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Abstract: A method for decentralized PI controller design for stable MIMO plants is presented.
Each loop is designed individually by shaping the Gershgorin bands so that they avoid the circle
with a prescribed radius centered in the critical point. The radius is used as a tuning parameter.
The proposed procedure guarantees stability and robustness of the closed loop. A simulation
example is provided to demonstrate the performance of the proposed method.
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1. INTRODUCTION

Proportional-integral-derivative (PID) controllers have at-
tracted many engineers especially in the industry for a
long time because of easy implementation and tuning
(Åström and Hägglund (1995, 2005)). Moreover, for SISO
systems they achieve acceptable control performance in
most applications.

For MIMO systems performance of PID controllers is
deteriorated especially when strong interactions occur. In
that case utilizing some decoupling control (Wang and
Yang (2002)) is inevitable. Nevertheless, in the case of
moderate interactions a decentralized PID control is often
sufficient and the corresponding design procedures are
much simpler.

Most design methods for decentralized PID control are
based on a frequency domain approach. Typically, the
ultimate points on the frequency responses of diagonal
elements are found and the controller parameters are
determined using some detuning factor, e.g. biggest log
modulus tuning (BLT) intoduced by Luyben (1986). Such
procedures are in fact the multivariate counterparts to
Ziegler-Nichols tuning rules (Chen and Seborg (2003); Loh
et al. (1993)).

The common disadvantage of all the methods mentioned
above is that they disregard the off-diagonal terms. An
approach taking the interactions into account based on
Nyquist stability criterion for MIMO systems (Rosenbrock
(1970)) shapes the Nyquist frequency responses of diagonal
open-loop transfer functions that are represented by Ger-
shgorin bands that aggregate the interactions (Ho et al.
(1995); Husek (2011)). For a non-oscillatory second-order
plus dead-time model the decentralized PID parameters
guaranteeing properties analogical to gain and phase mar-
gin were determined by Ho et al. (2000). Different ap-
proach consists in analysis of equivalent transfer functions
that include closing of all loops (Xiong et al. (2007)).
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Procedures that iteratively improve the shape of frequency
response have been reported in Lee et al. (2000).

The method presented in this paper shapes the Nyquist
plot such that it avoids a circle with the prescribed radius
centered in the critical point. The experiments reveal that
the radius may serve as an appropriate tuning parameter
(Garcia et al. (2005)). The procedure is graphical in nature
and plots all the PI controller candidates a curve in the
kP−kI plane. The presented method is applied on a control
of two-input two-output Wood-Berry distillation column
model (Wood and Berry (1973)).

2. DIRECT NYQUIST ARRAY DESIGN

Consider a plant with n × n transfer matrix G(s) =
[gij(s)]n×n controlled by a decentralized controller with di-
agonal transfer matrix C(s) = diag{c1(s), c2(s), . . . , cn(s)},
see Fig. 1.

Fig. 1. Decentralized control scheme

The individual control loops are paired according to Rel-
ative Gain Analysis (RGA) (Maciejowski (1989)). Denote
by

L(s) = G(s)C(s), (1)

H(s) = (I + G(s)C(s))−1 G(s)C(s) (2)

the open-loop and closed-loop transfer matrices, respec-
tively. Consider the Nyquist plot of the diagonal elements
lmm(jω) = gmm(jω)cm(jω), m = 1, . . . , n of L(jω), with a
superimposed circle of the radius
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ρm(ω) =
n∑

k=1,
k 6=m

|gkm(jω)cm(jω)|. (3)

This circle is referred to as the Gershgorin circle. The
whole band composed of the circles for all ω > 0 is called
the Gershgorin band. Stability of the closed loop can be
tested by the following theorem.

Theorem 1 [Direct Nyquist Array (DNA) (Rosenbrock
(1970); Maciejowski (1989))] Let the Gershgorin bands
centered on the diagonal elements lmm(jω) of L(jω),m =
1, . . . , n exclude the point (−1+j0) (such a transfer matrix
L(s) is called column diagonally dominant). Let the i-th
Gershgorin band encircles the point (−1 + j0) Ni times
anticlockwise. Then, the closed loop transfer matrix H(s)
is stable if and only if

n∑

i=1

Ni = p0 (4)

where p0 is the number of unstable poles of L(s).

Since most practical processes are open-loop stable, p0 =
0 is assumed throughout this paper. In that case the
closed loop transfer matrix H(s) with column diagonally
dominant open loop transfer matrix L(s) is stable if and
only if the Nyquist plots of lmm(jω) do not encircle the
point (−1 + j0) for all m = 1, . . . , n.

3. DECENTRALIZED PI CONTROL BASED ON
SHAPING THE GERSHGORIN BANDS

The goal is to shape the Nyquist plots of diagonal open-
loop transfer functions such that it circumferences a circle
with radius Q centered in the point (−1 + 0j) in the
complex plane (see Fig. 2).
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Fig. 2. Gershgorin band and Q-circle

The condition that the Gershgorin band touches the Q-
circle can be expressed as

|1 + lmm(jω)| ≥ Q + ρm(ω) ∀ω, m (5)
with the equality sign holding for just one ω = ωsm for
each m = 1, . . . , n.

