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Abstract: This paper considers a problem of identification for a high dimensional nonlinear
non-parametric system when only a limited data set is available. The algorithms are proposed
for this purpose which exploit the relationship between the input variables and the output and
further the inter-dependence of input variables so that the importance of the input variables
can be established. A key to these algorithms is the non-parametric two stage input selection
algorithm.

1. INTRODUCTION

This paper considers identification of a stable scalar dis-
crete nonlinear non-parametric system

y(k) = f(x1(k), x2(k), ..., xp(k)) + v(k) (1.1)

where y(k) is the system output at k and v(k) is
an i.i.d. random noise sequence. The regressor x(k) =
(x1(k), ..., xp(k)) consists of possible contributing vari-
ables. The structure of the nonlinear function f is un-
known. The system (1.1) represents a large class of non-
linear systems including the well known nonlinear auto-
regressive moving average models with exogenous inputs
(NARX) systems [9]. The goal of nonlinear non-parametric
system identification is to estimate the unknown function
f(·) based on the available data {y(k), x(k)}Nk=1.

Since the structure of f is unknown, one approach towards
this problem is to approximate the unknown f by some
basis functions φi(x)’s either linear in the unknown param-
eters f(x) =

∑
αiφi(x) or nonlinear in the unknown pa-

rameters f(x) = g(α, φ1(x), φ2(x), ...) but for some known
and fixed functions g. This approach includes polynomial
representation, splines approximation, linearization of f ,
neural networks and others. The other approach is to
estimate f(·) locally. Say if f(x0) is of interests, the value
of f(x0) is estimated based on the available local data near
x0. Almost all the methods in this class are in some form
of weighted local averages. The celebrated kernel and local
polynomial estimators [3] as well as the direct weight opti-
mization [2] and the stochastic approximation all belong to
this class. An inherent and very serious problem with any
local average approach with a high dimensional system is
the curse of dimensionality.

For many practical applications, however systems are
sparse in the sense that not all variables xi(k)’s, i =
1, 2, ..., p contribute to the output y(k) or contribute little
or are dependent. If these variables xi(k)’s that do not
contribute or are dependent can be identified and removed,

the dimension involved for identification could be much
smaller.

The variable selection problem has been extensively inves-
tigated in the literature in a linear setting, including some
well known methods LASSO, LARS and their variants.
Compressive sensing techniques are also applied for this
purpose. Despite its importance, there is only scattered
efforts for variable selection in a nonlinear non-parametric
setting.

There are two approaches to the variable selection prob-
lem. One is the hard approach, i.e., to find variables that
have absolutely no contribution to f or to the output
y(k) and once identified, to remove these variables from
x1, ..., xp. Remaining variables are contributing ones no
matter how small their contribution is. The other approach
is the soft one. Even contributing, a variable can still be
removed if its contribution is insignificant or marginal.
Clearly, variables that do not contribute are a part of
variables which contribute insignificantly or marginally.
For a practical high dimensional system, a soft approach is
usually preferred which makes the resultant model simpler.
This is important in two senses. First, a parsimony model
makes subsequent design and calculation easier. Second, a
parsimony model is usually more robust against noise and
uncertainty. Of course, a critical step for any soft approach
is the definition of what constitutes an insignificant contri-
bution and a way to test it. In this paper, a soft approach
is adopted and in addition a reliable way to detect if a
variable contributes significantly or not is developed.

Variable selections can also be characterized into two
classes. The first one is the top-down approach. It works
with the full p dimensional system and tries to determine
which variables contribute and if so, contribute by how
much. Once determined, the variables that do not con-
tribute or contribute marginally are removed. Asymptotic
analytical results are relatively speaking easy to derive for
this approach. The problem is that because of working
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with a full dimensional system, asymptotic results require
a large data set. This is because whether a data length
is long enough or not is always relative depending on the
dimension of the system. For instance, the contribution
of a variable xi to f may be evaluated by the size of
the partial derivative ∂f

∂xi
. In particular, if xi does not

contribute, ∂f
∂xi

= 0. Thus one way to determine the

contribution of xi is to estimate the size of ∂f
∂xi

by say

the local linear estimator or other methods [1, 3, 9, 10].
Though convergent under some technical conditions, the
data length needed to achieve the asymptotic convergence
is very long because it works with the full dimensional
system as a manifestation of the curse of dimensionality.
For a problem with a limited data set and a high dimension
p, the top-down approach usually does not work well.
The other approach is the bottom-up approach. For a
given pair of p, n, (n < p), the approach tries to find n
variables among all p variables that are the most dominant
in terms of their contribution to f . It works upto a n
dimensional system. If the best chosen n variables are still
not representing f well, let n = n + 1 and continue the
process. For a practical problem with a limited data set,
the bottom-up approach is usually more effective. Though
pragmatic and practically useful, theoretical results are
not easy to derive compared to the top-down approach.
We will follow the bottom-up approach in this paper.

