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Abstract: The paper presents a method for constructing the characteristic equation of SISO
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1. INTRODUCTION

Methods for the calculation of eigenvalues play an impor-
tant role in the theory of linear systems with delay. These
numbers determine the character of the transient processes
and the asymptotic behavior of the system for t → ∞. A
comprehensive description of the general methods and a
careful analysis of the existing literature in this direction
is given in Michiels and Niculescu (2007); Gil’ (2013).

In particular, in the theory of linear periodic systems
(LPS) with delay, an important role plays the problem of
constructing the characteristic equation, where its roots
are the eigenvalues of the investigated system. The major-
ity of contributions in this direction are connected with
the study of the properties of the monodromy operator
Halanay (1961); Shimanov (1963) and the construction
of the associated characteristic matrix Gasimov (1972);
Zverkin (1988); Dolgii and Nikolaev (1999); Dolgii (2006);
Kaashoek and Verduyn Lunel (1992); Siebel and Szalai
(2011).

However, when using existing metods for real systems,
the constuction of the characteristic matrix bases on the
solution of a special boundary value problem for ordinary
differential equations, and this procedure is connected with
honest technical difficulties.

An alternative approach for the solution of the stability
problem for single loop LPS with delay is presented in
Rosenwasser (1969, 1964). This approach bases on the
detected relation between the characteristic function and
the Fredholm denominator of an especially constructed
Fredholm integral equation of the second kind, where the
kernel depends on a parameter. Hereby the use of the cal-
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culus of Fredholm’s theory opens constructive possibilities
for building the characteristic equation directly from the
original equations of the LPS with delay, and needs no
degression over the solution of a boundary value problem.
Further on, this method is denoted as IFE.

Further development of the IFE method has been done in
the works Lampe and Rosenwasser (2010, 2011, 2013a,b).
In particular, the papers Lampe and Rosenwasser (2010,
2011) consider the IFE method on the example of a
single loop system with one concentrated delay. The pa-
pers Lampe and Rosenwasser (2013a,b) investigate mul-
tidimensional systems with one and several concentrated
delays, respectively.

On basis of the IFE method, the present paper provides a
method for the construction of the characteristic equation
for a single loop LPS with one distributed delay. Then,
sufficient stability conditions are obtained by studying the
root locations of a certain polynomial with respect to the
unit circle.

2. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

The paper considers the single loop system Sτ , described
by the equations

dx(t)

dt
=Ax(t) + µBa(t)

∫ h

0

y(t− τ)m(τ) dτ,

(1)
y(t) =Cx(t).

Here x(t) is an χ× 1 vector, A is a constant χ×χ matrix,
and B, C are constant vectors of size χ × 1 and 1 × χ,
respectively. Assume the pair (A,B) to be completely
controllable, and the pair (A,C) completely observable.
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With respect to the functions a(t) = a(t + T ) and
m(t) we assume that they are of finite variation. Hereby,
the function a(t) is continuous, and the function m(t)
is piecewise continuous. These conditions are assumed
for simplifying the proofs, but they could be weakened.
Moreover, in (1) the quantity h is a positive constant,
and µ an auxiliary parameter, which is introduced for
calculatory reasons, but it is not small.

Introduce the transfer function

W (p) = C(pIχ −A)−1B. (2)

Then system (1) can be written as operator equation

y(t) = µW (p)L[y(t)],
(3)

L[y(t)] = a(t)

∫ h

0

y(t− τ)m(τ) dτ,

where p = d
dt is the differential operator. Under the

above mentioned suppositions, the function W (p) can be
presented in the form

W (p) =
n(p)

d(p)
, (4)

where n(p), d(p) are coprime polynomials with deg n(p) <
deg d(p) ≤ χ. Hereby, we assume the product

d(p) = (p− p1)µ1 · · · (p− pρ)µρ , (5)

where p1, ..., pρ are all different eigenvalues of the matrix
A. Below the numbers

pik = pi + kjω, (i = 1, ..., ρ, k = 0,±1, ...), (6)

where j =
√
−1, ω = 2π/T , are called eigenindices of the

system Sτ , and the numbers

ζ0i = e−piT = e−pikT (7)

are the inverse eigenmultipliers. Further on, the sets of
numbers pik and ζ0i are denoted by Mp and M0

ζ , respec-
tively.

