
Optimal Sampled–Data State Feedback

Control of Linear Systems ⋆

Matheus Souza ∗,∗∗ Gabriela W. G. Vital ∗∗ José C. Geromel ∗∗
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Abstract: This paper addresses and solves two optimal state-feedback control design problems
for sampled-data systems. First, we reformulate the closed-loop system as a special linear hybrid
system. Then, two theorems are developed to evaluate the H2 and the H∞ performances of
hybrid systems using specific two-point boundary value problems. Both theorems are adapted
to provide optimal control conditions, based on linear matrix inequalities (LMIs), for the state-
feedback problems under consideration. These results are generalised to cope with non-uniform
data-rates in the communication channel between the controller and the plant.
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1. INTRODUCTION

In the well-established literature on control of linear sys-
tems, there is a vast framework that focuses on sampled-
data techniques. Their importance stems from the wide use
of sampled-data control systems in real world applications,
mainly due to the flexibility induced by the adoption of
digital controllers [Chen and Francis, 1995, Ragazzini and
Franklin, 1958, Franklin et al., 1997] and communication
networks [Hespanha et al., 2007, Wang and Liu, 2008] in
the architecture of the closed-loop system. However, it is
clear that, even though there are several advantages of
using sampled-data controllers, the designer would have
to consider the constraints on the information flow that
is available for feedback, [Seron et al., 1997]. Thus, the
classical control results for linear, time-invariant (LTI)
systems have to be adapted to cope with these limitations.

Important early results on sampled-data control systems
can be found in [Ragazzini and Franklin, 1958], where the
authors study stability and closed-loop performance prop-
erties when conventional and digital control techniques are
applied. In [Chen and Francis, 1995], the authors revisit
the classical results on sampled-data systems with an opti-
mal control point of view, which includes the adoption of
H2 and H∞ Hardy spaces and their respective induced
norms, developing a more general and formal theoreti-
cal framework. The H2 sampled-data control problem is
studied in [Khargonekar and Sivashankar, 1991, Bamieh
and Pearson, 1992] under the continuous-time lifting back-
ground and in [Chen, 1993] with a more basic derivation.
Additionally, continuous-time lifting techniques are also
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applied to the H∞ sampled-data problem in [Bamieh and
Pearson Jr., 1992].

Hybrid dynamical systems [Goebel et al., 2009] combine
continuous-time and discrete-time behaviour in their dy-
namics. This important class of systems includes, as partic-
ular cases, switched systems [Liberzon, 2003] and Markov
jump linear systems [Costa et al., 2013], which are very
recurring in the literature to date. The application of
hybrid systems results to solve sampled-data control prob-
lems provides a natural time-domain based framework and
circumvents the use of the rather complicated lifting tech-
niques. Stability conditions and H2 performance results
for sampled-data control problems using a hybrid state-
space formulation are done in [Hara et al., 1994, Chen.
and Francis, 1991]. In [Kabamba. and Hara, 1993, Sun
et al., 1993], the H∞ sampled-data problem is studied on
this background, where the latter reference also considers
the sampled-data filtering problem.

In this paper, we present novel techniques for the design
of state-feedback sampled-data controllers with a hybrid
dynamical systems approach. We first provide stability
and H2 and H∞ performance conditions based on two-
point boundary value problems, whose solution, whenever
exists, can be efficiently computed. These results allow
us to formulate and solve H2 and H∞ optimal control
problems when the sampling period is known and constant.
Finally, the periodic sampling constraint is relaxed in order
to provide robust feedback controllers when the data-rate
is bounded but unknown.

The notation used throughout the paper is standard. For
square matrices tr(·) denotes the trace function. For real
matrices or vectors (′) indicates transpose. For symmetric
matrices, the symbol (•) denotes each of its symmetric
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blocks. The sets of real, nonnegative real and natural
numbers are denoted by R, R+ and N. For any symmetric
matrix X , we denote X > 0 (X ≥ 0) to state that X is
positive (semi)definite. Specifically, the notation ξ(t−k ) for
tk ≥ 0, k ∈ N, given, indicates the limit of ξ(t) as t goes
to tk from the left.