Variable selections can be carried out in basically two
ways, with or without the involvement of the output
values. Define

Y =




y(1)
y(2)
...

y(N)


 , Xi =




xi(1)
xi(2)
...

xi(N)


 , i = 1, 2, ..., p

The first one is by checking the regressor vector structure
(X1, X2, ..., Xp). Suppose X1, ..., Xp are in a subspace or
lie on a low dimensional manifold. Then, there exists a
known or unknown q < p and some known or unknown
functions g and f̄ such that

(Xi1, Xi2, ..., Xiq) = g(Xi,q+1, ..., Xi,p)

that implies

Y = f(X1, ..., Xp) = f̄(Xi,q+1, ..., Xi,p))

resulting in a low dimensional (p−q) system. A special case
is that (X1, ..., Xp) is in a linear subspace. In such a case,
by checking the rank of the regressor matrix (X1, ..., Xp),
one can easily determine how many regressor vectors are
linear independent, say (p − q). Then, it is trivial to
calculate

(Xi1, Xi2, ..., Xiq) = (Xi,q+1, ..., Xi,p)A

for a (p− q) by N matrix A and this in turn results in

Y = f(X1, ..., Xp) = f̄(Xi,q+1, ..., Xi,p))

Though much more work is involved, the same idea applies
when (X1, ..., Xp) lies on a low dimensional manifold. The
idea is reminiscent to the unsupervised training in the
artificial intelligence and machine learning literature where
most of work, e.g., LLE and others project data to a
lower dimensional space based on some features ignoring
the output variable y and thus are not ideal for system
identification of the system (1.1) where the output error
is one of the major concerns. Ignoring the output values

and checking the structure of the regressor matrix alone
do not always solve the variable selection problem [11].
For example, if (X1, ..., Xp) are linear independent and
in fact do not lie on any low dimensional manifold but
f does not depend on (Xi1, Xi2, ..., Xiq) which can be
removed without affecting f at all. In such a case, the
output value Y plays an important role. Another example
is that the regressors only approximately lie in a low
dimensional subspace or on a low dimensional manifold.
How good a linear subspace or low dimensional manifold
approximation is needs to take the output values into the
consideration.

Though different, the order determination has also been
frequently used as a tool for variable selections in the
literature, e.g., in a neural network setting [15] or in a
NARX setting [9].

2. FORWARD/BACKWARD STEPWISE APPROACH

In this section, we propose a forward/backward stepwise
selection. It starts with an 1-dimensional system by picking
up the most important variable and then, the dimension
increases one by one by picking up the next most impor-
tant variable until the prescribed performance is met.

2.1 The minimum set of the unfalsified variables and low
dimensional neighborhood

Consider the system (1.1). First, our focus is for a given
pair of n, p, (n < p), to find the n most important vari-
ables xij (k), j = 1, 2, ..., n among x1(k), x2(k), ..., xp(k).
Our idea is the minimum set of the unfalsified vari-
ables. To explain easily, let us say that n variables
(xi1(k), xi2(k), ..., xin(k)) really contribute and the rest
p − n variables do not. Then the set (xi1(k), ..., xin(k)) is
the minimum set of the unfalsified variables, i.e., for some
g

|f(x1(k), ..., xp(k))− g(xi1(k), ..., xin(k))| ≈ 0 (2.2)

for all k independent of of the values of xj(k) for all
j 6∈ (i1, i2, ..., in). Any set (xj(k), ..., xn̂+j−1(k)) for some
n̂ > n that contains (xi1(k), xi2(k), ..., xin(k)) also has the
property of unfalsified variables but is not the minimum
set. On the other hand with n̂ < n, there does not exist
any function g such that

|f(x1(k), ..., xp(k))− g(xj1(k), xj2(k), ..., xjn̂(k))| ≈ 0

for all k.

