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Abstract: This paper presents a joint selection criterion for optimal trajectory planning
using dynamic programming along a specified geometric path subject to torque and velocity
constraints. A single non-stationary joint is normally considered for optimization purpose. In
case of more than one non-stationary joints, the optimization by selecting any joint at random
may end up with a non-optimal solution. This problem raises the importance of the proposed
joint selection criterion. A novel joint selection criterion based on the geometric path information
is presented for dealing with such cases having more than one non-stationary joints. In contrast
of existing approaches to solve the optimization problem by considering each joint separately,
the proposed criterion saves computational time, efforts and thus there is no need to solve
the optimization problem multiple times with respect to each non-stationary joint to get the
optimal solution. The proposed criterion can be used to optimize a given path with respect to
travelling time, energy consumption or any other arbitrary form of cost function. The validity
of the proposed selection criterion is tested on a parallel DELTA robot. The obtained results are
compared with the optimal results obtained by other techniques which confirm the applicability
of the proposed scheme.

Keywords: Dynamic programming, optimal trajectory, path planning, criterion functions,
multiobjective optimisations, robotic manipulators, industrial robots

1. INTRODUCTION

Optimal trajectory planning in robotics has recently
gained a lot of attention because of its extensive use not
only in industrial applications but also in daily life. An
optimal motion of an industrial robot is the key to success
because it can help to increase the production rate and
to reduce the production cost and energy consumption.
The optimization in case of robotics become more difficult
because of the non-linearities and coupling in the robot
dynamics.

For tractability, the optimal trajectory of robotic manip-
ulators is divided into three stages. The first stage is path
planning. Extensive amount of work has been done on
path planning, Latombe [1991]. The important problems
addressed in path planning include collision avoidance and
getting the smooth path. The second stage is trajectory
planning from the given information of geometric path. In
second stage, the position and the velocity of each joint is
calculated as a function of time within the constraints on
the joints torque and angular velocity. The third stage is
trajectory tracking. This stage is responsible to track the
robot’s reference position and velocity that is calculated
in the second stage. In this paper the main focus is on the
trajectory planning under constraints.

Bobrow et al. [1985] and Shin et al. [1985] separately
developed similar methods to calculate the optimal tra-

jectory for robotic manipulators for a given specified path.
Their method uses a phase plane plot to get the optimal
solution in which dimensionality of the problem is reduced
by converting dynamical equations to a set of second order
differential equations using path parameter, defined as s
from here on. The phase plane plot of (s, ṡ), sometimes
referred as velocity limit curve (VLC) or the switching
curve. In their method the bounds on the actuator torques
were transformed to the acceleration bounds along the
path. It is an indirect method and was later refined by
Rajan [1985], Pfeiffer et al. [1987], Slotine et al. [1989],
Shiller et al. [1992], Tarkiainen et al. [1993]. The optimal
solution obtained by their approach is basically a bang-
bang control as one of the actuator is always saturated. It
is not only applicable for rigid manipulators, but also it
can generate the time optimal solution for the cable based
manipulator, as discussed by Behzadipour et al. [2006].
However, there are some drawbacks associated with this
method. First, it can only solve the time minimization
problem. The second problem is that the joint torques can
be changed instantaneously which is impractical for real
applications.

Shiller et al. [1991] proposed a solution approach for com-
puting the time optimal trajectory for robotic manipu-
lators in presence of obstacles. In the first step of their
suggested method a near optimal path is selected using a
branch bound search and a series of lower bound estimates.
Finally, the global optimal solution is obtained by local
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path optimization. They obtained obstacle avoidance by
adding a penalty function to the motion time in local
optimization.

A new approach to solve the time optimal trajectory
planning is proposed by Verscheure et al. [2008]. In this
approach the time optimal trajectory is calculated using
convex optimization. The time optimal trajectory prob-
lem is transformed to the convex optimization through a
nonlinear change of variables. Second order cone program
using robust numerical algorithms are used to calculate
the global optimal solution of time optimal problem. The
key aspects of this method are the ease of implementation
and the flexibility. This method is not only limited to time
optimal trajectory planning, but also it can optimize any
arbitrary cost function.

