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Abstract: In this paper, the problem of trajectory tracking for a four wheeled omnidirectional robot
is solved in the inertial fixed coordinate system. The solution relies on a reference model approach,
where the resulting nonlinear error model is brought to a quasi-Linear Parameter Varying (LPV) form
suitable for designing an LPV controller using Linear Matrix Inequalities (LMI)-based techniques. In
particular, the controller is obtained within the switching LPV framework. The effectiveness of the
proposed approach is shown through simulation results.
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1. INTRODUCTION

Omni-directional mobile robots are gaining popularity due
to their enhanced mobility with respect to traditional robots
(Oliveira et al., 2009). Holonomic robots are interesting be-
cause they offer advantages in manoeuvrability and effective-
ness, even though at the expense of increased mechanical and
control complexities (Oliveira et al., 2008). These robots use
some kind of variation of the Mecanum wheels proposed by
Diegel et al. (2002) and Salih et al. (2006). A robot with
three or more motorized wheels of this kind can have almost
independent tangential, normal and angular velocities. In order
to increase the performance of these robots, there have been
some efforts in developing a dynamic model, see, e.g., (Cam-
pion et al., 1996), (Conceicao et al., 2006), (Khosla, 1989),
(Williams et al., 2002).

Different techniques have been applied in order to solve the
control problem for omni-directional mobile robots. The solu-
tion proposed by Muir and Neuman (1987) relies on a kinematic
control based on actuated inverse and sensed forward solutions.
More recently, Purwin and D’Andrea (2006) have proposed an
algorithm to calculate near-optimal minimum time trajectories,
based on a relaxed optimal control problem. Rojas and Förster
(2006) have used one PID controller for each motor in order
to avoid problems arising from slipping wheels. In Liu et al.
(2008), the robot controller consists of an outer-loop kinematics
controller and an inner-loop dynamics controller, which are
both designed using the Trajectory Linearization Control (TLC)
method, based on a nonlinear robot dynamic model. Indiveri
(2009) has formulated the trajectory tracking and pose regula-
tion problems as a guidance control problem. Finally, a model-
based PI-fuzzy control and an adaptive controller based on
multi-input fuzzy rules emulated networks have been proposed
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CYT SHERECS (ref. DPI2011-26243), by the European Commission through
contract i-Sense (ref. FP7-ICT-2009-6-270428) and by AGAUR through the
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in Hashemi et al. (2011) and Treesatayapun (2011), respec-
tively.

In the last decades, the Linear Parameter Varying (LPV)
paradigm has become a standard formalism in systems and con-
trol, for analysis, controller synthesis and system identification
(Shamma, 2012). This class of systems is important because
gain-scheduling control of nonlinear systems can be performed
using an extension of linear techniques, by embedding the sys-
tem nonlinearities in the varying parameters that depend on
some endogenous signal, e.g. system states (in this case, the
system is referred to as quasi-LPV, to make a distinction with
respect to pure LPV systems, where the varying parameters
only depend on exogenous signals).

Some applications of the LPV control techniques to mobile
robots can be found in the literature of the last decade. Tsourdos
et al. (2003) have proposed a fuzzy LPV controller that guar-
antees the global stability of the closed loop system over the
entire operating range of the fuzzy model. Inoue et al. (2009)
use a kinematic-based control to obtain desired velocities that
form the input errors for the proposed quasi-LPV H∞ controller
used to attenuate the effect of external disturbances. LeBel and
Rodrigues (2008) have considered the problem of path follow-
ing, and designed a piecewise-affine parameter-varying steering
control law, that is used in combination with a backstepping-
type approach which, including the vehicle dynamics, guaran-
tees the convergence of the robot forward and rotational veloc-
ities to the desired values. Notice that none of these solutions
uses a controller, designed within the LPV framework, for solv-
ing the trajectory tracking problem in the inertial fixed coordi-
nate system. All the listed solutions use either a combination of
two controllers (the kinematic-based and the dynamic-based),
or a control law obtained in the robot local coordinate system.