2. PROBLEM STATEMENT AND PRELIMINARIES

In this paper we consider a linear, time-invariant (LTI)
dynamical system given by its minimal state-space reali-
sation

S :

{

ẋ(t) = Ax(t) +Bu(t) + Ew(t), x(0) = 0
z(t) = Cx(t) +Du(t)

(1)

where x : R+ → R
n is the state, u : R+ → R

m and
w : R+ → R

p are the control and the exogenous input,
respectively, and z : R+ → R

q is the controlled output.
The control signal u belongs to a special class of admissible
functions of the form

u(t) = Kx(tk), ∀t ∈ [tk, tk+1) (2)

where the sequence of sampling instants {tk}k∈N is such
that t0 = 0, tk+1 − tk > 0 and limk→∞ tk = ∞.
Our main goal is to provide design conditions for the
determination of the gain matrix K ∈ R

m×n such that
the closed-loop system S is globally asymptotically stable
and either its H2 or its H∞ norm is minimised; see
[Colaneri et al., 1997] for details on Hardy spaces. Thus,
considering the system evolves from zero initial condition,
our main purpose in this paper is to discuss and solve
from the theoretical and numerical viewpoint the following
optimal control problems that take into account constraint
(2), which characterises a sampled-data state feedback
control law. For each problem the optimal solution will be
fully characterised by necessary and sufficient conditions
expressed by LMIs.

(P1) Optimal H2 Control: we wish to solve the opti-
misation problem

inf
K

‖S‖22 = inf
K

p
∑

i=1

∫ ∞

0

zi(t)
′zi(t)dt (3)

where zi is the output associated to the exogenous im-
pulsive perturbation w(t) = eiδ(t), t ∈ R+, considering
that ei ∈ R

p is the i-th column of the identity matrix of
compatible dimension.

(P2) Optimal H∞ Control: the optimisation problem
to be solved is

inf
K

‖S‖2∞ = inf
K,γ

{

γ2 : ‖z‖22 − γ2‖w‖22 < 0
}

(4)

for any external disturbance w ∈ L2(R+), where ‖ · ‖2
is the usual norm in L2(R+).

It is important to keep in mind that both problems de-
scribed above, are classical from the viewpoint of op-
timal control and are also well-defined in the sampled-
data framework. Therefore, it is of interest to adequately
consider the intersampling continuous-time behaviour of
the plant to attempt to keep these properties whenever a
sampled-data strategy has to be designed.

In order to solve problems (P1) and (P2) stated before,
we notice the LTI system (1), together with the constraint

on u imposed by (2), can be rewritten in the alternative
albeit equivalent form

H :























ξ̇(t) =

[

A B
0 0

]

ξ(t) +

[

E
0

]

w(t), ξ(0−) = 0

z(t) = [C D ] ξ(t)

ξ(tk) =

[

I 0
K 0

]

ξ(t−k )

(5)
which is valid for all t ∈ [tk, tk+1). Note that the equiva-
lence between the hybrid linear system H given in (5) and
the original one stems from the particular choice of the
augmented state vector ξ(t) = [x(t)′ u(t)′]′.

3. HYBRID SYSTEMS ANALYSIS

Motivated by the previous formulation, we will analyse the
following hybrid linear system with realisation

H :







ξ̇(t) = A ξ(t) + Ew(t), ξ(0−) = 0
z(t) = C ξ(t)
ξ(tk) = K ξ(t−k )

(6)

which is valid for all t ∈ [tk, tk+1). For the moment, we
assume the jump rate is constant, that is, tk+1−tk = T > 0
for all k ∈ N. This assumption will be relaxed afterwards
in order to cope with non uniform data-rates.

Note that the realisation defined in (6) reduces to the
hybrid system described in (5) whenever the matrices
are properly specified. Thus, it is of interest to analyse
systems with this structure since the obtained results
can be adapted to the sampled-data control problems to
be considered. To this end, we first state the following
theorem that provides a way to evaluate the H2 norm of
the hybrid system H.

