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Abstract: Predictive maintenance has now become a possible avenue within the electricity
distribution sector of Eskom. A recent roll-out of large-scale substation data acquisition projects
have allowed this sector to use a predictive based maintenance scheduling plan instead of
a previously used frequency based maintenance plan. This paper describes the design and
implementation of a low-complexity anomaly detection algorithm, which is able to detect
discrepancies, indicative of small electrical grid changes or substation equipment deterioration.
The algorithm is based on projecting parametric multivariate Gaussian functions on to spatially
distributed pre-selected substation data points. This method enables the utility to monitor
critical variables, and their relationships, in an effort to foresee equipment or network distresses
from high-value assets, particularly in the transmission and distribution sector. The results
demonstrate an early positive detection of anomalous load behaviour from a live substation. The
presented Semi-supervised learning methodology can form the underpinnings of an integrated
approach, to aid with operational decision-making, and seems eminently suitable to reduce
unscheduled asset downtime.

1. INTRODUCTION

Up until relatively recently the electricity distribution
(ED) sector of Eskom, in the Western region, has relied on
a frequency based maintenance scheduling plan on their
high-value assets, including other substation equipment.
After a recent roll-out of substation telemetry upgrades,
Eskom is now in a position to capture and store electrical
grid activity in the form of high resolution data. Some of
these upgrades include: newer relays, data concentrators,
dedicated servers, and fibre-optic communication infras-
tructure. This allows the utility to capture, transfer and
store a wider range of variables at higher sampling in-
tervals. Among other substation equipment, the utility is
focused on utilising the new telemetry infrastructure, and
data, to monitor their high-value assets — such as substa-
tion power transformers. The benefit of aggregating and
utilising such data (information), to the point of adopting
a prediction based maintenance plan, is paramount to the
findings in this article.

In general, the most common causes of electrical equip-
ment breakdown includes: mechanical equipment failure,
environmental conditions, or work improperly performed.
Predictive maintenance tools should be able to continu-
ously, or periodically, monitor the condition of in-service
equipment and detect equipment failure trending, well
before complete failure occurs [1]. Having regular access
to the current state of the equipment, in comparison to
an operational state of the equipment, provides valuable
information to determine when maintenance should be
performed.

? This work was supported by Eskom.

Fig. 1. The maintenance PF-curve.

A study in [2] highlighted that a reduction in mainte-
nance costs can be expected between 25% to 30%, and
the elimination of equipment breakdowns between 70% to
75%, when a proper predictive maintenance plan is imple-
mented. A popular graph, illustrated in Fig. 1, indicates
a general equipment failure curve and its related response
category 1 . Here it is indicated how risk increases up until
the point of critical consequences. The aim here is to detect
anomalous equipment behaviour during the deterioration
curve, where the risk is low and the necessary predictive-
or preventive action can be applied before actual failure.

1 Picture found at www.maintenancephoenix.com.
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In this article, we describe the design and implementation
of a low-complexity anomaly detection algorithm able to
detect electrical grid discrepancies, in an effort to enable
these predictive maintenance scheduling advantages for
the ED sector.

The rest of this paper is organised as follows: in Section
2, we review the literature on predictive capable method-
ologies and their complexity. In Section 3, we present
an exploratory data analysis, and the subsequent feature
selection process. We formally explain the anomaly de-
tection algorithm in Section 4, and show results using
real substation data in Section 5. Finally, we state our
conclusions, recommendations and future work in Section
6.

2. LITERATURE REVIEW

Most utilities, including Eskom, have relied on periodic
on-site inspections, and manual evaluations of electrical
equipment in the past. Furthermore, some equipment man-
uals still recommend technicians to write down readings
from meters or gauges that is evaluated in comparison to
readings obtained from normal operating conditions [3].
This kind of performance monitoring methods, and their
subsequent maintenance scheduling plans, has disadvan-
tages that include: on-site safety risks, human-error, trav-
eling expenditure, etc.

In other studies, modelling techniques are used, such
as heat circuit based thermal modelling, to perform on-
site condition monitoring [9]. These implementations have
their advantages, however require additional on-site com-
ponents. Some methods comprise of utilising historic data
and modelling of the operational behaviour of the equip-
ment by using Neural networks or Fuzzy logic algo-
rithms [7]. This requires non-linear modelling techniques,
which introduces additional complexity (extra hidden lay-
ers to capture nonlinearities) in terms of large matrix
multiplication [8]. Such complexities will introduce con-
straints on the utility’s communication channel and the
computational capabilities of the back-end services. In
general, many efforts are made to incorporate expensive
sensors and other on-site measuring devices to gain access
to important variables (data) that is used in combination
with complex algorithms.

