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Abstract: In this paper a new non-switching type reaching law for sliding mode control of discrete time 

systems is introduced and applied to the problem of periodic review inventory management. The 

considered inventory is refilled by multiple suppliers through delivery channels subject to non-negligible 

commodity losses. The reaching law proposed in this paper is inspired by the earlier work of Gao, Wang 

and Homaifa, however, in this paper the original formulation is essentially modified in order to avoid 

undesirable switching, and to ensure good dynamic performance with limited commodity orders. These 

improvements are obtained by the application of a modified definition of the quasi-sliding mode, and also 

by the introduction of an adjustable, state dependent sliding variable decrease rate factor. The sliding mode 

inventory management strategy proposed in this paper ensures full customer demand satisfaction and 

enables the designer to specify upper limit of the on-hand stock level. 

1. INTRODUCTION 

Continuous time variable structure control systems with 

sliding modes have originally been investigated more than 

half a century ago in the former Soviet Union (Emelyanov, 

1967; Utkin, 1977). Because of their robustness (Draženović, 

1969) and computational efficiency, immediately they have 

become very popular among global control engineering 

community (DeCarlo, Żak and Mathews, 1988; Edwards and 

Spurgeon, 1998; Gao and Hung, 1993; Bartoszewicz and 

Nowacka-Leverton, 2009). Some years later discrete time 

sliding mode controllers have also been proposed in 

(Milosavljević, 1985) and (Utkin and Drakunov, 1989) and 

then analyzed by Furuta (1990), Bartolini, Ferrara and Utkin 

(1995), Gao, Wang and Homaifa (1995), Bartoszewicz 

(1998), Corradini and Orlando (1998), Golo and 

Milosavljević (2000), Yu and Chen (2003), Bandyopadhyay 

and Janardhanan (2006), Janardhanan and Bandyopadhyay 

(2006), Milosavljević et al. (2006), Janardhanan and 

Bandyopadhyay (2007), Pan and Furuta (2007), Janardhanan 

and Kariwala (2008), Yu et al. (2008), Bandyopadhyay and 

Fulwani (2009), Mehta and Bandyopadhyay (2009), Mehta 

and Bandyopadhyay (2010), Mija and Susy (2010), Kurode, 

Bandyopadhyay and Gandhi (2011), Corradini et al. (2012), 

Yu, Wang and Li (2012), and many others.  

Both continuous and discrete time sliding mode controllers 

drive the system state (its representative point) onto a 

predefined hypersurface in the state space. This can either be 

accomplished by selecting a control law and demonstrating 

that this control ensures stability of the sliding motion on the 

surface, or by applying the reaching law approach. In the 

latter approach the required evolution of the sliding variable 

is first proposed, and then a control law which ensures that 

the variable changes as specified is determined. The reaching 

law approach was first introduced for continuous (Gao and 

Hung, 1993) and then extended to discrete time systems 

(Gao, Wang and Homaifa (1995) (see also Bartoszewicz 

(1996) for further comments). Since then the reaching law 

approach has been used by many researchers (Golo and 

Milosavljević, 2000; Milosavljević et al. 2006; Mija and 

Susy, 2010; Kurode, Bandyopadhyay and Gandhi, 2011). 

Even though much work in this field has been done, the 

original approach proposed by Gao, Wang and Homaifa 

(1995) is still very popular. Therefore, in this paper we 

extend the results of (Gao, Wang and Homaifa, 1995) in 

order to obtain a non-switching discrete time sliding mode 

controller (Bartolini, Ferrara and Utkin, 1995; Bartoszewicz, 

1998) and to ensure faster convergence of the controlled 

system without increasing the magnitude of the control 

signal. The first of the two objectives is achieved with the 

application of the quasi-sliding mode definition proposed by 

Bartoszewicz (1998), and the latter one is accomplished by 

the introduction of an adjustable, state dependent 

convergence rate factor in the proposed reaching law. In the 

second part of the paper, we apply the proposed reaching law 

to design a new periodic review inventory management 

strategy (Riddalls, Bennett and Tipi, 2000; Hoberg, Bradley 

and Thonemann, 2007; Boccadoro, Martinelli and Valigi, 

2008; Karaesmen, Scheller-Wolf and Deniz, 2008; Sarimveis 

et al., 2008; Subramanian, 2013) for a warehouse with 

multiple remote suppliers and non-negligible commodity 

losses in delivery channels. We demonstrate favorable 

properties of the designed strategy which could not be 

achieved with the application of the original ‘constant plus 

proportional’ reaching law. In particular, we show that our 

reaching law ensures non-negative upper bounded supply 

orders which do not depend on the warehouse capacity, and 

therefore are fairly desirable in the considered system. 