Dynamic programming is a very useful optimization tech-
nique which can solve the problem of optimization for
highly nonlinear, complex systems under strong con-
straints(Bellman [1957]). For the first time, Vukobratovic
et al. [1982] proposed the dynamic programming algo-
rithm to find the energy optimal trajectory for robotic
manipulators for a given path. Shin et al. [1986] proposed
the dynamic programming algorithm to solve the optimal
trajectory planning in terms of path parameter s. First
the dynamics of the robots are converted to a second
order differential equation using the path parameter. The
optimal pseudo-velocity ṡ is calculated using dynamic pro-
gramming (DP) to get optimal solution of the given cost
function under constraints. The main advantage of this
method is the reduction in dimensionality as the dynamics
of the robots are expressed in terms of the path parameter
s.

Singh et al. [1987] proposed another dynamic program-
ming algorithm for the optimal trajectory planning. In-
stead of reducing the dimensionality of the problem by
path parameter (s), the optimization problem was solved
by considering a single non-stationary joint on the robot.
By dynamic programming, this problem is reduced to
search over the velocity of one moving manipulator link.
The constraints on the other joints, either stationary or
non-stationary, are taken into account inside the dynamic
programming algorithm loop. This algorithm does not pro-
pose the joint selection criterion in case of more than one
non-stationary joints to get the global optimal solution.

An inverse dynamic-based dynamic programming (DP)
approach for optimal trajectory planning of robotic manip-
ulators is discussed by Yen [1995]. This inverse dynamic-
based DP offers some advantages over conventional DP
approach, i.e., it eliminates the interpolation requirement,
and the requirement of integration of motion equations
is also avoided. Field et al. [1996] proposed an itera-
tive dynamic programming approach to minimum energy
trajectory planning. In this modified dynamic program-
ming approach a series of dynamic programming passes
over a small reconfigurable grid size. This approach has
advantages of avoiding poor local minima and curse of
dimensionality, and providing parallel structure to reduce
computational time. Beside these modification in DP al-
gorithm for optimal trajectory planning, the criterion for
joint selection in the DP algorithm proposed by Singh et

al. [1987] was not defined which many lead to the local
convergence.

In this paper, we present heuristic based joint selection
criteria, for the case of more than one non-stationary
joints, to implement the dynamic programming algorithm
proposed by Singh et al. [1987]. In contrast of existing
approach to solve the optimization problem by consider-
ing each non-stationary joint individually, the proposed
criterion saves time and the need to solve the optimiza-
tion problem multiple times with respect to each non-
stationary joint to get the global optimal solution. Joint
selection can be made easily from the predefined path
information either given in Joints space or in Cartesian
space. The remaining paper is outlined as follows. Section 2
gives detail problem description. In Section 3, the dynamic
programming algorithm proposed by Singh et al. [1987] is
discussed and the importance of the proposed criterion
is explained. The joint selection criterion is discussed in
Section 4. Section 5 presents numerical examples based
on optimal trajectory planning of a parallel DELTA robot
and the optimization results from different techniques are
compared in details. Section 6 gives the conclusion drawn
from our results.

2. PROBLEM FORMULATION FOR OPTIMAL
TRAJECTORY PLANNING

The robot dynamics having n degree of freedom (DOF )
motion with joint angles q = (q1, q2, · · · , qn) ∈ Rn, can
be expressed in the terms of the applied joint torques
τ = (τ1, τ2, · · · , τn)T ∈ Rn in (1).

τ = M(q)q̈ + C(q, q̇)q̇ + G(q) (1)

In (1), M(q) ∈ Rn×n is positive definite mass matrix,
C(q, q̇) ∈ Rn×n is Centrifugal and Coriolis coefficient
matrix, G(q) is gravitational force vector and τ is the
set of realizable torques that can be expressed in terms of
joint velocity and joint position.