The focus of this paper is the utilisation of historic data,
as a non-intrusive approach, to identify and develop a
statistical model of the operational workings of a substa-
tion by using low-complexity algorithms. This approach
places fewer constraints on the available communication
bandwidth, and the computational requirements of the
back-end services. The following section describes the ex-
ploratory data analysis process, with focus on the data
pre-processing requirements.

3. EXPLORATORY DATA ANALYSIS

The data was collected from a Reg-D relay in a live substa-
tion, over a period of one month, which has two function-
ing transformers operating in parallel with a master-slave
configuration. Data from both transformers on the 11kV
switch board side (load side) were inspected for this study.
The data was normalised after all the missing (dead zones)

values was removed. This is indicated in Fig. 2. The data
was extracted from an OSIsoft PI Server using a Microsoft
Excel plug-in. The measurement interval was set at 30
seconds. An interpolation 2 function in the PI-Excel plug-
in was used to align all asymmetric data measurements.

All outliers were kept for supervised labelling purposes.
Most of the correlations between the variables were in-
vestigated to determine their implications on the model.
The pre-selected data consist of the following variables,
captured from both power transformers 3 :

• Power factor,
• Reactive power,
• Apparent power,
• Frequency,
• Real power,
• Circulating current,
• Voltage,
• Power reserve,
• Current,
• Current phase degree.
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Fig. 2. All the features normalised.

A visual representation of the correlations between the
different variables is shown in Fig. 3, where the diagonal
represents a histogram of some of the different features.
Following the diagonal, the variables are labeled as follows:

(a) Real power (T1),
(b) Circulating current (T1),
(c) Output voltage (T1),
(d) Output current (T1),
(e) Output current (T2),
(f) Circulating current (T2),
(g) Real power (T2),
(h) Output voltage (T2),
(i) Tap position (T2).

In Fig. 3 the normal operational regions of the data
points are indicated. From this representation (variable
relationships) the variable selections process, with regard
to the modelling technique, can be validated.

The outliers where inspected, including their correspond-
ing row entries, where each event was flagged (these events
represent the anomalies). Some outliers are a result of
transition effects between the two transformers just before,
or after, a transformer’s tap position changed. This can

2 Although this is not a favoured approach, the data was misaligned
and needed an alignment approximation technique. The influence of
this will be explained in Section 6.
3 T1 and T2 represents the two transformers.
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Fig. 3. Some feature correlations and histograms.

be seen in Fig. 4. The root cause of why the data points
are not complying to the y = −x linearity, is still being
investigated. Moreover, it is suspected that it could be the
result of linear estimations introduced by the interpolation
technique.
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Fig. 4. Anomalous circulating currents from the two trans-
formers.

During or just before a tap change the circulating cur-
rents, output currents, and current phases exhibit erratic
responses. However, in limited cases this transition effect
occurs without the presence of a tap change. The latter
cases were captured and labelled as possible anomalies.
One such case is demonstrated in Fig. 5. Both circulating
current measurements (from both transformers), indicate
unusually low and high values (negatively correlated). The
output currents, from both transformers, also increase and
decrease significantly during this event. These “abnormal-
ities” occurred without the presence of a tap change.

For the rest of this paper, the data being utilised is nor-
malised and subdivided into a training set xtrain, cross-
validation set xcv, and test set xtest. The anomalous labels
used for the supervised part in the cross-validation set
and test set is represented by ycv and ytest respectively.
It is common practice to consider the anomaly detection
algorithm described in this paper, due to the sparsity of

Fig. 5. Example of an outlier.

anomalous training examples. If ample anomalous exam-
ples were obtainable, it is recommended to explore super-
vised classification methods instead [4, 5].

4. METHODOLOGY

In this section, a Gaussian distribution over the retrieved
data points will be assumed, and a model is derived
based on the mean and covariances of the dataset, limited
to the degrees of freedom encapsulated in that sample
set. Among other variables, the voltage and power factor
measurements were found to be uncorrelated 4 and was
used to demonstrate the effectiveness of the algorithm.
Projections are made in two dimensional space for illus-
trative purposes, however, the model can be scaled to a
multidimensional space if required.