Theorem 1. If there exists a positive definite matrix S > 0
satisfying the two-point boundary value problem defined
by the linear differential equation

Ṗ (t) +A′P (t) + P (t)A+ C′C = 0 (7)

together with the initial P (0) = S−1 and final P (T ) >
K′S−1K conditions, then the hybrid linear system H with
realisation (6) is asymptotically stable and is such that

‖H‖22 < tr(E ′K′S−1KE) (8)

Proof: First we set ξ(0−) = ξ0 and w ≡ 0 in (6) and define
the following quadratic function

V (ξ(t)) = ξ(t)′P (t)ξ(t) (9)

for all t ∈ [tk, tk+1), ∀k ∈ N. Since (7) is time-invariant
then its solution in the first time interval [0, T ) remains
the same in the subsequent ones provided that we set
P (tk) = P (0) and P (t−k+1) = P (T ) for all k ≥ 1.
Since P (t) is not assumed to be positive definite for all
t ∈ [tk, tk+1), ∀k ∈ N then V (·) cannot be considered as
a Lyapunov function candidate associated to the hybrid
systemH. Nevertheless, it is essential to evaluate the norm
indicated in (8). Indeed, at any time instant t ∈ (tk, tk+1),
its time derivative satisfies

V̇ (ξ(t)) = ξ(t)′
(

Ṗ (t) +A′P (t) + P (t)A
)

ξ(t)

=−z(t)′z(t) (10)
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where we have used the fact that P (·) is the solution of (7).
Moreover, simple integration of both sides of this equality
with respect to t ∈ [tk, tk+1) provides

∫ tk+1

tk

z(t)′z(t)dt = V (ξ(tk))− V (ξ(t−k+1)) (11)

Thus, if we consider the initial and final conditions, we can
readily verify that V (ξ(tk)) = ξ(tk)

′S−1ξ(tk) and taking
into account the discontinuity of ξ(t) at the time instants
t−k+1 and tk+1, we have

V (ξ(t−k+1)) = ξ(t−k+1)
′P (t−k+1)ξ(t

−

k+1)

> ξ(t−k+1)
′K′S−1Kξ(t−k+1)

> ξ(tk+1)
′S−1ξ(tk+1) (12)

Hence, considering these relations, we define the positive
definite quadratic function v(·) > 0, given by v(ξ(tk)) =
ξ(tk)

′S−1ξ(tk), and obtain

v(ξ(tk+1))− v(ξ(tk)) < −

∫ tk+1

tk

z(t)′z(t)dt < 0 (13)

which implies that v(·) is a valid Lyapunov function associ-
ated to the discrete-time process ξ(tk) → ξ(tk+1), ∀k ∈ N.
Hence, v(ξ(tk+1)) → 0 as k → ∞ and it follows that

∫ ∞

0

z(t)′z(t)dt=
∑

k∈N

∫ tk+1

tk

z(t)′z(t)dt

<
∑

k∈N

(v(ξ(tk))− v(ξ(tk+1)))

< v(ξ(0)) = ξ′0K
′S−1Kξ0 (14)

since ξ(0) = Kξ0. The H2 norm is determined considering
the system (6) with ξ(0−) = ξ(0) = 0 and w(t) = δ(t−)ei.
The effect caused by the impulsive disturbances on the
system and by the discontinuity at t = 0− is the same
as the one induced by the initial conditions ξ(0) = KEei,
for i = 1, · · · , p, which, together with the inequality (14),
yields (8) and that completes the proof. ✷

We notice that the solution of the linear differential matrix
equation (7) follows immediately without difficulty and
linearity with respect to the matrix variable S−1 > 0 is
observed. In the following theorem, we state conditions
that allow us to determine the H∞ norm of H.

Theorem 2. If there exists a positive definite matrix S > 0
satisfying the two-point boundary value problem defined
by the nonlinear differential equation

Ṗ (t)+A′P (t)+P (t)A+ γ−2P (t)EE ′P (t)+ C′C = 0 (15)

together with the initial P (0) = S−1 and final P (T ) >
K′S−1K conditions, then the hybrid linear system H with
realisation (6) is asymptotically stable and is such that

‖H‖2∞ < γ2 (16)

Proof: The proof is similar to that of Theorem 1. ✷

Once again the matrix differential equation (15) is time
invariant which simplifies the determination of a solution
valid in all time interval of the form [kT, (k+1)T ), ∀k ∈ N,
even though it is nonlinear. For the moment we want to
stress that both theorems stated in this section provide
important results on hybrid linear systems analysis.