τ = (τ1, τ2, τ3, · · · , τn)T (2)

In the optimal trajectory planning the path is predefined
either in Joint space (q) or in Cartesian Space (p). The
path given in the Cartesian space (p) can be converted to
the Joint space using the inverse kinematics.

q = Ψ(p) (3)

The initial and the final conditions for the dynamic pro-
gramming can be found easily from the given path in-
formation. These terminal conditions are shown in (4)
and (5). From the given initial and final condition on the
angular joints, it is clear that the manipulator must be
stationary at the start and end points and the velocities
must be zero. These are the equality constraints or the
terminal conditions for the optimization problem.

p(t0) = p0, p(tf ) = pf (4)

ṗ(t0) = 0, ṗ(tf ) = 0 (5)
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In optimal trajectory planning, the main objective is to
optimize the cost functions within the given constraints.
The most important constraints for robotic manipulators
trajectory planning describe the limitation on actuator
force/torque. Some additional constraints can also be
imposed on the joint velocities as well. The constraints on
the actuator force/torque and the joint velocity are given
in (7) and (6) respectively. The upper and lower limits on
the actuator’s joint velocity and torques can be find from
the actuator’s data sheet.

q̇i,min ≤ q̇i ≤ q̇i,max i = 1, 2, · · · , n (6)

τi,min ≤ τi ≤ τi,max i = 1, 2, · · · , n (7)

Additional constraints can also be imposed like on joint
acceleration. In any optimization, the most important
term is the cost function J that has to be optimized. Nor-
mally, the most commonly used objective function is time-
optimality. This time-optimality objective function can be
combined with other criteria such as energy minimization,
fuel minimization or any other arbitrary cost function.
This is the flexibility of dynamic programming that more
general objective functions can be defined. A generalized
cost function is shown in (8). In (8), κ is the weight factor.
If κ = 0, then (8) will be an energy minimization problem
and, if κ = 1, then this cost function will present a time
minimization problem.

J =

tf∫
t0

(κ+ (1− κ)u2)dt (8)

In cost function the final time (tf ) can be fixed or it can be
free depending upon the problem. For example, the final
time cannot be fixed in case the time optimization problem
is considered. The structure and the dynamics of the robot
manipulator are similar to the general optimal trajectory
problem which consist of the systems dynamics, terminal
conditions and the inequality constraints.

3. OPTIMAL TRAJECTORY PLANNING USING
DYNAMIC PROGRAMMING

As discussed earlier, dynamic programming is a very useful
tool to solve the optimization problem under strong con-
straints for any arbitrary objective function. An optimal
trajectory planning problem can be easily solved using
dynamic programming. The first step of dynamic program-
ming is to discretize the given problem. The discretization
of the problem is necessary to solve this problem using
digital computers. Let suppose, the given path in Carte-
sian space (p) or in Joint Space (q) is discretized in Np

segments. The continuous dynamical equations and the
terminal conditions, discussed in Section 2, are given in
(9)-(12) in discretized form.

τ(k) = M(q(k))(q̇(k + 1)− q̇(k))

+C(q(k), q̇(k))(q(k + 1)− q(k)) + G(q(k)),

k = 1, 2, · · · , Np

(9)

q(k) = Ψ(p(k)), k = 1, 2, · · · , Np (10)

p(0) = p0, p(Np) = pf (11)

ṗ(0) = 0, ṗ(Np) = 0 (12)

Normally, to get the optimal trajectory of robotic ma-
nipulator for a given path using dynamic programming,
a search is implied over position (q) and velocity (q̇) of
each joint. In case of n-DOF robotic manipulator, the
dynamic programming algorithm has to search over 2n
variables. As the information of the path is already given
as a priori information, the dimensionality of the problem
is reduced to search over a single variable, i.e. joint velocity.
The allowable range of joint velocity is discretized into Nv

segments. So, the algorithm will search over the all values
of joint velocity (q̇(j), j = 1, 2, . . . , Nv) to optimize the
cost function for given path.

q̇min = q̇(1)

q̇max = q̇(Nv)
(13)

To proceed for the optimal solution, first a non-stationary
joint is selected as a reference. In this script, i∗ is used
the index of reference non-stationary joint i.e. qi∗ and k
as the index of discrete points along the given path that
is discretized into Np segments, i.e. k = 1, 2, . . . , Np.

