + T1

d
dt ), W2 = k2/(1 + T2

d
dt ), W3 =

k3T3
d
dt/(1 + T3

d
dt ), W4 = k4/

d
dt and saturation operation,

σ(x) =

{
x, if |x| ≤ x0

x0sign x, if |x| > x0
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6
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6
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W3

u y

z

- -

Fig. 1. System with saturation operation.

that corresponds to the amplifier. Here k1, . . . , k5, are
real coefficients, T1, T2 are certain time constants and T3

may be considered as unknown function of disturbance w
because of the unexpected changes in the feedback loop.

After the Euler discretization, one gets a system described
by the equations:

x
[1]
1 = k4x2 + x1

x
[1]
2 =

k2
T2

σ(x3) + x2(1−
1

T2
)

x
[1]
3 =

1

T1
(k1k5(u− x1)− k1k3(x2 − x4)) + x3(1−

1

T1
)

x
[1]
4 =

1

T3(w)
x2 + x4(1−

1

T3(w)
) (19)

y = x1

z = k3(x2 − x4).

In Kaldmäe et al. [2013], a dynamic measurement feedback
is found that solves the DDP for system (19). However,
note that the problem statement of Kaldmäe et al. [2013]
is somewhat different from that in this paper. Namely,
in Kaldmäe et al. [2013] the state η of a compensator is
assumed to be a function of state x, i.e. η = ϕ(x).

Below we solve the DDP for system (19) using the method
described in this paper. Since our method assumes all
functions to be meromorphic, we take σ(x3) = x3 in (19),
i.e. |x3| ≤ x3,0 for some x3,0 ∈ R. Note that if |x3| > x3,0,
one can show by Lemma 3 that the system (19) is already
disturbance decoupled.

The relative degree of output y with respect to input u is
r = 3. Next, we have to find, by Lemma 1, the subspace
Ω. Compute Ω = Ω1 = spanK{dx1, dx2, dx3}. Since

y[3] =
(
1− k1k2k4k5

T1T2

)
x1 +

(
3k4 −

3k4
T2

+
k4
T 2
2

)
x2

+
(3k2k4

T2
− k2k4

T 2
2

− k2k4
T1T2

)
x3 +

k1k2k4
T1T2

(
k5u− z

)
,

one can choose ω = k5du − dz. Then condition (i) of
Theorem 2 is satisfied for s = 1. The rank of the one-form
ω is obviously 1 and α = k5u− z. By taking v = k5u− z,
one gets u = 1

k5
(v+ z). This static measurement feedback

solves the DDP for system (19).

The reason, why we get static solution in this paper, but
dynamic solution in Kaldmäe et al. [2013], is that the
selection of one-form ω, in Theorem 2, is more restricted,
than the selection of certain function, based on which the
solution is computed, in Kaldmäe et al. [2013]. In the latter
case the choice of a function that leads to static solution
is not obvious.

5. CONCLUSION

This paper addressed the DDP by dynamic measurement
feedback. Using algebraic methods, sufficient solvability
conditions were given. For SISO systems, the conditions
are also necessary. The key point of the solution is lin-
earization of certain functions by measurement feedback.
It is shown that this feedback also solves the disturbance
decoupling problem. The future work will include finding
necessary and sufficient solvability conditions for MIMO
systems. Two examples were given to illustrate the theory.
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A. Kaldmäe and Ü. Kotta. Disturbance decoupling of
multi-input multi-output discrete-time nonlinear sys-
tems by static measurement feedback. Proc. of the
Estonian Academy of Sciences, 61(2):77–88, 2012a.
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