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Abstract: This paper is concerned with collision-free vehicle formation control (FC) when
the communication between vehicles is model by a graph. Unlike previous FC works (dealing
with either non-trivial vehicle dynamics with no consideration of collision avoidance (CA) or
trivial first-order vehicle dynamics with consideration of CA), this paper discusses non-trivial
(second-order) vehicle FC with consideration of CA. This collision-free vehicle FC is done
by manipulating entries of the graph Laplacian and by constructing a proper edge-tension
function. Theoretical and numerical evidences are provided to show that the proposed control
law effectively address both CA and FC.
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1. INTRODUCTION

Recently there is a tremendous surge of interest among
researchers in formation control (FC) of autonomous ve-
hicles due to its broad applications in military and civil
areas. For example, a group of autonomous vehicles can be
used for air traffic control, surveillance, firefighting, explo-
ration, cleaning up oil spills and rich spatial awareness by
distributing in a suitable formation (Martin et al. [2001],
Bender. [1991]). Therefore, it may often be required that
multiple vehicles move along a pre-defined trajectory while
maintaining a desired formation. Moving in formation
has many advantages as it can reduce the system cost,
increase the robustness and efficiency of the system while
providing redundancy and reconfiguration ability (Serrani.
[2003], Daniel et al. [2004] and Stilwell et al. [2000]). Many
control approaches, for example, a range-based method
(Cao et al. [2011]) and a virtual structure approach (Ren.
[2003]) have been used to achieve a desired formation.
Also, Dashkovskiy et al. [2008] presents a framework of ISS
(input-to-state stability) and a small-gain theorem which
can be used for effective vehicle FC. One noticeable work
is Lafferrire et al. [2005] in which a decentralized control
scheme was proposed to achieve formation. Although these
existing works propose sound FC schemes for non-trivial
vehicles with second-order dynamics, they do not take
into account the practically important issue of collision
avoidance (CA) in their control designs.

CA is an old topic and has attracted many researchers,
especially in aerospace engineering. See Keviczky et al.
[2008], Chao et al. [2011], Michael et al. [2011], Kang et al.
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[2013], Mastellone et al. [2008], Lalish et al. [2008a], Lalish
et al. [2008b], Sabattini et al. [2011], Yan et al. [2011],
Falconi et al. [2011], Sabattini et al. [2011], Kan et al.
[2012], Ammir. [2012] for some recent works in this direc-
tion. Yet, these existing works still have various limitations
that have to be removed for the present application. Some
of the existing works such as Keviczky et al. [2008] use
the Receding Horizon Control (RHC) scheme which often
requires solving a computationally intense optimization
problem and thus has the limitation for real-time appli-
cations. Besides, this RHC scheme requires complicated
emergency controllers and their invariant sets to define
protection zones for CA when RHC problems become
infeasible. Michael et al. [2011] also involves solving an
optimization problem for CA and has a similar feasibility
issue. The works such as Lalish et al. [2008a], Lalish
et al. [2008b] are not specifically targeted for formation
flying and do require all-to-all communication to collect
all vehicles’ states. Mastellone et al. [2008] and Sabattini
et al. [2011] present interesting research outputs closely
related to the topic of present interest, but they require
that a pre-defined reference state (or its accurate estimate)
must be known to all vehicles to achieve the objective. In
particular, Sabattini et al. [2011] is purely for ground robot
applications as it requires the robots to stop and form a
desired formation. Note that many aerospace applications
do not allow vehicles (e.g. fixed-wing airplanes) to stop;
instead, the vehicles are expected to move together in
a desired formation with zero relative velocities. Other
recent works such as Yan et al. [2011], Falconi et al. [2011],
Kan et al. [2012] and Ammir. [2012] also discuss the topic
of present interest, but all are restricted to the first-order
vehicle dynamics.
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In this work, the existing works are improved in the fol-
lowing manner. First, an edge-tension function is utilized
for collision-free FC, thereby avoiding solving complex
optimizations (unlike the RHC approaches). Note that
the edge-tension function is originally proposed in Jiand.
[2007], and successfully used in Falconi et al. [2011] for the
collision-free FC of first-order systems. In this paper, this
edge-tension function is further exploited for the collision-
free formation control of second-order systems. Second, the
control structure to be proposed in this paper is similar to
the state feedback control law proposed in Lafferrire et al.
[2005], and so the control law is simple, easy-to-implement
and may allow vehicles tomove in a desired formation with
zero relative velocities.