4. H2 SAMPLED-DATA CONTROL

In this section, our main purpose is to solve theH2 optimal
control problem (P1) and, for the moment, we still assume
that the intersampling time interval is constant, that is,
tk+1− tk = T > 0. To this end, we consider the conditions
stated in Theorem 1 and observe that

P (t) = e−A
′tP (0)e−At −

∫ t

0

eA
′(τ−t)C′CeA(τ−t)dτ (17)

valid for t ∈ [0, T ], solves the differential equation (7); see
[Abou-Kandil et al., 2003] for details. Thus, (17) together
with the initial and final consitions, yield

eA
′TK′S−1KeAT < S−1 −RT (18)

where 1

RT =

∫ T

0

eA
′τC′CeAτdτ > 0 (19)

Therefore, remembering the realisation (A, E , C,K) is
block structured as depicted in (5), our main goal is to
solve the optimisation problem

inf
K,S>0

{

tr(E ′K′S−1KE) : eA
′TK′S−1KeAT < S−1 −RT

}

(20)

Surprisingly, (20) can be reformulated as a convex opti-
misation problem. The key observation to attain this goal
is to introduce the new matrix variable W > 0 and split
the constraint in (20) as [I K ′]S−1[I K ′]′ < W−1 and

eA
′T [I 0]′W−1[I 0]eAT < S−1 − RT . Moreover, from (5),

simple algebraic manipulations point out that

KeAT =

[

I
K

]

[AT BT ] (21)

where we readily identify the matrices AT = eAT and

BT =
∫ T

0 eAτBdτ , which are the classical ZOH discrete-
time equivalent matrices [Chen and Francis, 1995, Ander-
son and Moore, 2007]. All these relations allow us to state
the following theorem, that shows the constraints of the
optimal control problem (20) can be expressed in terms of
linear matrix inequalities.

Theorem 3. Problem (20) is feasible if, and only if, there
exist positive definite symmetric matrices S,W and a ma-
trix M of compatible dimensions such that the following
LMIs

[

W
[

W M ′
]

• S

]

> 0 (22)





W − [AT BT ]S

[

A′
T

B′
T

]

[AT BT ]S

• R−1
T − S



 > 0 (23)

hold.

Proof: First, let us prove the sufficiency. Assume that (22)-
(23) hold. Setting K = MW−1, we multiply both sides
of (22) by diag(W−1, I) and then calculate the Schur
Complement of the last row and column, yielding

W−1 >
[

I K ′
]

S−1

[

I
K

]

(24)

1 Matrix RT is positive definite for T > 0 whenever the pair (A, C)
is observable. It can be verified that this is always true provided that
the pair (A,C) is observable, C′D = 0 and D′D > 0.
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Moreover, (23) is equivalent to R−1
T > S > 0 and

W > [AT BT ]
(

S−1 −RT

)−1
[

A′
T

B′
T

]

(25)

where we have used the Matrix Inversion Lemma (see
[Meyer, 2000]) to get this inequality, which, together with
(21) and (24), allows us to verify that

S−1 −RT >

[

A′
T

B′
T

]

W−1 [AT BT ]

> eA
′TK′S−1KeAT (26)

and, thus, the constraints of the optimisation problem (20)
are feasible. Conversely, let us assume that (18) is feasible
for a given gain matrix K ∈ R

m×n and a given symmetric
matrix S−1 > RT > 0. These assumptions allow us to
write it as

S−1 −RT >

[

A′
T

B′
T

]

Φ [AT BT ] (27)

where Φ = [I K ′]S−1[I K ′]′ > 0. Therefore, simple
algebraic manipulations allow us to rewrite it equivalently
as

Φ−1 > [AT BT ]
(

S−1 −RT

)−1
[

A′
T

B′
T

]

(28)

and we conclude that this inequality remains valid if we
replace Φ−1 by W = Φ−1 − ǫI > 0, with ǫ > 0 sufficiently
small, which gives (23). However, this also implies that
W−1 > Φ and consequently

W > WΦW =
[

W M ′
]

S−1

[

W
M

]

where M = KW , reproduces the linear matrix inequality
(22) and, thus, the proof is complete. ✷