If we introduce functions dm(ω) by

dm(ω) = |1 + lmm(jω)|2 − (Q + ρm(ω))2, m = 1, . . . , n

necessary conditions for the inequality (5) to be met are

dm(ω) = 0 (6)
∂dm(ω)

∂ω
= d′(ω) = 0, m = 1, . . . , n. (7)

Let us write each element of the plant transfer matrix
gkm(jω) (possibly involving a time delay) as

gkm(jω) = akm(ω) + jbkm(ω) = rkm(ω)ejφkm(ω) (8)
and use a decentralized PI controller

C(s) = diag{c1(s), . . . , cn(s)}
cm(s) = kPm +

kIm

s
, m = 1, . . . , n, (9)

to control the plant.

Denote

Rm(ω) =
n∑

k=1,
k 6=m

|gkm(jω)|, m = 1, . . . , n. (10)

After a straightforward computation one obtains

dm(ω) = 1−Q2 + 2
(

amm(ω)kPm +
bmm(ω)kIm

ω

)

+ (r2
mm(ω)−R2

m(ω))
(

k2
Pm +

k2
Im

ω2

)
(11)

− 2QRm(ω)

√
k2
Pm +

k2
Im

ω2

and

d′m(ω) = 2
(

a′mm(ω)kPm + kIm
b′mm(ω)ω − bmm(ω)

ω2

)

+2(rmm(ω)r′mm(ω)−Rm(ω)R′m(ω))
(

k2
Pm +

k2
Im

ω2

)

−2
(
r2
mm(ω)−R2

m(ω)
) k2

Im

ω3
− 2QR′m(ω)

√
k2
Pm +

k2
Im

ω2

+2QRm(ω)
(

k2
Pm +

k2
Im

ω2

)− 1
2 k2

Im

ω3
. (12)

The equations (6) and (7) are solved numerically with
respect to kPm > 0, kIm > 0 for each ω from a suitably
chosen frequency range. The solutions form a curve in the
kP − kI plane for each individual controller cm(s), m =
1, . . . , n.

According to the DNA theorem, in order to achieve closed-
loop stability the frequency plots of the open-loop diagonal
elements lmm(jω) should not encircle the critical point
(−1 + j0). Solving the equation

lmm(jω) = gmm(jω)cm(jω)

= (amm(ω) + jbmm(ω))
(

kPm +
kIm

jω

)
= −1
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for the real and the imaginary part separately one obtains
the stability region in the kP−kI plane which is delimited
by

kPm =−amm(ω)
r2
mm(ω)

,

kIm =−ω
bmm(ω)
r2
mm(ω)

(13)

plotted for 0 ≤ ω < ∞.

All the PI controllers stabilizing the closed loop and
guaranteeing that the minimal distance of the Gershgorin
bands from the critical point is Q lie in the kP − kI plane
on the curve determined above inside the stability region
(13).

From all these controllers we will choose those with max-
imum integral part for each loop since they minimize the
sum of integral errors and with reasonable damping they
generally produce the best performance, see Shafiei and
Shenton (1997).

4. CONTROL OF WOOD-BERRY DISTILLATION
COLUMN MODEL

The pilot-scale distillation column model created by Wood
and Berry (1973) and used to separate a methanol–water
mixture serves as a typical benchmark example for the
verification of MIMO systems control design algorithms.
Its transfer matrix description that relates between the
input reflux flow rate R and the steam flow rate S to the
reboiler, the output overhead XD and bottoms XB mole
fractions of methanol, respectively, and the feed flow rate
F as a disturbance variable is given by




XD(s)

XB(s)




=




12.8e−s

16.7s + 1
−18.9e−3s

21s + 1

6.6e−7s

10.9s + 1
−19.4e−3s

14.4s + 1







R(s)

S(s)




+




3.8e−8.1s

14.9s + 1

4.9e−3.4s

13.2s + 1




F (s). (14)

The curves in the kP − kI plane for the values of Q =
0, 0.1, 0.3 and 0.5 for both loops are depicted in Fig. 3 and
Fig. 4. The parameters of the chosen PI controllers are
summarized in Table 1. The Gershgorin bands for Q = 0.3
are shown in Fig. 5 and Fig. 6.

Q kP1 kI1 kP2 kI2

0 0.7214 0.1248 -0.1514 -0.0186

0.1 0.6268 0.0892 -0.1362 -0.0147

0.3 0.4362 0.0409 -0.1048 -0.0087

0.5 0.2506 0.0161 -0.0675 -0.0046

Table 1. Decentralized PI controllers parame-
ters

The closed-loop responses to unit step changes in the
setpoints for XD at t = 0 and XB at t = 150 min and
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Fig. 3. PI controllers with different minimal distance – loop
1
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Fig. 4. PI controllers with different minimal distance – loop
2
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Fig. 5. Gershgorin band for Q = 0.3 – loop 1
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Fig. 6. Gershgorin band for Q = 0.3 – loop 2

to a unit step feed flow disturbance at t = 300 min for
different values of Q are shown in Fig. 7 and Fig. 8. One
can see that the value of Q represents a suitable parameter
for tuning of the closed-loop responses. For small values of
Q the response is too oscillatory with a high overshoot and
undershoot whereas for too high values of Q the response
is overdamped.
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Fig. 7. Closed-loop responses for Wood-Berry distillation
column – loop 1

5. CONCLUSION

The paper presents a method for multiloop decentralized
PI controller design. The method is applicable to a plant
described by a stable square transfer matrix with time
delays. The proposed algorithm shapes the Gershgorin
bands so that their minimal distance from the critical
point is equal to a prescribed value that serves as a tuning
parameter. Simulation results performed on a control of
the Wood-Berry distillation column model confirm that
the chosen parameter is suitable for tuning the closed-loop
response.
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Fig. 8. Closed-loop responses for Wood-Berry distillation
column – loop 2
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