The rest of the paper is organized as follows. In §2, multi-
vehicle dynamics is described and the simple control law
proposed in Lafferrire et al. [2005] is stated as an example
of FC (while not considering CA yet). Then, the clear
problem statement is given along the definition of an
edge-tension function to be useful for collision-free FC. In
§3, our control law is proposed and proven to guarantee
stability and desired performance (collision-free flying to
a desired formation). This proposed control law is initially
for a complete network topology and is subsequently
extended for a star (leader-following) network topology.
The extended work for a star (leader-following) network
topology shall be presented in a journal version of this
paper, though. Numerical examples are then provided in §4
to demonstrate the developments in the preceding sections,
and concluding remarks follow in §5.

2. VEHICLE DYNAMICS AND PROBLEM
FORMULATION

Consider N vehicles as vertices of a graph, with an
edge set determined by the relative positions between the
respective vehicles. Specifically, let G denote the set of
graphs of order N with vertex set V = {1, 2, . . . , N} and
edge set E = {eij : i = 1, 2, . . . , N−1, j = 2, . . . , N ; i < j},
and the edge weight wij assigned to each edge eij is a
function of the distance lij between the two vehicles i and
j. It is assumed in this paper that wij= lij , and eij ∈ E
implies eji ∈ E . The weighted graph Laplacian matrix Lw

is defined as below:

Lw(x) =

⎧⎨
⎩

∑
k �=i

wik for i = j;

−wij for i �= j.

The dynamics of each vehicle is described by the following
equation:

p̈i = a22ṗi + ui = a22vi + ui, (1)

where a constant a22 needs not to be zero (unlike a22 = 0
in Lafferrire et al. [2005]). Assuming that vehicle dynamics
along each axis is decoupled, the dynamics of each vehicle
can be written as

ẋi = Avehxi +Bvehui, i = 1, 2, . . . , N,

where the entries of xi = [pTi vTi ]
T ∈ R2n represent n

configuration variables for vehicle i and their derivatives;
ui represents the control inputs; and

Aveh = In ⊗
[
0 1
0 a22

]
; Bveh = In ⊗

[
0
1

]
. (2)
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Fig. 1. Edge-tension function Vij with δ = 0.5, αij =1.0,
Kij = 1.0 and V min

ij = 3.2956

Here, In is an identity matrix with dimension n and ⊗ the
Kronecker product. Note that in Lafferrire et al. [2005] the
following simple static feedback control law

u = −FL(x− h) (3)

with constant matrices F and L, is proposed to let N
second-order vehicles change their positions and velocities
to achieve a desired formation described by h. Here, u and
x are the vectors of ui’s and xi’s, and L = LG ⊗ I2n (LG is
the standard Laplacian matrix of a connected undirected
inter-vehicle communication network topology G - see Kim
et al. [2010] for details).

As mentioned earlier, the FC law in (3) may allow colli-
sions between vehicles in the course of flying to a desired
formation. In this paper, a new control law similar to (3)
is proposed to guarantee both FC and CA. To this end,
some preliminary definitions are in order.

Definition 1. (CA) Let δ be a safety distance (minimum
separation) between each pair of vehicles. If the distance
between each pair of vehicles is greater than δ, it is said
that collision is avoided. i.e. lij = ‖pi − pj‖ > δ ∀i, j ∈ V.
Furthermore, the collision-free realization of G is defined
as

Gδ =
{
x ∈ RnN : lij > δ, ∀eij ∈ E

}
. (4)

Definition 2. (Edge-tension function) For given positive
constants δ, αij and Kij

Vij(lij) = αij

{
coth

(
lij − δ

Kij

)
+

lij
Kij

}
− V min

ij . (5)

Here, V min
ij is a positive constant which renders the mini-

mum of Vij zero. The edge-tension function Vij , as depicted
in Fig. 1 with some δ, αij and Kij , is a differentiable
nonnegative function of lij such that

(1) Vij → ∞ as lij → δ.
(2) Vij attains a unique minimum at lij = dij , where

dij = δ +
Kij

2
log(3 + 2

√
2). (6)

It should be noted that the edge-tension function (as well
as its derivative) becomes infinite as δ reaches zero, so
it may look an odd choice. However, this edge-tension
function shall be used in such a way that no edge length
reaches δ (where dVij/dlij = ∞) and every edge length lij
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converges to its desired one dij (where Vij = 0). Clearly,
Kij in (6) can be used to design dij for a given δ. The total
tension energy of a graph G is defined as

V =
1

2

N∑
i=1

∑
j∈Ni

Vij (7)

where Ni denotes the set of neighbouring vehicles who
can talk to vehicle i. We are now ready to present our
FC laws such that each pair of vehicles i, j achieve a pre-
defined desired distance dij with zero relative velocities
while guaranteeing CA.

3. CONTROL LAW DESIGN

This section begins with the following theorem that allow
N vehicles to converge to formation without collision.