Furthermore, we demonstrate that our reaching law based 

controller eliminates the risk of exceeding warehouse 

capacity and may ensure 100% customers’ demand 

satisfaction. 
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2. NON-SWITCHING REACHING LAW 

In this section we consider a perturbed discrete-time system 

described by the following equation 

         1k T kT kT u kT kT      x Ax Ax b f  (1) 

where x(k) is the state vector (dim(x) = n  1), A is the state 

matrix, ΔA is the model uncertainty matrix, b is the input 

vector, u(kT) is a scalar input, and f(kT) is a disturbance 

vector. We denote the demand state vector by xd, and define 

the closed loop system error as e(kT) = xd – x(kT). Then we 

select the sliding variable as 

    Ts kT kT c e  (2) 

With this choice of variable s, equation s(kT) = 0 determines 

the sliding hyperplane. The elements c1, c2, … cn of vector c 

are selected in such a way that c
T
b ≠ 0 and that the closed 

loop system exhibits the desired performance. This can be 

done in a few ways including quadratic optimization 

(Janardhanan and Kariwala, 2008), pole placement method 

(Gao, Wang and Homaifa, 1995), dead-beat design 

(Bartoszewicz and Żuk, 2009), etc. 

In this paper the quasi-sliding mode is defined similarly as in 

(Bartoszewicz, 1998), i.e. it is such a motion of the system 

that its representative point (state) remains in a given vicinity 

of sliding hyperplane (2). According to this definition, the 

representative point (state of the system) in the quasi-sliding 

mode is confined to a specified layer around the hyperplane. 

Contrary to the definition introduced by Gao, Wang and 

Homaifa (1995), in our approach crossing the hyperplane is 

allowed but not required. 

We propose the following reaching law 

 
      

    1 1

1  1   s k T q s kT s kT

S kT F kT F S

         

   
 (3) 

where  

          ,T TS kT S kT kT F kT kT     x c Ax c f (4) 

represent respectively the influence of the model uncertainty 

on the sliding variable evolution and the effect of disturbance 

on this variable. Furthermore, S1 and F1 are the mean values 

of S  and F , namely 

    1 12,        2U L U LS S S F F F     (5) 

where SU, SL are upper and lower bounds of S , and FU, FL 

are upper and lower bounds of F , i.e. 

 ,L U L US S S F F F     (6) 

Convergence rate factor q[s(kT)] in (3) is given by  

    0 0q s kT s s s kT        (7) 

where s0 is a design parameter. The parameter is chosen so 

that s0 > S2 + F2, where S2 and F2 represent the greatest 

possible deviation of S  and F from their mean values S1, F1 

    2 22,        2U L U LS S S F F F     (8) 

Parameter s0 allows to find a satisfactory compromise 

between the critical magnitude of the control signal generated 

in the system, and sluggish convergence to the vicinity of 

s(kT) = 0. The proposed reaching law has two major 

advantages over the one presented in (Gao, Wang and 

Homaifa, 1995). Firstly, it does not contain a discontinuous 

term, so it does not lead to chattering. Secondly, since 

q[s(kT)] increases with the decrease of s(kT), our reaching 

law results in faster convergence and better robustness with 

the same bounds on the control signal magnitude. 

In order to find the control signal u(kT) which ensures that 

the sliding variable evolution is indeed described by (3), we 

use (1) to rewrite (2) as follows 

 
 

       

1 T

T kT kT

s k T

u kT kT



     

   

 

d
x

Ax Ax b f

c

c
 (9) 

Then, comparing (3) and (9) we obtain 

   

       

1

1 1 1  

T

T T

d

u kT

q s kT s kT kT F S



 

      

c b

c Ax c x
 (10) 

As all terms in (10) are either constants, or variables which 

do not depend on unknown terms ΔA or f(kT), this control 

signal can actually be applied in the considered system. 