This result is somewhat surprising because it shows that
the feasible set of problem (20) is convex and so can be
expressed by LMIs. Furthermore, the objective function
that defines a valid upper bound to the H2 norm of the
hybrid system H under consideration can also be written
as a function of the new set of matrix variables introduced
in Theorem 3. Indeed, from (5)-(6), (8) and (24) we obtain

‖S‖22 < tr(E ′K′S−1KE)

< tr
(

E′W−1E
)

(29)

meaning that problem (20) reduces to the following convex
programming problem

inf
S,W,M

{

tr(E′W−1E) : (22)− (23)
}

(30)

Hence, all the results developed so far point out that the
boundary value problem in Theorem 1 can be efficiently
solved using the numerical methods available in the lit-
erature to date. This aspect is of particular importance
since for any T > 0 we are able to solve problem (P1)
exactly, that is, with no kind of approximation. Of course,
constraint (2) is always satisfied and, in general, is respon-
sible for the performance deterioration as T > 0 increases.
It can be shown that problem (30) recovers the classical
H2 optimal control problem in continuous-time whenever
T > 0 becomes arbitrarily small.

Now we consider a more general problem, in which the
control signal u, given in (2) is unevenly sampled. Indeed,
the only available information is that the intersampling

time intervals Tk = tk+1 − tk > 0, k ∈ N are time-
varying and bounded, that is, Tk ∈ [T⋆, T

⋆], where T ⋆ >
T⋆ > 0 are given by the designer. This problem has
important practical implications since shared networked
environments usually do not present uniform data rate
[Hespanha et al., 2007, Wang and Liu, 2008]. To this end,
we seek a symmetric matrix S > 0 and a robust state
feedback gain K that solve the problem

inf
S,W,M

{

tr(E′W−1E) : (22)− (23), ∀T ∈ [T⋆, T
⋆]
}

(31)

It is clear that the nonlinear dependence of the constraints
of problem (31) on the intersampling interval T ∈ [T⋆, T

⋆]
makes this problem difficult to solve. However, continuity
of the constraints with respect to T allow us to circumvent
this difficulty by selecting a large enough number N of
evenly spaced points Ti, i = 1, . . . , N , in the interval
[T⋆, T

⋆] and imposing the constraints of (31) to each T =
Ti simultaneously. This problem can be solved efficiently
even for N very large, see [Boyd et al., 1994]. The following
example validates the theoretical results developed so
far in both contexts, namely, constant and time-varying
intersampling time intervals.

Example 1. We consider the open-loop unstable sampled-
data system (1) with

A =

[

0 1
−6 1

]

, B =

[

0
1

]

, E =

[

1
1

]

, C =

[

1 0
0 0

]

, D =

[

0
1

]

already discussed in [Souza et al., 2013]. For T = 0.5 s, we
apply the optimal H2 design conditions (30) and obtain
the same state feedback gain K = [2.3758 − 1.3907],
which yields the closed-loop performance ‖S‖22 = 17.5661.
We also observe that the optimal solution provided by
these conditions coincides with the one provided in [Souza
et al., 2013] for all T > 0 and, thus, the same behaviour
of the optimal cost with respect to the sampling period
values remains valid; that is, for T → 0, the optimal
continuous-time solution is generated and there are patho-
logical sampling frequencies for which the system is un-
controllable [Chen and Francis, 1995, Seron et al., 1997].
Finally, for the robust controller design, we consider the
interval [T⋆, T

⋆] = [200, 800] ms and apply the robust
design conditions stated in (31), with N = 200. The robust
state feedback gain provided is K = [4.0766 − 1.2187],
which ensures the bound ‖S‖22 < 38.9648 for the closed-
loop system. This controller is then validated through time
simulation. Indeed, we compute 2, 000 time simulations
with uniformly distributed time-varying intersampling in-
tervals Tk ∈ [T⋆, T

⋆], which yield a mean closed-loop H2

performance of 28.8998 and a worst case performance of
36.9778.