In this paper, a solution for the trajectory tracking problem
in the inertial fixed coordinate system is proposed for a four
wheeled omnidirectional robot. This solution relies on the use
of a reference model that describes the desired trajectory, an
idea that is well-established in the LTI framework (Landau,
1979), and has recently been extended to cope with the con-
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trol of LPV systems (Abdullah and Zribi, 2009). The resulting
nonlinear error model is brought to a quasi-LPV form suitable
for designing an LPV controller using a Linear Matrix Inequal-
ities (LMI)-based approach. In particular, it is shown that, if
polytopic techniques are used to reduce the number of LMI
constraints from infinite to finite, there could not exist a solution
within the standard LPV framework. Hence, the switching LPV
framework is considered (Lu and Wu, 2004), (He et al., 2010).

The paper is structured as follows. Section 2 introduces the
dynamic model of the four wheeled omnidirectional robot, and
the corresponding reference model. The resulting error model
is brought to a quasi-LPV representation. In Section 3, the
reference inputs calculation for a circular trajectory tracking is
discussed. The error feedback controller design using switching
LPV techniques is presented in Section 4. Simulation results
are shown in Section 5. Finally, the main conclusions and the
possible future work are summarized in Section 6.

2. QUASI-LPV MODELING OF THE FOUR WHEELED
OMNIDIRECTIONAL ROBOT

The dynamic model of the four wheeled omnidirectional robot
(see Fig. 1) relates the wheel inputs and robot velocities with the
corresponding accelerations, taking into account the traction,
viscous friction and Coulomb friction forces. It is given by the
following set of differential equations (Oliveira et al., 2009):

ẋ = vx (1)
v̇x =

(
A11c2

θ +A22s2
θ
)

vx +((A11 −A22)sθ cθ −ω)vy
+K11cθ sign(vxcθ + vysθ )−B21sθ u0 +B12cθ u1
−K22sθ sign(−vxsθ + vycθ )−B23sθ u2 +B14cθ u3

(2)

ẏ = vy (3)

v̇y = ((A11 −A22)sθ cθ +ω)vx +
(
A11s2

θ +A22c2
θ
)

vy
+K11sθ sign(vxcθ + vysθ )+B21cθ u0 +B12sθ u1
+K22cθ sign(−vxsθ + vycθ )+B23cθ u2 +B14sθ u3

(4)

θ̇ = ω (5)
ω̇ = A33ω +B31u0+B32u1+B33u2+B34u3+K33sign(ω) (6)

where (x,y) is the robot position, θ is the angle with respect
to the defined front of robot (sθ , sinθ and cθ , cosθ ), vx,
vy and ω are the corresponding linear/angular velocities, and
u0, u1, u2 and u3 the motor voltage applied to the wheel 1, 2,
3 and 4, respectively. The coefficients Aii, Bi j, Kii, i = 1,2,3,
j = 1,2,3,4, are defined as follows 2 :

A11 =
2K2

t l2

r2RM
− Bv

M
A22 =

2K2
t l2

r2RM
− Bvr

M
A33 =−4d2K2

t l2

r2RJ
− Bω

J

B12 = B23 =− lKt

rRM
B14 = B21 =

lKt

rRM
B31 = B32 = B33 = B34 =

lKt d
rRJ

K11 =−Cv

M
K22 =−Cvn

M
K33 =−Cω

J

By introducing the following reference model:
ẋr = vr

x (7)

v̇r
x =

(
A11c2

θ +A22s2
θ
)

vr
x +((A11 −A22)sθ cθ −ω)vr

y
+K11cθ sign(vxcθ + vysθ )−B21sθ ur

0 +B12cθ ur
1

−K22sθ sign(−vxsθ + vycθ )−B23sθ ur
2 +B14cθ ur

3

(8)

ẏr = vr
y (9)

2 For a description of the system parameters, as well as the values used in the
simulations taken from Oliveira et al. (2009), see Table 1.