Consider the path movement from point k to k + 1 and
we want to optimize this segment. Assuming that the
discretization of given path is very fine (i.e. Np is large),
the travelled distance will becomes small and acceleration,
M(q),C(q, q̇) and G(q) do not change significantly over
a single interval. For a possible velocity (q̇i∗(jk)) at point
k and an admissible velocity (q̇i∗(jk+1)) at point (k + 1),
the joint acceleration at point k can be calculated using
(14).

q̈i∗(k) =
[q̇i∗(jk+1)]2 − [q̇i∗(jk)]2

2[qi∗(k + 1)− qi∗(k)]
(14)

The time required to travel from point k to k+1 with joint
velocity q̇i∗(jk+1) is given by (15).

∆t(k) =
2[qi∗(k + 1)− qi∗(k)]

[q̇i∗(jk+1) + q̇i∗(jk)]
(15)

All other joints must also cover the distance from point k
to k+ 1 in the same time. The velocities of other joints, to
cover the distance in the same time interval, is calculated
using (16).

q̇m(jk) =
2[qm(k + 1)− qm(k)]

∆t(k)
− q̇m(jk+1) (16)

If the velocity of any joint q̇m(jk), [m = 1, 2, · · · , n, m 6=
i∗] does not lie in the joint velocity interval, the velocity
of the reference non-stationary joint (q̇i∗(jk)) is considered
to be inadmissible and not considered for further calcu-
lations. If all the joints satisfy the velocity constraints,
the accelerations for all other joints are calculated using
(14). Once we have the values of displacement, velocity
and acceleration of all joints, the joint torques required
to travel from point k to k + 1 can be calculated using
(9). After calculating the all joint torques, the second
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inequality constraint (7) is checked. If any of the joint
torques does not satisfy the inequality torque constraint,
q̇i∗(jk) said to be inadmissible.

The next step after satisfying the all constraints is to
calculate the incremental performance index to move from
point k to k + 1. Here Φ(q̇i∗(jk), k) indicates the cost to
move from point k to k+ 1 with a joint velocity of q̇i∗(jk).
Bellman’s optimality principle is applied to calculate the
minimum performance index(Bellman [1957]).

Jf (q̇i∗(jk), k) = min
q̇i∗ (jk+1),j=1,2,··· ,Nv

[Φ(q̇i∗(jk), k)]

+Jf (q̇i∗(jk+1), k + 1)
(17)

Equation-(17) searches all over the admissible discretized
velocities at point k. Thus, every admissible velocity of
joint i∗ at point k gives a unique admissible velocity of
the same joint at point k + 1. In parallel, the velocities,
accelerations and torques can be calculated corresponding
to the optimal conditions.

3.1 Algorithm

With the help of these formulas, the dynamic program-
ming algorithm can be stated in detail. The algorithm is
as follows:
Step 1 : Discretize the given Cartesian path p into Np

segments (a total of Np + 1 points).
Step 2 : Calculate the joint displacement on each point
using inverse kinematics, (10).
Step 3 : Select a joint which is non-stationary along
the movement on given path. Denote this reference non-
stationary joint as i∗.
Step 4 : Discretize the allowable velocity of joints into Nv