5. H∞ SAMPLED-DATA CONTROL

Now we focus on the solution of the optimal control
problem (P2). To this end, we assume from now on the
existence of a symmetric (not necessarily positive definite
or stabilising) solution to the algebraic Riccati equation
(ARE)

AQ̄+ Q̄A′ + γ−2EE ′ + Q̄C′CQ̄ = 0 (32)

which is of the form Q̄ = diag{Q̄, 0} where Q̄ is a
symmetric solution to the ARE

AQ̄+ Q̄A′ + γ−2EE′ + Q̄C′CQ̄ = 0 (33)
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and produces the closed-loop matrix

Ā = A+ Q̄C′C =

[

Ā B̄
0 0

]

(34)

where Ā = A + Q̄C′C and B̄ = B + Q̄C′D. Finally,
considering the LTI differential Lyapunov equation

Ż + Ā′Z + ZĀ+ C′C = 0 (35)

which presents the following solution

Z(t) = e−Ā
′tZ(0)e−Āt −

∫ t

0

e−Ā
′(t−τ)C′Ce−Ā(t−τ)dτ

(36)

for all t ∈ [0, T ], it follows that P (t) =
(

Z(t)−1 + Q̄
)−1

,
∀t ∈ [0, T ]. Consequently, expressing this solution in terms
of the initial condition P (0) = S−1 > 0, we obtain

P (T )−1 − Q̄ = eĀT
(

(

S − Q̄
)−1

− R̄T

)−1

eĀ
′T (37)

where

R̄T =

∫ T

0

eĀ
′τC′CeĀτdτ > 0 (38)

At this point, we have to impose the final condition
provided in Theorem 2. This goal is accomplished if we
adopt the same strategy used to handle the H2 case by
introducing an additional matrix variableW > 0 satisfying
the constraint [I K ′]S−1[I K ′]′ < W−1. Denoting

eĀT =

[

ĀT B̄T

0 I

]

(39)

these algebraic manipulations are used to prove the next
theorem. It states that the H∞ sampled-data state-
feedback control design problem

inf
K,S>0,γ

{

γ2 : P (T ) > K′S−1K
}

(40)

can be converted to a convex programming problem ex-
pressed through LMIs. This is somewhat surprising due to
the intricate dependence of the constraint with respect to
the matrix decision variables.

Theorem 4. Problem (40) is feasible if, and only if, there
exist positive definite symmetric matrices S,W and a
matrix M of compatible dimensions such that the LMIs
(22) and
[

W − Q̄−
[

ĀT B̄T

]

(S − Q̄)

[

Ā′

T

B̄′

T

]

[

ĀT B̄T

]

(S − Q̄)

• R̄−1

T
− (S − Q̄)

]

> 0

(41)

hold.

Proof: For the sufficiency, let us assume that (22) and
(41) are valid. Then, analogously to the H2 case, we set
K = MW−1 and, thus, (22) yields

W−1 >
[

I K ′
]

S−1

[

I
K

]

(42)

On the other hand, applying the Schur Complement with
respect to the second row and column of inequality (41) it
follows that R̄−1

T + Q̄ > S > 0 and

W − Q̄ >
[

ĀT B̄T

] (

(S − Q̄)−1 − R̄T

)−1
[

Ā′
T

B̄′
T

]

(43)

However, from (39) we can factorise

Q̄ =
[

ĀT B̄T

]

e−ĀT Q̄e−Ā
′T

[

Ā′
T

B̄′
T

]

(44)

which plugged into (43) and using (37) and (42) gives the
constraint appearing in problem (40) therefore, sufficiency

follows. Conversely, now we assume that the optimisation
problem (40) is feasible for some feedback gain K ∈ R

m×n

fixed and S > 0 such that all indicated inverses exist. From
these assumptions it is seen that (43) and consequently
(41) hold provided that we choose W > 0 such that
W = Φ−1 − ǫI > 0 with ǫ > 0 sufficiently small and
Φ = [I K ′]S−1[I K ′]′ > 0. Finally, using the fact that
W−1 > Φ > 0 and taking M = KW , inequality (22)
follows. Therefore, the necessity part follows and that
completes the proof. ✷

The results stated in Theorem 4 are the H∞ counterpart
of the ones presented in Theorem 3. As before, it is
remarkable that the feasible set for the optimal control
problem is convex. Finally, putting all these relations
together, the H∞ optimal control problem (P2)

inf
S,W,M,γ

{

γ2 : (22)− (41)
}

(45)

is formulated in terms of LMIs. It is clear that, for each
T > 0 given the minimum value of γ must be determined
by line search since all matrix data in the LMI (41)
depends nonlinearly on this parameter. Similarly to the
H2 case, it can be shown that, when T → 0+, the classical
solution of the H∞ continuous-time problem is recovered.