4.1 Gaussian distribution

If x ∈ R and a Gaussian, with mean µ and variance σ2, the
distribution is a normal bell shaped curve centered at µ
and σ. The standard deviation is indicative of the width of
the bell curve. This can be expressed as the distribution:
x ∼ N(µ, σ2). The equation for computing the mean and
variance is shown in Equation 1 and Equation 2. The
probability distribution calculation is shown in Equation
3.

µ =
1

m

m∑
i=1

x(i) (1)

σ2 =
1

m

m∑
i=1

(x(i) − µ)2 (2)

p(x;µ, σ2) =
1√

2π σ
exp

(
− (x− σ)2

2σ2

)
(3)

As the mean and variance parameters are altered, the
shape of the distribution function changes, which describes
a Gaussian property that can be used to project the
distribution over the preferred data points.

4.2 Spatial anomaly detection

When projecting the Gaussian distribution on to the se-
lected data the assumption being made is that the pro-
vided dataset, xtrain, is non-anomalous and represents nor-
mal operation of the equipment, or state of the electrical
network. We need to build a model to predict the proba-
bility of the power factor and voltage being appropriate,
and if p(xtest) < ε then we need to flag a possible anomaly.

Assuming that each feature is distributed as per the
Gaussian probability distribution then, xn ∼ N(µn, σ

2
n),

4 Other studies have shown that correlated data can provide useful
boundaries for outlier detection. We refer the reader to [6].
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where n represents the number of features. The computed
probability can be expressed as the density estimation,
p(x) =

∏n
j=1 p(xj ;µj , σ

2
j ) [4]. The density estimation fol-

lows the random variable independence assumption. How-
ever, in practice it works quite well even if the features are
not independent. The features, xi chosen for this exercise,
indicated anomalous examples, which were unusually high
or unusually low values not corresponding to any obvious
transition effects in the system.

The majority of the training set consisted of a non-
anomalous subset of the data. Ideally this data should not
contain any anomalous data points. Both the cross vali-

dation set (x
(1)
cv , y

(1)
cv ), ..., (x

(mcv)
cv , y

(mcv)
cv ) and the test set

(x
(1)
test, y

(1)
test), ..., (x

(mtest)
test , y

(mtest)
test ) contained some abnor-

mal entries. The training and testing proceeds as follows:

• Use the training set to compute µn and σ2
n.

• Fit the model p(x) by computing the appropriate
density estimation.
• On the cross validation set, apply different values of
ε, and choose the value that maximises the F1 score.
• On the test set, calculate the prediction of y =
p(x), (p(x) < ε (anomaly), p(x) > ε (normal)) and
determine the F1 score.

The F1 score, depicted in Fig. 4, is used as the test’s ac-
curacy metric (“cost function”). This method incorporates
both the precision (number of correct results divided by
the number of all returned results) and recall (the number
of correct results divided by the number of results that
should have been returned) of the test.

F1 = 2(
precision · recall
precision+ recall

) (4)

Parameter ε can be altered by changing the anomaly
detection “sensitivity” threshold, until a satisfactory result
is obtained. The next section will illustrate a useful way
to train a more variable and multi-dimensional Gaussian
fitting function.

4.3 Multivariate Gaussian distribution

The algorithm described in the previous section largely
assumes variables to be independent. This poses difficulties
when variables are strongly correlated and might introduce
inaccurate results (skewed decision boundary etc.). This
section describes a technique, which can be used to alter
the shape of the Gaussian, which effectively helps to fit
the contour profiles of the Gaussian — to fit elliptically
orientated data points. This is done by introducing addi-
tional parameters. By changing the values on the diagonal
of the covariance matrix, in the multivariate Gaussian
distribution the contours can be made either broader or
narrower.

The additional parameters used to realise such orientations
are: M ε Rn and Σ ε Rn×n. The overall position of
the contour profile can be moved by changing M . The
probability density is computed as follow:

p(x;M,Σ) =
1

(2π)n/2|Σ|1/2
exp(−1

2
(x−M)T Σ−1(x−M)),

(5)

Fig. 6. Voltage and power factor correlation of T1.

where |Σ| is the determinant of Σ [4].

The multivariate Gaussian distribution is often used to
describe, or at least approximate, any set of (possibly)
correlated real-valued random variables each of which
clusters around a mean value. Each correlation between
the variables in Fig. 3 was inspected. The most preferred
relation is indicated in Fig. 6. The voltage and power factor
of T1 (transformer one) had clear outliers, approximated a
Gaussian distribution, and seemed to follow the indepen-
dence assumption (R2 = 0.0039 correlation coefficient 5 ).