In the next two theorems we demonstrate, that once the 

representative point of system (1) has reached a band around 

the sliding hyperplane s(kT) = 0, it remains inside the band, 

and also that the proposed reaching law makes the point 

always move towards this band. 

Theorem 1. If the following inequality 

      0 2 2 0 2 2s kT s S F s S F       (11) 

is satisfied at some instant k = k0, then it is also true for any 

k > k0. 

Theorem 2. If the absolute value of s(kT) is greater than the 

right hand side of (11), then s(kT) converges, at least 

asymptotically, to the band specified by (11). 

3. INVENTORY SUPPLY MODEL 

In this section we consider a periodic review inventory 

supply system with m remote commodity providers. Each 

provider delivers goods with its own lead time Lp through a 

transportation channel with non-negligible losses. The 

providers are required to satisfy an a priori unknown 

consumer demand. The commodity orders are determined by 

the controller placed at the distribution center. The signal 

generated by the controller is denoted by u, and it 
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          Fig. 1. Supply system. 

corresponds to the total amount of goods requested from all 

of the suppliers. This value is divided among the suppliers so 

that each supplier p receives a replenishment order which is 

equal to γp of u, where 0 ≤ γp ≤ 1, and 
1

1
m

pp



 . The block 

diagram of the considered system is depicted in Fig. 1. It is 

assumed, that during transport some goods are broken, so that 

only αp commodities from supply source p arrive at the 

distribution center, where αp  (0, 1] for p = 1, …, m. 

We assume, that each lead time Lp is a multiple of the 

discretization period T, i.e. Lp = pT, where p is a positive 

integer. The stock level at time kT is denoted by y(kT). The 

maximum value of the consumer demand d(kT) is represented 

by dmax. The amount of goods that are actually sold at time kT 

is denoted by h(kT). This value cannot exceed the consumer 

demand, but it can be smaller than the demand if there are not 

enough goods in the warehouse. Therefore, 

0 ≤ h(kT) ≤ d(kT) ≤ dmax. for any k ≥ 0. 

The warehouse is empty before the start of the control 

process, i.e. y(kT < 0) = 0, and the first replenishment order is 

generated at kT = 0, i.e. u(kT < 0) = 0. The on-hand stock 

level for kT > 0 can be expressed as the difference between 

the amounts of incoming and outgoing goods 

      
1 1

1 0 0

m k k

p p pp j j
y kT u jT L h jT 

 

  
      (12) 

In order to simplify the model, we represent all providers 

with equal lead times as a single supplier. The amount of 

goods that will arrive at the warehouse from this supplier is 

equal to aiu, where 
: p

i p p

p m i

a  


  , for i = 1, …, n – 1 and 

n = max(p) + 1. Of course, if there is no supplier with the 

lead time iT, then the appropriate coefficient ai = 0. This 

allows us to represent the stock level as follows 

      
1 1 1

1 0 0

n k k

ii j j
y kT a u j i T h jT

  

  
        (13) 

We can express this relation in the standard state space form  

 
       

   

1

T

k T kT u kT h kT

y kT kT

     



x Ax b o

r x
 (14) 

where x(kT) = [x1(kT)   x2(kT)   …   xn(kT)]
T
 is the state 

vector, y(kT) = x1(kT) is the on-hand stock level. The state 

variables except for the first one are the delayed values of the 

control signal i.e. for i = 2, …, n 

    1ix kT u k n i T      . (15) 

A is n  n state matrix, and b, o, and r are n  1 vectors 

 

 

 

 

1 2 11

0 0 1 ,0 0 1 0

, 1 0 0 ,

0 0 0 1 1 0 0 .

0 0 0 0

n n
T

T

T

a a a  
  
 
   
 

 
 
 

b

Α o

r

(16) 

The desired state of the system xd = [yd 0 … 0], where yd is 

the demand warehouse stock level. 