Let f(ζ) be a rational function. Then the function

f̃(s) = f(ζ)|ζ=e−sT (8)

is called rational-periodic (RP). The functions f(ζ) and

f̃(s), related by (8), are called associated.

As is known Hale (1971), equation (1) has a set of solutions
of the form

y(t) = eλt z(t), z(t) = z(t+ T ), (9)

where λ is a constant, in general complex. Those solutions
are usually called Floquet solutions. The corresponding
numbers λ are called indices of the system Sτ . Obviously,
when λi is an index, then all numbers

λik = λi + kjω, (k = 0,±1, ...) (10)

are indices too. Below, the set of all indices λik is denoted
as Mλ. The numbers

ζi = e−λiT = e−λikT (11)

are called the inverse multipliers of the system Sτ , and the
set of all ζi byMζ . It is known that the setsMλ andMζ

are countable.

The system Sτ is called (asymptotically) stable, when all
its solutions for arbitrary initial conditions tend to zero
for t → ∞. As is known Halanay (1961), for the stability
of the system Sτ the condition

Reλik < 0, ∀λik ∈Mλ, (12)

is necessary and sufficient, which is equivalent to

|ζi| > 1, ∀ζi ∈Mζ . (13)

Using the mathematical apparatus of Fredholm integral
equations of the second kind, the present paper constructs
an integral function L(ζ, µ) of the arguments ζ and µ such
that for fixed µ the set of roots of the function L(ζ, µ)
coincides with the set of inverse multipliersMζ . It is shown
that applying the function L(ζ, µ) allows to find sufficient
conditions for stability, by studying the location of the
roots of certain polynomials in ζ in relation to the unit
circle.

3. PRELIMINARIES

In this section we prove some theorems establishing the
basis for the suggested methods to investigate the stability
of the system Sτ .

Theorem 1. For the fact that for fixed µ the number
λ 6∈ Mp becomes an index of the system Sτ , it is necessary
and sufficient that the homogeneous integral equation

z(t) = µ

∫ T

0

K(λ, t, u)z(u) du (14)

possesses a nonzero solution. The in (14) configured func-
tion K(λ, t, u) is determined by the relation

K(λ, t, u) =

∫ h

0

φW (T, λ, t− u− τ)a(u+ τ)m(τ) e−λτ dτ.

(15)
Here φW (T, λ, t) is defined by the series

φW (T, λ, t) =
1

T

∞∑
k=−∞

Wk(λ) ekjωt, (16)

where
Wk(λ) = W (λ+ kjω). (17)

Proof. Assume in (3)

y(t) = eλt z(t), (18)

where λ is a constant. Then we obtain an operator equa-
tion for the function z(t)

z(t) = µW (p+ λ)Lλ[z(t)],
(19)

Lλ[z(t)] = a(t)

∫ h

0

z(t− τ)m(τ) e−λτ dτ.

As it follows from Rosenwasser (1970); Rosenwasser and
Lampe (2006), for λ 6∈ Mp equation (19) has a periodic
solution zT (t) = zT (t+ T ) if and only if

zT (t) = µ

∫ T

0

φW (T, λ, t− ν)Lλ[zT (ν)] dν. (20)

Applying (19), the last equation can be written in the form

zT (t) =
(21)

µ

∫ T

0

∫ h

0

φW (T, λ, t− ν)a(ν)zT (ν − τ)m(τ) e−λτ dτ dν.

Substituting here ν − τ = u, we find

zT (t) = µ

∫ T−τ

−τ

∫ h

0
(22)

φW (T, λ, t− u− τ)a(u+ τ)zT (u)m(τ) e−λτ dτ du.
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Note that the integrand in (22) is periodic regarding u
with period T . Hence, this relation can be presented in
the form

zT (t) = µ

T∫
0

h∫
0

φW (T, λ, t− u− τ)a(u+ τ)m(τ) e−λτ dτ ·
(23)

zT (u) du,

which is equivalent to (14)-(15).