The algorithm starts at one variable, i.e., to find the most
important single variable xi(k) among all x1(k), ..., xp(k).
To this end, low dimensional neighborhood has to be de-
fined for each 1 ≤ i ≤ p. The 1-dimensional neighborhood
of xi(k) is the collection of x(j), j = 1, 2, ..., N formally
defined by

{x(j) | (x(k)− x(j))i =
√
(xi(k)− xi(j))2 ≤ h} (2.3)

where k is fixed and h > 0 is the bandwidth that will be
discussed later. Note that the 1-dimensional neighborhood
of xi(k) is solely defined by xi(k) and any xl(k), l 6= i,
do not play any role at all. Let those of x(j) in the
neighborhood of xi(k) be denoted by x(ki1), x(k

i
2), ..., x(k

i
li
)

and the corresponding outputs be y(ki1), y(k
i
2), ..., y(k

i
li
),
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where li is the number of x(j) in the neighborhood of

xi(k). Then, the estimated output f̂i(x(k)) at x(k) based
on the neighbors x(ki1), x(k

i
2), ..., x(k

i
li
) defined by xi(k) as

in (2.3) can be calculated by the kernel estimator

f̂i(x(k)) =

∑li
j=1 K((

x(ki
j)−x(k)

h )i)y(k
i
j)

∑li
j=1 K((

x(ki
j
)−x(k)

h )i)
, i = 1, 2, ..., p(2.4)

where (
x(ki

j)−x(k)

h )i =

√
(
xi(ki

j
)−xi(k)

h )2 and the subscript

i in f̂i indicates that f̂i depends on only one component
xi(k). The kernel functionK(·) can be any standard multi-
variate kernel function with the following properties

(1) K(·) ≥ 0
(2) K(x) = 0, if ‖x‖ > h
(3) K(·) is symmetric with respect to the origin.

(4)

∫
K(x)dx = 1

and KQ(x) =
1

|Q|K(Q−1x), where Q = hI is a bandwidth

matrix that controls the size of the neighborhood by
adjusting the bandwidth h > 0. K(x(k)−x(j)) = 0 if x(k)
is not in the h-neighborhood of x(j) or ‖x(k)− x(j)‖ > h.
One such example is the the Biweight kernel function [3]

K(x) =

{
c(1− (x2

1 + x2
2 + ...+ x2

p))
2 ‖x‖ ≤ 1

0 ‖x‖ > 1

where c > 0 is a scaling constant so that∫
K(x1, ..., xp)dx1...dxp = 1.

Then the residual sum of squares (RSS)

RSSi =
1

N

N∑

k=1

(y(k)− f̂i(x(k)))
2 (2.5)

could be used to determine which xi(k) are the most
important variable in terms of the smallest output error.
We may say xi∗

1
(k) is the most important if

i∗1 = arg min
1≤i≤p

RSSi (2.6)

where RSSi is given by (2.5).

To find the second most important variable once i∗1 is
obtained as defined in (2.6), choose i ∈ (1, 2, ..., p)/i∗1,
the corresponding xi(k) and define the neighborhood of
(xi∗

1
(k), xi(k)) similarly as in (2.3) by

{x(j) | (x(k)− x(j))i∗
1
,i =

√
(xi∗

1
(k)− xi∗

1
(j))2 + (xi(k)− xi(j))2 ≤ h, i 6= i∗1} (2.7)

Say {x(k
i∗
1
,i

1 ), x(k
i∗
1
,i

2 ), ..., x(k
i∗
1
,i

li∗
1
,i
) are in the neighborhood.

Calculate the estimated output f̂i∗
1
,i(x(k)) and RSS for 2

variables respectively,

f̂i∗
1
,i(x(k)) =

∑li∗
1
,i

j=1 K((
x(k

i∗
1
,i

j
)−x(k)

h )i∗
1
,i)y(k

i∗
1
,i

j )

∑li∗
1
,i

j=1 K((
x(k

i∗
1
,i

j
)−x(k)

h )i∗
1
,i)

(2.8)

(
x(k

i∗
1
,i

j )− x(k)

h
)i∗

1
,i =

√

(
xi∗

1
(k

i∗
1
,i

j )− xi∗
1
(k)

h
)2 + (

xi(k
i∗
1
,i

j )− xi(k)

h
)2

RSSi∗
1
,i =

1

N

N∑

k=1

(f̂i∗
1
,i(x(k))− y(k))2 (2.9)