segments. Now we have a grid, Np points on qi∗ − axis
(columns) and Nv points on ˙qi∗ − axis (rows).
Step 5 : Associate the each point (qNp , q̇Nv ) of rectangular
grid a cost Ck,j and a pointer Pk,j indicating the next row.
Set the cost Ck,j at all nodes to infinity except for the
cost of final state. This is set to zero. Similarly, initialize
all the pointers Pk,j to null. Set the column counter k to
Np(k = 1, 2, · · · , Np, j = 1, 2, · · · , Nv).
Step 6 : If the column counter k is zero, then stop and go
to Step 16.
Step 7 : Otherwise set the current-row counter jk−1 to
zero. Term jk−1 represent the index of discretized velocity
at point k − 1. Similarly jk represents the index of dis-
cretized velocity at point k.
Step 8 : If jk−1 = Nv, go to Step 15.
Step 9 : Otherwise, set the new-row counter jk to zero.
Step 10 : If jk = Nv, go to Step 14.
Step 11 : Generate the curve that connects the point (k−
1, jk−1) to (k, jk). For this displacement calculate the joint
velocities, accelerations and torques for reference joint. If
any of the inequality constraint is not satisfied then set
this velocity as inadmissible and go to Step 13.
Step 12 : Calculate the incremental performance index
to move from point (k − 1, jk−1) to (k, jk). The cost of
this displacement is calculated by adding the Ck,jk to the
incremental performance index. If this cost is less than
the cost Ck−1,jk−1

, then set Ck−1,jk−1
to this cost. Set

the pointer Pk−1,jk−1
to point the grid point (k, jk) and it

produce the minimum cost.
Step 13 : Increment the next-row counter jk and go to

Step 10.
Step 14 : Increment the current row counter jk−1 and go
to Step 8.
Step 15 : Decrement the column counter k and go to Step
6.
Step 16 : Calculate the optimal velocity sequence for joint
i∗ by tracking the pointer from initial to final state.
Step 17 : Calculate the corresponding velocities and the
forces/torques of all other joints.

This dynamical programming algorithm was proposed
by Singh et al. [1987]. In this algorithm, first optimal
velocity sequence of joint i∗ is calculated and then the
corresponding velocities and torques of other joints are
calculated (Step 17). This algorithm is interpolation free
as the path is known and the algorithm always moves from
one discrete position to the next position of all joints.

4. JOINT SELECTION CRITERION

The dynamic programming algorithm discussed in Section
3, proposed by Singh et al. [1987], is practically applicable
and can solve the optimal trajectory planning with any
arbitrary cost function. Besides the applicability of this
algorithm, it has some limitations which requires modi-
fication. First, this algorithm does not give any rule for
selecting the reference non-stationary joint in case of more
than one non-stationary joints (Step 3 of algorithm). In
some cases, it happens that there is more than one non-
stationary joints when following the given path. For exam-
ple, in case of parallel robots, there is always more than
one joints that are non-stationary during the movement
of the manipulator on the given path. In this scenario,
it is always a difficult task to choose a non-stationary
joint amongst more than one non-stationary joints because
choosing a non-stationary joint randomly does not guar-
antee the global optimal solution and may end up with a
non-optimal solution. An alternative way is to solve the
whole problem with respect to each non-stationary joint
and get the optimal solution by comparing the result of
each individual case.

In this paper, we present a novel heuristic based joint
selection criterion in case of more than one non-stationary
joints.

Criterion 1. To get the global optimal solution, select the
non-stationary joint as a reference (Step 3) which has
the lowest sum of absolute differences between pairs of
successive discrete angles along the given path.

Reference Joint(i∗) = arg min
i=1,2,··· ,ndyn

(

Np−1∑
m=1

|qi(m+1)−qi(m)|)

(18)
In Equation-18, ndyn represents the number of non-
stationary joints during the movement of the manipulator
on the given path.

The sum of the absolute differences of each non-stationary
joint between pairs of successive discrete angles must be
comparable. If the sum of absolute differences of a non-
stationary joint is very small and not comparable to the
other non-stationary joints, although it satisfy the above

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6028



Table 1. Dynamic Coefficients and Actuator
Characteristics of DELTA D4-500 robot

Parameter Description Value

LA Length of arm 0.15 m

LB Length of forearm 0.4 m

RA Distance from the cen-
tre of base to the motor
joint

0.1 m

RB Distance from the cen-
tre of travelling to the
joint

0.04 m

τmin Minimum joint Torque -35.2 Nm

τmax Maximum joint Torque 35.2 Nm

mn Mass of Travelling Plate 0.222 Kg

mab Mass of the forearm 0.248 Kg

mbr Mass of the arm 0.14 Kg

mc Mass of the elbow 0.042 Kg

Im Inertia of the motor 3.96×10−5

mentioned criterion but the optimal trajectory can not be
calculated by selecting this joint as a reference.