Here and further on the symbol indicates the end of the
proof.

Below, function (15) is called the kernel of the system Sτ .

Theorem 2. The following statements hold:

i) For 0 < t, u < T and λ 6∈ Mp equation (20) is an
homogenous Fredholm integral equation of the second
kind with kernel (15).

ii) For fixed µ, the number λ 6∈ Mp is an index of the
system Sτ , if and only if

D̃K(λ, µ) = 0, (24)

where D̃K(λ, µ) is the Fredholm denominator of the
kernel K(λ, t, u).

Proof. Inserting (16) into (15), after term-wise integration,
we obtain

K(λ, t, u) =
1

T

∞∑
k=−∞

Wk(λ)ak(λ, u) ekjω(t−u), (25)

where

ak(λ, u) =

∫ h

0

a(u+ τ)m(τ) e−(λ+kjω)τ dτ. (26)

Under the taken suppositions, the function ak(λ, u) de-
pends continuously on u, and for fixed λ, with respect to
u and in 0 ≤ u ≤ T the estimate

ak(λ, u) <
d

|k|
, d = const. (27)

holds. Since the terms of series (25) are continuous regard-
ing t, u, and decrease as k−2, also the sum of series (25)
depends continuously on t, u for 0 ≤ t, u ≤ T .

Statement ii) follows from i) and the general Fredholm
theory, Goursat (1927); Tricomi (1957).

4. CONSTRUCTION OF THE FREDHOLM
DENOMINATOR

As it follows from the Fredholm theory, the Fredholm
denominator for the kernel K(λ, t, u) when λ 6∈ Mp is
determined by the formula Goursat (1927); Tricomi (1957)

D̃K(λ, µ) = 1 +

∞∑
m=1

(−1)mµm

m!
D̃m(λ), (28)

where

D̃m(λ) =

∫ T

0

...

∫ T

0

∆K(λ, t1, ..., tm) dt1 . . . dtm (29)

and

∆K(λ, t1, . . . , tm) =
(30)

det

 K(λ, t1, t1) K(λ, t1, t2) . . . K(λ.t1, tm)
K(λ, t2, t1) K(λ, t2, t2) . . . K(λ, t2, tm)

. . . . . . . . . . . .
K(λ, tm, t1) K(λ, tm, t2) . . . K(λ, tm, tm)

 .
In this formula, in consensus with (25), the function
K(λ, tα, tβ) is defined by the sum of the series

K(λ, tα, tβ) =
1

T

∞∑
k=−∞

Wk(λ)ak(λ, tβ) ekjω(tα−tβ) . (31)

Substituting (31) in (30), and applying the addition theo-
rem for determinants, we obtain

∆K(λ, t1, . . . , tm) =
1

Tm

∞∑
k1=−∞

. . .

∞∑
km=−∞

(32)
ak1(λ, t1) · · · akm(λ, tm)∆k1...km(t1, . . . , tm),

where

∆k1...km(t1, . . . , tm) =
(33)

det


ek1jω(t1−t1) ek2jω(t1−t2) . . . ekmjω(t1−tm)

ek1jω(t2−t1) ek2jω(t2−t2) . . . ekmjω(t2−tm)

. . . . . . . . . . . .
ek1jω(tm−t1) ek2jω(tm−t2) . . . ekmjω(tm−tm)

 .
It is easily seen that in the case when some of the numbers
ki, (i = 1, ...,m) are equal, then determinant (33) is equal
to zero. Therefore, formula (32) can be written in the form

∆K(λ, t1, . . . , tm) =
1

Tm

∞∑
k1=−∞

∗
. . .

∞∑
km=−∞

∗

(34)
ak1(λ, t1) · · · akm(λ, tm)∆k1...km(t1, . . . , tm),

where the symbol ∗ means that under the numbers
k1, . . . , km are no equal ones. Inserting (34) in (29), we
find

D̃m(λ) =
1

Tm

∞∑
k1=−∞

∗
. . .

∞∑
km=−∞

∗
Wk1(λ) · · ·Wkm(λ)×

∫ T

0

. . .