Let

i∗2 = argmin
i

RSSi∗
1
,i (2.10)

and the corresponding xi∗
2
(k) is the second most impor-

tant variable. The process continues for 3,4,...,n variables.
This finishes the Forward selection and then the back-
ward selection starts which exchanges one variable at a
time among the chosen n variables with the remaining
p − n variables to achieve the largest improvement. More
precisely, let i∗1, i

∗
2, ..., i

∗
n and the corresponding variables

xi∗
1
(k), xi∗

2
(k), ..., xi∗n(k) be chosen at the end of the for-

ward selection. Exchange i∗1 with one of the remaining
i ∈ (1, 2, ..., p)/(i∗1, i

∗
2, ..., i

∗
n) if further improvement can

be made. Define the neighborhood of x(k) similarly based
on (i, i∗2, ..., i

∗
n)

{x(j) | (x(k)− x(j))i,i∗
2
,...,i∗n = (2.11)

√
(xi(k) − xi(j))2 + (xi∗

2

(k) − xi∗
2

(j))2 + ... + (xi∗n
(k) − xi∗n

(j))2 ≤ h}

Let the neighbors be {x(k
i,i∗

2
,...,i∗n

j ), j = 1, ..., li,i∗
2
,...,i∗n}.

Now, compute the estimated output and the corresponding
RSS respectively,

f̂i,i∗
2
,...,i∗n

(x(k)) = (2.12)

∑li,i∗
2
,...,i∗n

j=1 K((
x(k

i,i∗
2
,...,i∗n

j
)−x(k)

h
)i,i∗

2
,...,i∗n

) · y(k
i,i∗

2
,...,i∗n

j
)

∑li,i∗
2
,...,i∗n

j=1 K((
x(k

i,i∗
2
,...,i∗n

j
)−x(k)

h
)i,i∗

2
,...,i∗n

)

RSSi,i∗
2
,...,i∗n

=
1

N

N∑

k=1

(y(k)− f̂i,i∗
2
,...,i∗n

(x(k)))2 (2.13)

Let i∗ be

i∗ = arg min
i∈(1,2,...,p)/(i∗

1
,i∗

2
,...,i∗n)

RSSi,i∗
2
,...,i∗n (2.14)

If RSSi∗,i∗
2
,...,i∗n < RSSi∗

1
,i∗

2
,...,i∗n , replace xi∗

1
(k) by xi∗(k)

and i∗1 by i∗. xi∗(k) is the variable that achieves the largest
improvement. Further shift (i∗, i∗2, ..., i

∗
n) and the corre-

sponding (xi∗ , xi∗
2
, ..., xi∗n

) to (i∗2, ..., i
∗
n, i

∗) and (..., xi∗n
, xi∗)

respectively and rename (i∗2, ..., i
∗
n, i

∗) and (xi∗
2
, ..., xi∗n , xi∗)

as (i∗1, ..., i
∗
n) and (xi∗

1
, ..., xi∗n). If there is no improvement,

keep i∗1. Now, the process is repeated one variable at
a time until no improvement can be achieved or some
stopping criterion is met. The newly renamed variables
xi∗

1
(k), xi∗

2
(k), ..., xi∗n

(k) are considered to be the most
important n variables among p variables x1(k), ..., xp(k)
around.

2.2 The algorithm

We are now in a position to summarize the nonlinear
non-parametric kernel based Forward/backward stepwise
approach to variable selection.
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The Forward/backward stepwise algorithm for
variable selection.

Consider the system (1.1), the data {y(k), x(k)}Nk=1 and
an n < p.

Step 1: Determine the bandwidth h > 0 (will be discussed
later).

Step 2: Forward selection.

Step 2.1: Start one variable selection.

(1) Choose one variable xi(k), 1 ≤ i ≤ p, determine
the neighborhood as in (2.3), calculate the estimated

output f̂i(x(k)) as in (2.4) and RSS as in (2.5).
(2) Determine the optimal i∗1 and xi∗

1
(k) as in (2.6).

Step 2.2: Start two variables selection.

(1) Choose one more variable xi(k) from (1, 2, ..., p)/i∗1,
determine the neighborhood as in (2.7), calculate the

estimated output f̂i∗
1
,i(x(k)) and RSS as in (2.8) and

(2.9) respectively.
(2) Determine the optimal (i∗1, i

∗
2) and (xi∗

1
(k), xi∗

2
(k)) as

in (2.10).