The modification that is necessary in this algorithm is to
calculate of velocities and forces/torques and to check the
constraints for all other joints in parallel to the reference
joint inside the loop (Step 11), instead of calculating at
the end (Step 17). It might be possible that at some
nodes the constraints of the reference joint are satisfied
but any other joint does not satisfy these constraints at
the same node with same travelling distance. By using the
existing algorithm, this problem will arise only at the last
step of algorithm and the available option will be to solve
the problem again, that will be computationally expensive
and requires a lot of time. The proposed modification will
handle this problem inside the loop. In case of constraints
violation by any joint, the corresponding velocity will
be set inadmissible and there will be no need to repeat
the whole problem in case of any non-reference joint’s
constraint violation.

Until now we have only the experimental evidence for the
validity of this heuristic based joint selection criterion and
currently working on its mathematical proof.

5. NUMERICAL EXAMPLES

For the validation purpose, the dynamic programming
algorithm with the proposed joint selection criterion and
the modification is applied on a parallel DELTA robot. As
discussed earlier, in parallel robots there are always more
than one non-stationary joints during the movement of
manipulator along the given path. So, the parallel robot
would be a good test bench to test the proposed joint
selection criterion. DELTA robot D4- 500 from CODIAN
Robotics is used to test the trajectory planning. The dy-
namical model of the parallel DELTA robot is discussed by
Codourey [1996]. The actuator characteristics and the dy-
namic coefficient of DELTA D4-500 robot are summarized
in Table-1 and Fig. 1 shows definition of the geometric
parameters used in Table-1.

In this section, the proposed criterion is tested on differ-
ent paths using DELTA robot to support the validation.
Numerical examples are considered and the results and
compared with some state-of-the-art optimization meth-

Fig. 1. DELTA robot and its geometric parameters
(Codourey [1996])

Fig. 2. Given Path for Example 1

ods. All numerical simulations were performed on Intel
Core I5 2.60GHz Laptop with 4GB of RAM.

5.1 Example 1

In first example, a path, shown in Fig. 2, is considered
for optimization using different optimization methods and
the results are compared with obtained by the algorithm
proposed by Singh et al. [1987], to show the validation of
proposed criterion. The cost function in this example is to
find the optimal trajectory to minimize the travelling time.
All the three joints of the DELTA robot are non-stationary
while following the given path.

For the purpose of comparison and to show the validation
of proposed criterion, the optimal trajectory of the given
path is calculated using three different techniques; the
proposed modified dynamic programming algorithm, the
dynamic programming using path parameter s proposed
by Shin et al. [1986] and the phase plane method proposed
by Bobrow et al. [1985] and Shin et al. [1985]. The grid
of 80 × 80 is used in the above mentioned optimization
techniques to find the optimal trajectory (i.e. Np =
80, Nv = 80). The results obtained by different techniques
are summarized in Table-2.

The computational time (tcomp) and the optimized value
of cost function obtained by different techniques, shown
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Table 2. Comparison of the optimal results by different optimization techniques (Example-1)

Modified Singh et al. [1987] Shin et al. [1986] Phase Plane Method

Reference Joint Sum of absolute difference Cost tcomp(sec) Cost tcomp(sec) Cost tcomp(sec)

Joint-1 15.2207 0.2580 125.360
0.2680 125.517 0.2655 14.722Joint-2 28.8829 0.3997 125.234

Joint-3 19.0677 0.2971 126.454

Table 3. Comparison of the optimal results by different optimization techniques (Example-2)