∫ T

0

ak1(λ, t1) · · · akm(λ, tm) (35)

∆k1...km(t1, . . . , tm) dt1 · · · dtm.

On basis of the above relations, we will state a number of
properties of the function D̃m(λ), needed for the further
considerations.

Theorem 3. The following statements hold:

i) For all m, the function D̃m(λ) is rational periodic.
ii) Let the roots pi of polynomial (5) satisfy the condi-

tions

epiT 6= epkT , (i 6= k; i, k = 1, ..., ρ). (36)

Then for arbitrary m, the associated functions

Dm(ζ) = D̃m(λ)|e−λT=ζ (37)

permit the representations

Dm(ζ) =
bm(ζ)

b0(ζ)
, (38)
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where the bm(ζ) are polynomials and

b0(ζ) = (1− ζ ep1T )µ1 · · · (1− ζ epρT )µρ . (39)

Proof. i) Notice that the function

R̃(λ, t, u) = eλ(t−u)K(λ, t, u) (40)

is RP. Indeed, as it follows from (15),

R̃(λ, t, u) =

∫ h

0

DW (T, λ, t−u− τ)a(u+ τ)m(τ) dτ, (41)

where D̃W (T, λ, t− u− τ) is the sum of the series

D̃W (T, λ, t− u− τ) =
1

T

∞∑
k=−∞

Wk(λ) e(λ+kjω)(t−u−τ) .

(42)
As it was shown in Rosenwasser and Lampe (2006), the

function D̃W (T, λ, t−u−τ) is determined interval wise by
the formula

D̃W (T, λ, t− u− τ) =

C(Iχ − e−λT eAT )−1 eA(t−u−τ−kT )B ekλT ,(43)

kT < t− u− τ < (k + 1)T.

Inserting (43) into (41) emerges, that for t, u the function
(41) is RP.

ii) It is easily seen that

∆K(λ, t1, . . . , tm) = ∆R̃(λ, t1, ..., tm), (44)

where the function ∆R̃(λ, t1, . . . , tm) is determined by
formula (30), wherein the kernel K(λ, t, u) is substituted

by the RP function R̃(λ, t, u). Then, substituting in (29)

the kernel K(λ, t, u) by the function R̃(λ, t, u), we find that

the function D̃m(λ) is RP.

Since the an(λ, u) are integral functions of the argument
λ, it follows from (35) that the set of poles of the function

D̃m(λ) lies in the set Mp. Hence from (36) emerge, that

the multiplicity of the poles pi+kjω of the function D̃m(λ)
is equal to µi. Therefore, from the property of RP functions
Whittaker and Watson (1927); Rosenwasser and Lampe
(2000), we find

D̃m(λ) =
b̃m(λ)

b̃0(λ)
, (45)

where b̃m(λ) is a polynomial in the variable e−λT and

b̃0(λ) = (1− e−λT ep1T )µ1 · · · (1− e−λT epρT )µρ . (46)

Substituting in (45) e−λT by ζ, representation (38) is
achieved.

5. CHARACTERISTIC FUNCTION AND STABILITY
INVESTIGATION

Substituting in (28) ζ by e−λT , we obtain

DK(ζ, µ) = D̃K(λ, µ)|e−λT=ζ =
1

T

∞∑
m=−∞

(−1)m

m!
Dm(ζ),

(47)
where the series on the right side converges for all µ and
all ζ 6∈ M0

ζ . Using (38), from (47) we achieve

DK(ζ, µ) =
L(ζ, µ)

b0(ζ)
, (48)

where

L(ζ, µ) = b0(ζ) +

∞∑
m=1

(−1)mµm

m!
bm(ζ), (49)

and the series on the right side converges for all ζ and µ.
Below, the function L(ζ, µ) is called characteristic function
of the system Sτ , and the equation

L(ζ, µ) = 0 (50)

its characteristic equation.

Theorem 4. Under assumption (36) for the stability of the
system Sτ , it is necessary and sufficient that the roots of
equation (50) for a fixed µ are located outside the unit
circle.

The proof of Theorem 4 is not provided, because it is
identical with the proof of Theorem 6.2 in Lampe and
Rosenwasser (2011).