4. CONTROLLER DESIGN 

Now we will select the elements of vector c, which describe 

the sliding hyperplane (2), so as to obtain the dead-beat 

system performance. We begin, by deriving the control signal 

that is needed to satisfy s[(k + 1)T] = 0 and we substitute it 

into (14). In this way, we obtain the closed loop system 

matrix Ac = [In – b(c
T
b)

–1
c

T
]A. This matrix has the following 

characteristic polynomial 

 
   

 

1

1 1 1

1 1 2

det n n

n n n

n n

z z z c a c c c

z c a c c







     

  

n cI A
 (17) 

As we have already assumed c
T
b ≠ 0. This condition and 

relation (16), imply that cn ≠ 0. A linear time-invariant 

discrete-time system is asymptotically stable if and only if all 

of its eigenvalues are located inside a unit circle. Moreover, 

in order to obtain finite time error convergence to zero the 

characteristic polynomial (17) must have the form det(zIn –

 Ac) = z
n
. We find, that this can be obtained with the 

following choice of vector c 

 
1

1 1
1, for 2, ,

i

i n jj
c c a i n




    (18) 

Now we will apply the presented reaching law to design the 

controller that will drive the representative point of the 

system to the vicinity of the sliding hyperplane c
T
e(kT) = 0, 

where c
T
 is defined by relation (18). For the considered 

system, the perturbations of the sliding variable caused by the 

model uncertainty and disturbance are  

 1 2 1 max 2 max0, 2, 2.S S F d F d      (19) 

Using (2) and (19) with (10) we get 
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   

       

          

1

max

1

max

 1   2

2

T

T T

d

T T

u kT

q s kT s kT c kT d

c q s kT s kT kT d





 

     

      n

c b

Ax c x

b c A I x

(20) 

Moreover, we notice that by choosing c according to (18) we 

have obtained c
T
(A – In) = [0 … 0]. Therefore, using (16) and 

(18) we can calculate the following control signal, which 

ensures the desired sliding variable evolution 

       
1

max 1
2

n

ii
u k q s kT s kT d a




      (21) 

We will now prove essential properties of the considered 

system. First, we will show that control signal (21) is always 

non-negative and upper bounded by an a priori specified 

constant. As this signal directly corresponds to resupply 

orders sent to suppliers, both of these conclusions are 

important for the application of the proposed strategy. 

Theorem 3. The control signal generated by the proposed 

controller will, for any k ≥ 0, satisfy 

    
1

0 0 max 1
0 2

n

d d ii
u kT s y y s d a




       . (22) 

Proof: Sliding variable s(kT), as shown in theorems 1 and 2, 

will originally have some initial value s(0), and then its 

absolute value will decrease in each step unless (11) is 

satisfied. Furthermore, once (11) becomes satisfied, it 

remains true for the remainder of the control process. Using 

s(0) = c
T
xd = yd with (11) and (19), we conclude, that  

    0 max 0 max2 , ds kT s d s d y      (23) 

for all k ≥ 0. 

We now observe, that control signal (21) always increases 

with the increase of s(kT). Therefore, its maximum value will 

be generated for the greatest possible s(kT), and the minimum 

value for the smallest s(kT). Using this observation and 

substituting limits of interval (23) into (21) we conclude that 

(22) is indeed true. 

An efficient inventory management strategy should ensure 

that all incoming shipments can be accommodated in the 

warehouse. In the next theorem we will derive the upper 

bound of the on-hand stock. This means, that if warehouse 

capacity equal to this bound is secured, then the risk of hiring 

costly emergency storage will be eliminated. 

Theorem 4. If the proposed control strategy is applied, then 

for every k ≥ 0, the on-hand stock level will satisfy the 

following inequality 

    0 max 0 max2dy kT y s d s d    (24) 

Proof: From (23) we get 

    0 max 0 max2s kT s d s d    (25) 

for any k ≥ 0. Using (2) and (15) we may rewrite (25) as 

    0 max

20 max

1
2

n

d i

i

s d
y kT y c u k n i T

s d 

       
  (26) 

As the control signal is always non-negative we conclude that 

(26) implies (24). 