Step 2.3: Continue the process for 3,4,..., n variables.

Step 3: Backward selection.

(1) Exchange xi∗
1
(k) with the most significant one from

the remaining variables (1, 2, ..., p)/(i∗1, ..., i
∗
n) that

contributes more to the error reduction than xi∗
1
(k).

Determine the neighborhood, calculate the estimated
outputs and RSS as in (2.11), (2.12) and (2.13)
respectively.

(2) Find i∗ from (2.14) and compare the corresponding
error with previously selected n variables. If the error
is smaller, replace xi∗

1
with i∗, shift and rename

(i∗, i∗2, ..., i
∗
n) and the corresponding (xi∗ , xi∗

2
, ..., xi∗n)

as described in the algorithm.
(3) Continue the process until all n variables have been

checked. If error can not be further reduced, go to
Step 4, otherwise go back to Step 3.

Step 4: The finally selected xi∗
1
(k), xi∗

2
(k), ..., xi∗n

(k) are the
most important n variables.

The idea of the algorithm is that RSS (2.13) monotonically
decreases when the number of variables chosen is less
than the actual number of contributing variables and also
increases. When the number of variables chosen is equal
or large than the actual number of contributing variables,
RSS of (2.13) is flattened and does not decrease. as shown
in the following theorem [3].

Theorem 2.1. Consider the system (1.1). Assume that the
unknown f is continuously differentiable and the noise is
an iid zero mean finite variance random sequence. Assume
that h → 0, hnN → ∞ as N → ∞. Also assume that
only n∗ ≤ p variables xi∗

1
(k), ..., xi∗

n∗

(k) contribute in (1.1)

and the chosen variable set (xi1(k), ..., xin(k)) contains
(xi∗

1
(k), ..., xi∗

n∗

(k)). Further assume that the regressor

{x(k)} is geometrically ergodic and α-mixing with some
{α(k)} satisfying α(k) ≤ cρk for some c > 0 and 0 < ρ < 1.

Then for each k, f̂i∗
1
,i∗

2
,...,i∗n(x(k)) − f(x(k)) goes to zero

asymptotically in probability as N → ∞.

We would like to comment that the ergodic and mixing
condition listed above amounts to some stability condi-
tions of the system (1.1). A sufficient condition is that
the system (1.1) has asymptotical fading memory or is
exponentially and incrementally input-to-state stable. In-
terested readers may refer [3] for details.

2.3 Statistical hypothesis test of the dimension

When the number of variables chosen is equal or large
than the actual number of contributing variables, (2.13)
is flattened. Thus, the corresponding RSS as defined by
(2.13) is an indication of how appropriate the dimension
n is. By checking the knee is very efficient but is more or
less ad hoc. To make the dimension n determination more
rigorous, statistical methods can be applied for testing
if the chosen n is appropriate. The most well known is

the Box-Pierce test [4]. Let f̂i∗
1
,...,i∗n

(x(k)) be the output
estimate at x(k) when the correct variables are selected.

Then, the residual r(k) = y(k) − f̂i∗
1
,...,i∗n

(x(k)) is almost
white. Let

γ(j) = E(r(k)− Er(k))(r(k − j)− Er(k)),

ρ(j) = γ(j)/γ(0)

denote the lag-j autocovariance and the lag-j correlation
coefficient of r(k), where E is the expectation operator. If
r(k) is white,

ρ(1) = ... = ρ(p− 1) = 0.

To check, the Box-Pierce test says that for a large N the
sampled version of

N

p−1∑

j=1

ρ(j)2

follows a Chi-square distribution with (p − 1) degree of
freedom if r(k) is white. This provides a framework for
statistical hypothesis tests. Set the null hypothesis

H0: the residual r(k) is white. (2.15)

Then, the null hypothesis H0 can be tested based on
N

∑p−1
j=1 ρ(j)

2 and the χ2(p − 1) distribution. If H0 is

accepted, r(k) is considered to be white and the dimen-
sion n is accepted. To test the hypothesis, we calculate
N

∑p−1
j=1 ρ(j)

2 based on the residuals r(k). Let the thresh-

old d be taken from the χ2
α(p − 1) distribution with α

being the level of significance, i.e., the probability to reject
H0 though H0 is true. The hypothesis H0 is accepted if
N

∑p−1
j=1 ρ(j)

2 ≤ d. If N
∑p−1

j=1 ρ(j)
2 > d, H0 is rejected

and we conclude that the dimension n is not high enough.