Theorem 3. Suppose two undirected network topologies of
N vehicles are given as Gi,Gf whose realizations belong to
Gδ, and set Kij in (6) such that Vij attains its minimum
at lij = dij , where dij is the desired relative distance
between agents i and j of Gf . Then, the control law
ui (i = 1, · · · , N) for ith vehicle

ui = − 1

N

∑
j∈Ni

{(1 + a22)vij +∇piVij} (8)

drives the vehicles from the initial configuration Gi to the
desired formation Gf without collision, provided that all
vehicles remain connected to each other at all times. Here,
Ni is the set of natural numbers from 1 to N except i,
vij is the relative velocity between vehicles i and j, and
∇piVij is the gradient of Vij with respect to pi.

Proof. The proof shall be presented in a journal version
of this paper.

It is interesting to note that the proposed controller (8) is
similar to (3) found in Lafferrire et al. [2005]. To see this,
first note that ∇piVij = wij(pi − pj), where

wij = αij

{
−csch2

(
lij − δ

Kij

)
+ 1

}
1

lijKij
.

The control law ui can then be written as:

ui = −
∑
j∈Ni

{
(pi − pj)

wij

N
+

1 + a22
N

(vi − vj)

}
,

or in matrix form

ui = −IN⊗[f1, f2]

(
Lw ⊗

[
1 0
0 0

]
+ LG ⊗

[
0 0
0 1

])
x. (9)

where [f1, f2]=[1/N, (1+a22)/N ] and x is the stack vector
of positions and velocities of N vehicles. Since the motion
along each axis is independent for vehicle i, (9) can be
written as:

ui = − (IN ⊗ In ⊗ [f1, f2])︸ ︷︷ ︸
F

×
(
Lw ⊗ In

[
1 0
0 0

]
+ LG ⊗ In

[
0 0
0 1

])
︸ ︷︷ ︸

Lwg

x

= −FLwgx.
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Fig. 2. Vehicles converging to a pentagon formation with
(8): no collision occurs

Note that the desired formation vector h in (3) is now
embedded in wij in the form of dij . The aforementioned
formation control law can be extended in a way to accom-
modate a star (leader-following) network topology. This
extension, however, shall be presented in a journal version
of this paper.

4. NUMERICAL EXAMPLE

To test the proposed control (8) in a simulation envi-
ronment, five vehicles were initially lined up (marked
with ‘x’) in Fig. 2-(a)) and are required to form a
pentagon formation defined by h = [0; 1] ⊗ hp =
[0; 1] ⊗ [h1;h2;h3;h4;h5],

1 where for some chosen d12
h1=[0; 0], h2=[d12; 0], h3=[d12/2;

√
3d12/2], h4=[0;

√
3d12]

and h5=[d12;
√
3d12]. Once the desired inter-vehicle dis-

tances are fixed, Kij can be chosen based on (6). Also,
a22 = 0.1, δ = 2.0 and αij = 1.0.

Fig. 2 shows the simulation results when (8) is used for
formation control. Fig. 2-(a) shows that five vehicles start
from the line formation (×) and form the require pentagon
formation (◦) in the end. Fig. 2-(b) shows the control
effort required to form the desired formation. Note that
as the vehicles achieve the desired formation, the control
effort becomes zero. Fig. 2-(c) shows relative distances
between each pair of vehicles, along with the minimum
separation line of δ = 2.0. Fig. 3 shows the same formation
reconfiguration scenario when (3) in Lafferrire et al. [2005]
is used to achieve the desired formation. In this case,
Fig. 2-(c) clearly shows that some vehicles violate the
minimum separation constraint.

In the second scenario, vehicles are required to form
a circular formation from an initial horizontal con-
figuration, where vector hp is given by θ=2π/N and
hi+1=[d12 cos(iθ); d12 sin(iθ)] (i = 0, · · · , N − 1). Fig. 4
shows that vehicles achieve the circular formation while
maintaining the distances above the pre-defined safety
distance of δ = 1.0.

1 [a; b] denotes a column vector of a and b; this is a Matlab-like
notation.
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Collision occurs among Vehicles 1 and 2

Fig. 3. Vehicles converging to a pentagon formation with
(3) in Lafferrire et al. [2005]: collision occurs
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Fig. 4. Vehicles converging to a circular formation with
(8): no collision occurs

5. CONCLUSION

In this paper, collision-free formation control for second-
order vehicles was considered when the inter-vehicle net-
work topology is complete. Unlike typical collision-free FC
approaches, the proposed control approach utilizes graph
Laplacian and an edge-tension function to synthesize a
simple and easy-to-implement feedback control scheme for
achieving both desired formation and collision avoidance;
this approach does not involve solving complex optimiza-
tions problems. The present work considers complete and
star network topologies only. The future work will be
focused on control design for more general topologies with
accounting for practical issues such as time-delay and link
failures in the network.
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