Modified Singh et al. [1987] Shin et al. [1986] Phase Plane Method

Reference Joint Sum of absolute difference Cost tcomp(sec) Cost tcomp(sec) Cost tcomp(sec)

Joint-1 11.7408 0.4300 31.513
0.3972 33.829 0.3986 15.284Joint-2 11.0382 0.3996 31.857

Joint-3 11.9253 0.4367 31.902

Fig. 3. Optimal torque of joints

in Table-2, are comparable to each other. To get the opti-
mal solution using the dynamic programming algorithm
proposed by Singh et al. [1987], the problem is solved
three times with respect to each non-stationary joint. The
different optimal costs are obtained by considering the
each joint separately as a reference and the global optimal
solution is obtained by considering the Joint-1 as reference
joint. According to the proposed joint selection criterion,
discussed in Section 4, the Joint-1 must give the optimal
solution as it has the lowest sum of absolute differences and
the sum of absolute differences of Joint-1 is comparable to
all other non-stationary joints. The results in Table-2 show
the validation of the proposed joint selection criterion. The
optimal joints torque for the optimal trajectory, shown in
Fig. 3, are within the limits of joint torques summarized
in Table-1.

5.2 Example 2

In Example-2, a 3D spring movement, shown in Fig.
4, is considered for the optimization. The objective in
this example is to find a time-optimal trajectory while
satisfying the constraints on joint torques. Just like the
example 1, this problem is also solved by three different
optimization techniques and the results are compared. A
grid size of 50× 50 is used in the optimization algorithms.
The results obtained by different techniques are shown in
Table-3.

The results obtained by different techniques, shown in
Table-3, are comparable to each other. Joint-1 gives the
global optimal solution when it is considered as a reference

Fig. 4. Path for Example 2

Fig. 5. Optimal torque of joints

joint in the dynamic programming algorithm proposed by
Singh et al. [1987]. As per proposed joint selection criterion
the Joint-1 must give the global optimal solution as it
fulfils the proposed criterion, its sum of absolute differ-
ences between pairs of successive discrete points is lowest
and comparable to the all other non-stationary joint’s
value. The joints torque for the time-optimal trajectory
are shown in Fig. 5.

In this section two examples are discussed to show the
validity of the proposed joint selection criterion. The re-
sults obtained by the modified Singh et al. [1987] algo-
rithm are compared with the results obtained by phase
plane method, proposed by Bobrow et al. [1985], and the
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dynamic programming using path parameter s, proposed
by Shin et al. [1986]. The results show the validation of
the joint selection criterion that is useful in the selection
of a non-stationary reference joint among more than one
non-stationary joints to get the global optimal solution
by using DP algorithm proposed by Singh et al. [1987].
The reference joint selection for the global optimal solution
can be made directly from the given path information by
using this joint selection criterion. The computational time
taken by different optimization techniques is also given in
the respective tables of the examples and one can compare
the computational efficiency of different techniques. As
phase plane method is dedicated to solve the time min-
imization problem, so it is computational efficient. The
only drawback of the dynamic programming method, also
evident from these examples, is that it is computationally
expensive as it has to check all possible combinations.
These joint selection criterion is tested on many other
optimal trajectories planning for DELTA robot. To keep
the length of the paper under limits, only two examples
are presented.

6. CONCLUSION

In this paper a joint selection criterion is proposed to select
a non-stationary reference joint to optimize the given path
using dynamic programming algorithm proposed by Singh
et al. [1987]. The non-stationary reference joint can be
selected using the proposed criterion directly from the
given path information. By using this criterion the com-
putational time of the problem is reduced and there is
no need to solve the problem multiple times by consid-
ering the each non-stationary joint as a reference. The
applicability and the validation of the proposed criterion
are supported by numerical examples. The optimal results
obtained by using the joint selection criterion and modified
algorithm are compared with the results obtained by some
state-of-the-art techniques. Currently, we are working on
the mathematical proof of proposed heuristic based joint
selection criterion.
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