There is a problem however. What we really test by the
Box-Pierce is not if the residual r(k) is white or not but
if r(i) and r(j) are uncorrelated or not. The Box-Pierce
test [4] works well for this purpose in linear identification
but may not work for nonlinear identification because
the residual r(k) may exhibit some nonlinear dependence
which is usually the case in nonlinear identification. In such
a case, the Box-Pierce test does not work well. In fact, the
Box-Pierce test could provide some misleading conclusions
[8, 16]. Therefore, a modified Box-Pierce test is needed
in the presence of nonlinear dependence of r(k). To this
end, along the direction of [8, 16] and our early work, the
Box-Pierce test is modified here. Let r(k) be the residual.
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Denote the sampled mean, the lag-j autocovariance, the
lag-j correlation coefficient by respectively

µ̂ =
1

N

N∑

k=1

r(k),

γ̂(j) =
1

N − j

N∑

k=j+1

(r(k)− µ̂)(r(k − j)− µ̂), ρ̂(j) = γ̂(j)/γ̂(0)

It was shown in [8, 16] that for large N ,

N(ρ̂(1), ..., ρ̂(p− 1))V −1




ρ̂(1)
...

ρ̂(p− 1)


 (2.16)

follows a chi-square distribution with (p-1) degree of
freedom when H0 is true, where

V = C/γ(0)2 =




c11 . . . c1,p−1

...
. . .

...
cp−1,1 . . . cp−1,p−1


 /γ(0)2

cij =

∞∑

l=−∞

E(r(k)− µ)(r(k− i)− µ)(r(k+ l)− µ)(r(k+ l− j)− µ)

i, j = 1, ..., p− 1

with µ being the mean value of r(k). The difference
is that the identity matrix is used in the Box-Pierce
test [4] while in the modified Box-Pierce test, the actual
autocovariance matrix V is used. The modified Box-
Pierce test is more reliable for large N even the residual
r(k) exhibits nonlinear dependence. For our application,
however, the actual autocovariance matrix V is unknown
and has to be estimated. To this end, let

Ŵ (k) =




(r(k)− µ̂)(r(k − 1)− µ̂)
(r(k)− µ̂)(r(k − 2)− µ̂)

...
(r(k)− µ̂)(r(k − p+ 1)− µ̂)




and K(x) be the Biweight kernel function as defined

before. Now, define the estimate V̂ of V by Ĉ/γ̂(0)2 with

Ĉ =
l∑

j=−l

K(
j

l
)

1

N − p+ 1− |j|

∑

k

Ŵ (k)Ŵ (k − j)′

=

0∑

j=−l

K(
j

l
)

1

N − p+ 1 + j

N+j∑

k=n

Ŵ (k)Ŵ (k − j)′

+

l∑

j=1

K(
j

l
)

1

N − p+ 1− j

N∑

k=n+j

Ŵ (k)Ŵ (k − j)′

where l is the bandwidth of the kernel K(·). Note all the

variables µ̂, ρ̂(j), Ŵ (k) and γ̂(j) are computable. Now, we
show that the modified Box-Pierce test is still valid if the
actual autocovariance matrix V is replaced by its estimate
as discussed above,

Theorem 2.2. Consider the residual r(k) and the corre-

sponding µ̂, γ̂(j), ρ̂(j) and V̂ = Ĉ/γ̂(0)2. Then,

Qp−1 = N(ρ̂(1), ..., ρ̂(p− 1))V̂ −1




ρ̂(1)
...

ρ̂(p− 1)


 (2.17)

converges, in distribution as N → ∞, to a chi-square
distribution with (p-1) degree of freedom if the residual
r(k) is white, provided that

l → ∞, l/N → 0, as N → ∞

Now, the hypothesis test of the dimension n can be stated
as follows.

(1) Set the null hypothesis as in (2.15).
(2) Calculate Qp−1 as in (2.17).
(3) Let the threshold d be taken from χ2

α(p− 1) distribu-
tion where α is the level of significance.

(4) The null hypothesis is accepted if Qp−1 ≤ d or
rejected if Qp−1 > d.