The direct application of Theorem 4 for stability inves-
tigations is problematic, because expressions for the sum
of series (49) obviously do not exist. However, on basis of
this theorem we are able to derive strict sufficient stability
conditions. For this reason, we introduce the polynomial

LN (ζ) = b0(ζ) +

N∑
m=1

(−1)mµm

m!
bm(ζ) (51)

and denote

bmax = max
|ζ|=1

|b0(ζ)|. (52)

Theorem 5. Assume (36), and there are none of the num-
bers pi, (i = 1, ..., ρ) on the imaginary axis. Then the
following statements hold:

i) For 0 ≤ t, u ≤ T and any real ν

|K(jν, t, u)| < M = const. (53)

ii) Introduce for n > 0

q(n) =
2TMe|µ|√

n
. (54)

If the estimate

min
|ζ|=1

|LN (ζ, µ)| > qN+1(N + 1)

1− q(N + 1)
bmax (55)

is valid, then characteristic equation (50) and the
approximated equation

LN (ζ, µ) = 0 (56)

do not possess roots on the unit circle, and they have
the same number of roots inside |ζ| = 1. Hereby, when
in particular the polynomial LN (ζ, µ) do not possess
roots inside the circle |ζ| = 1, then the system Sτ is
stable.

The proof is not provided, because it deviates only
marginally from the proof of Theorem 6.4 in Lampe and
Rosenwasser (2011).

6. EXAMPLE

Build the polynomial L2(ζ, µ) for the system

dy(t)

dt
= ay(t) + µ cos(ωt)

∫ T

0

y(t− τ) dτ, (57)
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where a 6= 0, ω = 2π/T . The system coincides with a
system of form (3), where χ = 1, a(t) = cosωt, m(t) = 1,
h = T . Moreover,

W (p) =
1

p− a
. (58)

For the construction of the kernel K(λ, t, u) we apply
formulae (25), (26). Actually, from (26) we obtain

ak(λ, u) = ejωu Pk(λ)+ + e−jωu Pk(λ)−, (59)

where

Pk(λ)± =
1

2

1− e−λT

λ+ kjω ∓ jω
. (60)

Inserting (59), (60) into (25), we find

K(λ, t, u) =
ejωu(1− e−λT )

2
×

1

T

∞∑
k=−∞

ekjω(t−u)

(λ− a+ kjω)(λ+ kjω − jω)

(61)

+
e−jωu(1− e−λT )

2
×

1

T

∞∑
k=−∞

ekjω(t−u)

(λ− a+ kjω)(λ+ kjω + jω)
.

Formulae (29), (30) yield

D̃1(λ) =

∫ T

0

K(λ, t, t) dt. (62)

Inserting here (61), for t = u we obtain directly

D̃1(λ) = 0. (63)

For the calculation of D̃2(λ), we apply formula (35), which
for m = 2, k1 = k, k2 = n can be written in the form

D̃2(λ) =
1

T 2

∞∑
k=−∞

∞∑
n=−∞
n6=k

Wk(λ)Wn(λ)×

(64)∫ T

0

∫ T

0

ak(λ1t1)an(λ1t2)∆kn(t1, t2) dt1 dt2,

where, due to (33)

∆kn(t1, t2) = 1− en(n−k)jωt1 e(k−n)jωt2 . (65)

From (59) and (65), we achieve

D̃2(λ) =− 1

T 2

∞∑
k=−∞

∞∑
n=−∞
n6=k

Wk(λ)Wn(λ)×

(66)∫ T

0

ak(λ, t1) e(n−k)jωt1 dt1

∫ T

0

an(λ, t2) e(k−n)jωt2 dt2.

Substituting here n = k + l, we obtain

D̃2(λ) =− 1

T 2

∞∑
k=−∞

∞∑
l=−∞
l6=0

Wk(λ)Wk+l(λ)×

(67)∫ T

0

ak(λ, t1) eljωt1 dt1

∫ T

0

ak+l(λ, t2) e−ljωt2 dt2.