The multivariate Gaussian distribution can model certain
arrangements of data points better. Therefore, by using
a modified probability function we can predict anomalies
more accurately in the case where features inhabit correla-
tion. Any of such efforts will rely on the effective variability
of the decision boundary.

5. RESULTS

A summary of the main results are indicated in Table 1.
The best boundary was found using the cross-validation
set with ε = 6.48×10−4. The best F1 score for this set
was 0.73. After training the detected outliers are flagged
and plotted, as shown in Fig. 7.

Table 1. Summary of results.

ε 6.48×10−4

F1 0.73

Anomalies 16

The flagged anomalies compared to the anomalous cross-
validation set data points is also indicated. This illustrates
the distance from the mean and position of the possible
outliers in the data set compared to the detected set.

The trained model was implemented and tested on a
completely new dataset, which was known to contain an
occurring peculiarity. The new captured anomalies are
illustrated in Fig. 8. This result reflects a planned feeder
shift-over event, which was commissioned at the substa-
tion at the time the data was captured. A feeder shift-
over is usually part of a contingency plan in the case
of scheduled maintenance, and entails the reconfiguration

5 A mutual information measure (from Shannon’s theory on infor-
mation) was also considered [10], however not regarded as necessary
due to the noticeable co-variances between the variables.
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Fig. 7. Detected anomalies and trained examples.

of electrical power to a different load. The implemented
anomaly detection scheme was capable of detecting this
event, since the load characteristics predominantly affected
the power factor variable’s relationships in the data. This
validates the sensitivity of the developed anomaly detec-
tion algorithm in terms of grid conditions. It is believed
that such methods can add tremendous value to the future
Smart grid movement, as it can be integrated into a large-
scale grid anomaly detection systems.

Fig. 8. Detected anomalies after transformer changes.

6. CONCLUSIONS AND RECOMMENDATIONS

This paper explored two statistical techniques that can
be used to develop a learning algorithm capable of recog-
nising unexpected transformer or grid operation. These
techniques were coupled with recently obtained Reg-D
substation data, which validates the utilisation thereof.
The outliers used in this study were assumed to indicate
anomalous events, since it could not be argued differently.
The presented results reflect a system that is capable of
detecting electrical grid infrastructure changes, network
reconfiguration and possible transformer degradation.

The benefits of using the presented anomaly detection
algorithm includes: emphasis on the operational regions
of the transformer/grid data, continuous and autonomous
monitoring of the present operating condition of the trans-
former/grid and non-intrusive low-complex detection of
abnormal conditions. Furthermore, the methods explained
are well suited to accommodate the current substation-
and communication infrastructure.

Most features, captured from substations, will exhibit
correlations, since the dynamics of the electrical grid is
governed by the balancing of power supply-and-demand
operations throughout generation, transmission, distribu-
tion, and reticulation. Therefore, the spatial multivariate
solution seems eminently suitable for fitting this specific
data. For large scale commissioning of the suggested algo-
rithm it should be noted that each substation will require
a uniquely trained model. This is due to the diversity
of electrical network layouts, which will exhibit different
grid characteristics. Inevitably, this will produce unique
relational data points. In the event where electrical loads
are reconfigured from one load to another, due to planned
or unplanned maintenance, the substation measurements
can sometimes vary significantly, as shown in Fig. 8. This
affects the model accuracy over time, since the mean and
variance of the data, reflecting the operational region, will
change. This particular occurrence might hold between
some variables only, and should be investigated in future
work. Bayesian methods in [5] coupled with Gaussian
mixture models can be incorporated, to actively adapt the
model over time.

For future work it is recommended that more features
(transformer oil quality, temperature, etc.) be added to
explore possible accuracy improvements. The availability
and expert recognition of transformer data, constituting
unacceptable conditions, are anticipated to reinforce the
model as explained in [3]. Other issues concerning the acti-
vation and availability of transformer diagnostic measure-
ments can also improve the quality of predictive analytics
on such equipment.

The biggest concern regarding this exercise was the mis-
aligned substation data, due to dissimilar measurement
intervals from different relays, or delayed data concentra-
tor time-stamping. Although not many of these events
were encountered, it is not ideal to train models with
such data, with the risk of inaccurate results. In addition,
the delta window technique, which is used to track and
log larger deviations above or below a certain threshold
in the measurements, is contributing to random sampling
interval times. This poses a risk to the reliability and use
of meta-data. Introducing such randomness is proportional
to uncertainty within the model. A case in point is Fig 4.
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