Now we generalise these results to cope with uneven
intersampling time intervals Tk = tk+1 − tk > 0, which
are time-varying and bounded to the interval [T⋆, T

⋆],
where the positive numbers T⋆ and T ⋆ are provided by
the designer. Thus, we seek for a robust state-feedback
gain K ∈ R

m×n and a symmetric matrix S > 0 optimal
solution of the problem

inf
S,W,M,γ

{

γ2 : (22)− (41), ∀T ∈ [T⋆, T
⋆]
}

(46)

which, adopting the same reasoning we did before, can
be handled computationally by selecting N evenly spaced
points Ti ∈ [T⋆, T

⋆], i = 1, . . . , N , and imposing the
constraint (41) to each T = Ti simultaneously. Once again,
if N is taken large enough, continuity of the constraints on
the sampling period assures the validation of this strategy.

Example 2. We consider again the continuous-time lin-
ear system of Example 1, also analysed in [Souza et al.,
2013] in the H∞ setting. In that reference, the authors
only provide optimal H∞ conditions for piecewise con-
stant exogenous disturbances, since they consider all in-
put channels have limited bandwidth in their networked
control scenario. In order to compare both H∞ design
strategies, Figure 1 shows the behaviour of three different
H∞ performance indexes with respect to the sampling
period T ∈ (0, 3]. The dashed green curve reproduces
the one presented in [Souza et al., 2013], which shows
the optimal constrained closed-loop H∞ norm, consider-
ing that only piecewise constant inputs are admissible.
However, if we take the whole L2 space as the acceptable
exogenous inputs, then the feedback gain provided by the
conditions stated in [Souza et al., 2013] can be imposed in
our design conditions and now yields the closed-loop H∞

norm represented by the dot-dashed blue curve, which is
clearly worse than its constrained counterpart. Moreover,
one should note that the points in which the green curve
attains its local minima are the ones in which the blue line
attains its local maxima. Clearly these points are the ones
in which the special structure of the inputs is exploited to
its maximum, and, thus, these solutions are not robust to
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Fig. 1. H∞ closed-loop performance.

cope with other classes of external disturbances. Finally,
the red continuous line illustrates the optimal closed-loop
H∞ performance, obtained by solving the optimisation
problem (45).

For the sake of illustration, we also consider T = 0.5 s,
for which the optimal state feedback provided in [Souza
et al., 2013] is Ks = [1.1351 − 2.9486], which can be
evaluated with the conditions developed in this section,
yielding a closed-loop performance of ‖S‖∞ = 5.2775.
We apply the design conditions stated in the optimisation
problem (45) and obtain the optimal state-feedback gain
Kopt = [1.5614 − 2.8168] with the associated closed-loop
H∞ performance ‖S‖∞ = 3.8751. We also design a robust
controller that provides a guaranteed H∞ performance
for any intersampling interval in [T⋆, T

⋆] = [200, 800] ms
by solving problem (46), with N = 200 points in this
interval. We obtain the robust feedback gain Krob =
[4.6301 − 1.1686], which ensures the guaranteed cost
‖S‖∞ < 14.3727 for the closed-loop system.

6. CONCLUSION

This paper has addressed the optimal state-feedback con-
trol design problem for sampled-data systems. To this end,
the closed-loop sampled-data system has been recast into
a structured hybrid linear system, which is the basis for
the statement of two theorems that allow us to evaluate
the H2 and the H∞ performances of hybrid linear systems.
Both theorems have then been adapted to yield optimal
control conditions, that have been reformulated as convex
optimisation problems, whose solutions can be derived
efficiently. Finally, both performance indexes have been
considered for the design of robust controllers, in which
the data-rate is time-varying, but bounded. Numerical
examples illustrate the theoretical results.
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