It follows from (59) that the integrals on the right side
vanish for all l, except for l = ±1. Therefore, formula (67)
essentially simplifies and takes the form

D̃2(λ) =− 1

T 2

∞∑
k=−∞

Wk(λ)Wk+1(λ)×

∫ T

0

ak(λ, t1) eljωt1 dt1

∫ T

0

ak+l(λ, t2) e−jωt2 dt2

(68)

− 1

T 2

∞∑
k=−∞

Wk(λ)Wk−1(λ)×

∫ T

0

ak(λ, t1) e−jωt1 dt1

∫ T

0

ak−l(λ, t2) ejωt2 dt2.

Moreover, notice that due to (59), (60)∫ T

0

ak(λ, t1) e±jωt1 dt1 =
T

2

1− eλT

λ+ kjω ± jω
,∫ T

0

ak+1(λ, t2) e−jωt2 dt2 =
T

2

1− eλT

λ+ kjω
, (69)∫ T

0

ak−1(λ, t2) ejωt2 dt2 =
T

2

1− eλT

λ+ kjω
.

With the help of (69) and (57), from (68) we find

D̃2(λ) =− (1− e−λT )2

4
×[ ∞∑

k=−∞

1

λ− a+ kjω

1

λ− a+ kjω + jω
·

1

λ+ kjω

1

λ+ kjω + jω
(70)

−
∞∑

k=−∞

1

λ− a+ kjω

1

λ− a+ kjω − jω
·

1

λ+ kjω

1

λ+ kjω − jω

]
.

Introduce the notations

W (λ)o =
W (λ)

λ
=

1

(λ− a)λ
,

(71)
Wk(λ)o =W o(λ+ kjω).

Then formula (70) yields

D̃2(λ) =
(72)

− (1− e−λT )2

4

∞∑
k=−∞

Wk(λ)o [Wk+1(λ)o +Wk−1(λ)o] ,

where

Wk±1(λ)o =
1

(λ− a+ kjω ± jω)(λ+ kjω ± jω)
. (73)

Applying (73), formula (72) can be represented in the form

D̃2(λ) = − (1− e−λT )2

2

∞∑
k=−∞

W (1)(λ+ kjω), (74)

where

W (1)(λ) =
λ(λ− a)− ω2

(λ− a) [(λ− a)2 + ω2]λ(λ2 + ω2)
(75)

is a real rational function. The sum of series in (74) can be
calculated with the help of formulae given in Rosenwasser
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and Lampe (2000). Here, rather extensive transformations
show that

∞∑
k=−∞

W (1)(λ+ kjω) =

(76)
2T

a(a2 + ω2)

e−λT (1− e−aT )

(1− e−λT )(1− e−λT eaT )
.

Hence, (74) and (76) yield

D̃2(λ) =
2T (eaT −1)

a(a2 + ω2)

e−λT (1− e−λT )

1− e−λT eaT
, (77)

and finally

D2(ζ) =
2T (eaT −1)

a(a2 + ω2)

ζ(1− ζ)

(1− ζ eaT )
. (78)

Using the above results, we achieve the demanded function
L2(ζ, µ) as

L2(ζ, µ) = (1− ζ eaT ) +
Tµ2(eaT −1)

a(a2 + ω2)
ζ(1− ζ). (79)

If a < 0, this expression together with Theorem 5, allows
to specify a region for the value |µ|, for which system (57)
is guaranteed to be stable.

7. CONCLUSIONS

The application of Fredholm’s theory on integral equations
has allowed an exact description of linear periodic systems
with distributed delay. On this basis, the characteristic
equation for the closed system was found directly from
the given system components without solving a boundary
value problem in state space. Together with the results
of the Fredholm theory on integral equations of the sec-
ond kind, a method was developed, that yields to state
sufficient stability conditions for the closed loop. This
conditions are formulated as location of the roots of certain
polynomials with respect to the unit circle. Therefore
ordinary stability criteria could be used. Hereby, as it
was shown by an example, beside numerical solutions,
also closed expressions in the original parameters could
be achieved.

Since the concepts are not restricted to the SISO case,
future work will be directed to the extension on MIMO
systems. The authors are preparing a toolbox in Matlab

to support various steps in analysis and design of such
systems.
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