In order to maximize profit, it is important to eliminate lost 

sales opportunities. In other words, if possible the consumer 

demand should be fully satisfied. In the next theorem we 

derive the minimum value of the demand stock level that 

ensures that after some initial time the warehouse will never 

be empty. As we can observe from (13) this is equivalent to 

full customers’ demand satisfaction. 

Theorem 5. If the demand queue length satisfies 

  
1 1

max 0 max 0 max1 1
2

n n

d i ii i
y d ia a s d s d

 

 
     (27) 

then y(kT) > 0 for any k ≥ k0 + n – 1, where k0 is the first time 

instant when (11) is satisfied. 

Proof: Using (11), for any k ≥ k0, we can obtain 

     0 max

2 0 max

1
2

n

d i

i

s d
y kT y c u k n i T

s d

        
  (28) 

Furthermore, substituting (11) into (21) we obtain,  

  
1

max 1

n

ii
u kT d a




   (29) 

which is true for any k ≥ k0. Combining (28) and (29) we get 

  
1 1

0 max

max

1 1 0 max2

n n

d i i

i i

s d
y kT y d ia a

s d

 

 

  


   (30) 

for any k ≥ k0 + n – 1. Therefore, if (27) holds, then the right 

hand side of the above inequality is always strictly positive.  

5. SIMULATION RESULTS 

In order to verify the properties of the proposed control law 

computer simulations of an inventory replenishment system 

with four suppliers are performed. The review period is 

selected as one day. The greatest lead time considered in the 

simulation is nine days, therefore max(p) = 9 and n = 10. 

The suppliers’ parameters are shown in Table 1. The 

corresponding parameters ai are a4 = 0.1, a6 = 0.2, a7 = 0.15, 

a9 = 0.5 and the remaining ai are equal to zero. The maximum 

consumer demand dmax = 30 items and the actual one is 

shown in Fig. 2. The design parameter s0 is selected as 

35 items in order to obtain a satisfactory compromise 

between fast convergence rate and reasonable values of the 

control signal. The minimum demand stock level that ensures 

full consumer demand satisfaction, according to Theorem 5, 

is equal to 252 items and for the simulation a slightly larger 

value was used, namely yd = 270 items. The control signal is 

depicted in Fig. 3. As we can observe, it is always non-

negative and as predicted by Theorem 3, it never exceeds 

48.4 items. The warehouse stock level is shown in Fig. 4. It 

does not exceed the value of 296.25 items predicted by 

Theorem 5, and after the initial period it is always greater 
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than zero. This means, that the risk of hiring (quite often very 

expensive) emergency storage is eliminated, and the 

consumer demand is fully satisfied. The sliding variable is 

shown in Fig. 5. It can be seen from the figure that after 

converging to the region |s(kT)| ≤ 26.25 the variable remains 

inside it for the rest of the control process. 

Table 1.  Parameters of the supply sources 

p 1 2 3 4 

Lp 

[days] 

4 6 7 9 

γp 0.1 0.21 0.16 0.53 

αp 1 0.95 0.94 0.94 

 

Fig. 2. Consumers’ demand  

 

Fig. 3. Control signal. 

 

Fig. 4. Stock level. 

 

Fig. 5. Sliding variable. 

6. CONCLUSIONS 

In this paper we have presented a novel reaching law for 

discrete time sliding mode control systems. Contrary to 

previous works, it enforces a state dependent sliding variable 

decrease rate factor, and it does not require crossing the 

sliding hyperplane in each step during the quasi-sliding 

motion. These modifications improve system robustness, 

ensure bounded control signal, and eliminate chattering. In 

the second part of the paper, the proposed reaching law has 

been applied to control a periodic review inventory system. 

Important properties of the obtained controller – i.e. full 

satisfaction of the consumers’ demand, predictable upper 

bounded order volumes, and a priori known maximum stock 

level – have been proved analytically and verified in 

computer simulations. As the reaching law proposed in this 

paper does not cause chattering and offers fast convergence 

with limited magnitude of the control signal, it may also be a 

feasible option for many other engineering and non-

engineering applications. 
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