Table 1. System parameters description and values

Param. Description Value
Kt Motor torque constant 0.0259 [V s/rad]
l Gearbox reduction 5
r Wheel radius 0.0325 [m]
R Motor resistor 4.3111 [Ω]
M Mass 2.34 [kg]
d Distance between wheels and robot center 0.089 [m]
J Inertia moment 0.0228 [kgm2]

Bv Front viscous friction coefficient 0.4978 [Ns/m]
Bvn Orthogonal viscous friction coefficient 0.6763 [Ns/m]
Bω Angular viscous friction coefficient 0.0141 [Nms/rad]
Cv Front Coulomb friction coefficient 1.8738 [N]
Cvn Orthogonal Coulomb friction coefficient 2.2198 [N]
Cω Angular Coulomb friction coefficient 0.1385 [Nm]

Fig. 1. Four wheeled omnidirectional mobile robot.

v̇r
y = ((A11 −A22)sθ cθ +ω)vr

x +
(
A11s2

θ +A22c2
θ
)

vr
y+

+K11sθ sign(vxcθ + vysθ )+B21cθ ur
0 +B12sθ ur

1
+K22cθ sign(−vxsθ + vycθ )+B23cθ ur

2 +B14sθ ur
3

(10)

θ̇r = ωr (11)

ω̇r = A33ωr +B31ur
0 +B32ur

1 +B33ur
2 +B34ur

3 +K33sign(ω)
(12)

where (xr,yr) is the reference vehicle position, θr is its angle,
vr

x, vr
y and ωr are the corresponding linear/angular velocities,

and ur
0, ur

1, ur
2, ur

3 are the reference inputs (feedforward actions),
then, if the tracking errors e1 , xr −x, e2 , vr

x −vx, e3 , yr −y,
e4 , vr

y − vy, e5 , θr − θ , e6 , ωr − ω , and the new inputs
∆ui , ur

i − ui, i = 1,2,3,4, are defined, the error model for
the four wheeled omnidirectional mobile robot can be obtained
from (1)-(12), and brought to a quasi-LPV representation, as
follows:

ė1
ė2
ė3
ė4
ė5
ė6

=


0 1 0 0 0 0
0 ϑ1 0 ϑ2 0 0
0 0 0 1 0 0
0 ϑ3 0 A11 +A22 −ϑ1 0 0
0 0 0 0 0 1
0 0 0 0 0 A33




e1
e2
e3
e4
e5
e6



+


0 0 0 0

−B21ϑ4 B12ϑ5 −B23ϑ4 B14ϑ5
0 0 0 0

B21ϑ5 B12ϑ4 B23ϑ5 B14ϑ4
0 0 0 0

B31 B32 B33 B34


 ∆u0

∆u1
∆u2
∆u3


(13)

where the vector of varying parameters is:
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ϑ(t) =


ϑ1(t)
ϑ2(t)
ϑ3(t)
ϑ4(t)
ϑ5(t)

=


A11 cos2(θ)+A22 sin2(θ)

(A11 −A22)sin(θ)cos(θ)−ω
(A11 −A22)sin(θ)cos(θ)+ω

sin(θ)
cos(θ)


3. REFERENCE INPUTS CALCULATION FOR A

CIRCULAR TRAJECTORY TRACKING

To make the robot track a desired trajectory, proper values of
ur

0, ur
1, ur

2, ur
3 should be fed to the reference model, such that its

state equals the one corresponding to the desired trajectory. In
this paper, a circular trajectory is chosen, defined as follows:

xr(t) = ρ cos(θr(t)) (14)
yr(t) = ρ sin(θr(t)) (15)

θr(t) =
2πt
T

(16)

where ρ is the circle radius and T is the desired revolution
period around the circle center. Taking the derivative of (14)-
(16), and taking into account (7), (9) and (11), respectively, the
following is obtained:

ẋr(t) =−ρ
2π
T

sin
2πt
T

= vr
x(t) (17)

ẏr(t) = ρ
2π
T

cos
2πt
T

= vr
y(t) (18)

θ̇r(t) =
2π
T

= ωr(t) (19)

Then, another differentiation of (17)-(19) leads to:

v̇r
x(t) =−

(
2π
T

)2

ρ cos
2πt
T

(20)

v̇r
y(t) =−

(
2π
T

)2

ρ sin
2πt
T

(21)

ω̇r(t) = 0 (22)
and, by properly replacing (17)-(22) into (7)-(12) we obtain:

Are f (t)

 ur
0(t)

ur
1(t)

ur
2(t)

ur
3(t)

= Bre f (t) (23)

with:

Are f (t) =

(−B21ϑ4(t) B12ϑ5(t) −B23ϑ4(t) B14ϑ5(t)
B21ϑ5(t) B12ϑ4(t) B23ϑ5(t) B14ϑ4(t)

B31 B32 B33 B34

)
(24)