3. NUMERICAL SIMULATION

Clearly, the proposed algorithm depends on the bandwidth
h > 0 in the kernel calculation which is subjective. There
exists a large literature on the choice of the bandwidth
in kernel estimation [3] which is beyond the scope of this
paper. In this paper, we adopt the m-fold cross validation
method [3] to make the choice of h automatic from the
obtained data set. The exact steps can be found in the
reference [3]. In all simulations the bandwidth h > 0 is
calculated from the 5-fold cross validation and all the
estimates are constructed by the Biweight kernels.

1 2 3 4 5 6 7 8
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15

20

25

30

35

number n of variables chosen

R
S

S

Fig. 1. RSS vs the number n of variables chosen.

Consider a classical example [9]

y(k) = 10sin(x1(k)x2(k)) + 20(x3(k)− 0.5)2 + 10x4(k) + 5x5(k)

+x6(k)x7(k) + x7(k)
2 + 5cos(x6(k)x8(k)) + exp(−|x8(k)|) + 0.5η(k)

k = 1, 2, ..., 500, where η(k) is i.i.d. Gaussian noise of zero
mean and unit variance. It was assumed that x3(k), x5(k)
are independent and uniformly in [−1, 1] and the rests are
dependent variables

x4(k) = x3(k) · x5(k) + 0.1 · η(k)
x1(k) = x3(k)

2 · x5(k) + 0.1 · η(k)
x2(k) = x3(k) · x5(k)

2 + 0.1 · η(k)
x6(k) = x1(k)− x4(k) + 0.1 · η(k)
x7(k) = x3(k)

3 · x5(k) + 0.1 · η(k)
x8(k) = x2(k) · x5(k) + 0.1 · η(k)

(3.18)

so the 8-dimensional regressors x1(·), ..., x8(·) are not ex-
actly but approximately on an 2-dimensional manifold.
Only 500 data points were available for this 8-dimensional
system and h = 0.2 was chosen by the 5-fold cross valida-
tion.
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First the residual sum of squares RSS vs the number
n of the variables chosen were calculated as shown in
Figure 1 by the Forward/Backward selection algorithm.
Clearly from the figure, when n = 2 the error is small
and flatten which suggests that only two variables are
dominant or equivalently the regressors are close enough
to a 2-dimensional manifold so that an 2-dimensional
representation of the original 8-dimensional system is
satisfactory in terms of RSS. We then calculated Qp−1 =
Q7 = 8.2273 of (2.17) for the hypothesis test. Let α =
0.05 which implies χ2

0.05(7) = 14.07 > 8.2273. Thus the
dimension 2 was also accepted by the hypothesis test. We
then applied the Forward/Backward algorithm again by
fixing n = 2 to find which 2 variables are the dominant
ones. In 100 Monte Carlo runs, the variables (x3, x5) were
picked 100 times. To verify the claim, a fresh validation
data k = 1, ..., 40

x3(k) = 0.9 ∗ sin(
2πk

20
), x5(k) = 0.9 ∗ cos(

2πk

20
),

were generated and other variables xi(k)’s, i 6= 3, 5,
remained the same relation as in (3.18). Two estimated

outputs ŷ(k) = f̂(x(k)), k = 1, 2, ..., 40 were calculated by
the training dataN = 500 as described before based on the
Biweight kernels. The first one was based on identification
by considering Example 1 directly as an 8-dimensional
system. The second one was based on identification of
an 2-dimensional nonlinear non-parametric system y(k) =
g(x3(k), x5(k)) for some unknown g as the results of the
proposed variable selection algorithms. Figure 2 shows
the actual output (solid line) and the estimated outputs
by identifying the 8-dimensional Example 1 directly with
GoF=0.6940 (dash) and by identifying a low dimension
system with GoF=0.9205 (dash-dot) where GoF stands
for the goodness-of-fits is defined as

GoF = (1−

√ ∑
(y(k)− ŷ(k))2∑

(y(k)− 1
40

∑
y(k))2

)× 100%

Clearly, by taking advantages of the proposed variable
selection algorithms, a good estimate of the system can
be obtained even with a very limited data length N = 500
for an 8-dimensional nonlinear system.

0 5 10 15 20 25 30 35 40
−10

0

10

20

30

40

50
Gof=0.9205(2−dim),0.6940(8−dim)

Fig. 2. Outputs and GoFs of different identification results.
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