Bre f (t) = ( βre f 1(t) βre f 2(t) βre f 3(t) )
T (25)

βre f 1(t) = ρ
2π
T

(
sin
(

2πt
T

)
ϑ1(t)− cos

(
2πt
T

)(
ϑ2(t)+

2π
T

))
−K11ϑ5(t)sign(vxϑ5(t)+ vyϑ4(t))
−K22ϑ4(t)sign(vyϑ5(t)− vxϑ4(t))

βre f 2(t) = ρ
2π
T

(
sin
(

2πt
T

)(
ϑ3(t)−

2π
T

)
− cos

(
2πt
T

)
ϑ1(t)

)
−K11ϑ4(t)sign(vxϑ5(t)+ vyϑ4(t))
−K22ϑ5(t)sign(vyϑ5(t)− vxϑ4(t))

βre f 3(t) =−A33
2π
T

−K33sign(ω(t))

Finally, the reference model inputs ure f
i (t), i = 1,2,3,4, are

obtained as:  ur
0(t)

ur
1(t)

ur
2(t)

ur
3(t)

= A†
re f (t)Bre f (t) (26)

where A†
re f denotes the pseudoinverse of Are f .

Remark: The obtained values ur
i (t), i = 1,2,3,4 depend on the

specifications, defined by the radius ρ and revolution period T
of the desired circular trajectory (14)-(16). Special care should
be put in choosing ρ and T , such that the resulting reference
inputs do not cause the motors to work near/in their saturation
region.

4. ERROR FEEDBACK CONTROLLER DESIGN USING
SWITCHING LPV TECHNIQUES

Consider the following (quasi-)LPV error system:
ė(t) = A(ϑ(t))e(t)+B(ϑ(t))∆u(t) (27)

where e ∈ Rne is the error vector, ∆u ∈ Rnu is the input vector,
and A(ϑ(t)), B(ϑ(t)) are varying matrices of appropriate di-
mensions and ϑ ∈ Θ ⊂Rnθ is the vector of varying parameters.
The system is controlled through an error-feedback control law:

∆u(t) = K (ϑ(t))e(t) (28)
and it is wished to solve the design problem of finding an error-
feedback gain matrix K (ϑ(t)) such that the resulting closed-
loop error system is stable with poles placed in some desired
region of the complex plane 3 .

In this paper, both stability and pole clustering are analyzed
within the quadratic Lyapunov framework, where the specifi-
cations are assured by the use of a single quadratic Lyapunov
function. Despite the introduction of conservativeness with re-
spect to other existing approaches, where the Lyapunov func-
tion is allowed to be parameter-varying, the quadratic approach
has undeniable advantages in terms of computational complex-
ity.

In particular, the (quasi-)LPV error system (27) with the error-
feedback control law (28) is quadratically stable if and only if
there exist Xs = XT

s > 0 and K (ϑ(t)) such that (Packard and
Becker, 1992):

(A(ϑ)+B(ϑ)K(ϑ))Xs +Xs (A(ϑ)+B(ϑ)K(ϑ))T < 0 (29)
∀ϑ ∈ Θ. On the other hand, pole clustering is based on the
results obtained by Chilali and Gahinet (1996), where subsets
D of the complex plane, referred to as LMI regions, are defined
as:

D = {z ∈ C : fD (z)< 0} (30)
where fD is the characteristic function, defined as:

fD (z) = α + zβ + z̄β T = [αkl +βklz+βlk z̄]1≤k,l≤m (31)

where α = αT ∈Rm×m and β ∈Rm×m. Hence, the (quasi-)LPV
error system (27) with error-feedback control law (28) has poles
in D if there exist XD = XT

D > 0 and K (ϑ(t)) such that:[
αklXD +βkl (A(ϑ)+B(ϑ)K(ϑ))XD +βlkXD (A(ϑ)+B(ϑ)K(ϑ))T

]
< 0

1≤k,l≤m
(32)

∀ϑ ∈ Θ. The main difficulty with using (29) and (32) is that
they impose an infinite number of constraints. In order to reduce
this number to finite, a polytopic approximation of (27)-(28) is
considered, as follows:

A(ϑ(t)) =
N

∑
i=1

γi (ϑ(t))Ai γi (ϑ)≥ 0,
N

∑
i=1

γi (ϑ) = 1 ∀ϑ ∈ Θ

(33)
3 According to Ghersin and Sanchez-Peña (2002), and with a little abuse of
language, the poles of an LPV system are defined as the set of all the poles of
the LTI systems obtained by freezing ϑ(t) to all its possible values ϑ ∗ ∈ Θ.
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B(ϑ(t))=
W

∑
w=1

δw (ϑ(t))Bw δw (ϑ)≥ 0,
W

∑
w=1

δw (ϑ) = 1 ∀ϑ ∈Θ

(34)

K (ϑ(t)) =
N

∑
i=1

γi (ϑ(t))Ki (35)

where each combination (Ai,Bw), i = 1, . . . ,N, w = 1, . . . ,W
is called vertex system and is controlled through the vertex
controller Ki. Then, quadratic stability and pole clustering can
be assessed through the following conditions, obtained from
(29)-(32) using a common Lyapunov matrix X = Xs = XD > 0:

(Ai +BwKi)X +X (Ai +BwKi)
T < 0 (36)[

αklX +βkl (Ai +BwKi)X +βlkX (Ai +BwKi)
T
]

< 0
1≤k,l≤m

(37)

with i = 1, . . . ,N and w = 1, . . . ,W . Conditions (36) and (37)
are Bilinear Matrix Inequalities (BMIs) that can be brought to
Linear Matrix Inequalities (LMIs) form through the change of
variable Γi , KiX :

(AiX +BwΓi)+(AiX +BwΓi)
T < 0 (38)[

αklX +βkl (AiX +BwΓi)+βlk (AiX +BwΓi)
T
]

< 0
1≤k,l≤m

(39)

that can be solved using available software, e.g. the YALMIP
toolbox (Löfberg, 2004) with SeDuMi solver (Sturm, 1999).

However, when the polytopic LPV conditions (38)-(39) are
applied to some polytopic approximation of the four wheeled
omnidirectional mobile robot quasi-LPV model (13), a solution
could not exist due to the loss of controllability occurring for
ϑ4 = ϑ5 = 0, values for which the input matrix becomes:

Bϑ4=ϑ5=0 =

(
05×1 05×1 05×1 05×1
B31 B32 B33 B34

)
(40)

Due to the fact that the set described by the polytopic approx-
imation (34) is convex, it is straightforward that any polytopic
approximation of the admissible values for ϑ4(t) = sinθ(t) and
ϑ5(t) = cosθ(t) will contain the origin, that is, the singularity
(40) of the input matrix B (see the dash-dot black line in Fig. 2).
In order to solve this issue, the solution to the design problem
is searched within the switching LPV framework, where the
overall system behavior is given by an interaction between
different LPV systems through discrete switching events, which
can depend on states or time. Similarly, the overall controller is
obtained from different LPV controllers that are switched when
discrete events occur.

More specifically, it is assumed that (33)-(35) are modified
including a switching part, as follows:

A(ϑ(t)) =



N1

∑
i=1

γ(1)i (ϑ(t))A(1)
i , γ(1)i (ϑ)≥ 0,

N1

∑
i=1

γ(1)i (ϑ) = 1 ∀ϑ ∈ Θ1

...
Nr

∑
i=1

γ(r)i (ϑ(t))A(r)
i , γ(r)i (ϑ)≥ 0,

Nr

∑
i=1

γ(r)i (ϑ) = 1 ∀ϑ ∈ Θr

...
NR

∑
i=1

γ(R)i (ϑ(t))A(R)
i , γ(R)i (ϑ)≥ 0,

NR

∑
i=1

γ(R)i (ϑ) = 1 ∀ϑ ∈ ΘR

(41)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

cos θ (ϑ
5
)

si
n 

θ 
(ϑ

4)

REGION 4 REGION 1

REGION 2REGION 3

Fig. 2. Polytopic LPV and Polytopic Switching LPV approxi-
mations of the scheduling variables ϑ4(t) and ϑ5(t).

B(ϑ(t)) =



W1

∑
w=1

δ (1)
w (ϑ(t))B(1)

w , δ (1)
w (ϑ)≥ 0,

W1

∑
w=1

δ (1)
w (ϑ) = 1 ∀ϑ ∈ Θ1

...
Wr

∑
w=1

δ (r)
w (ϑ(t))B(r)

w , δ (r)
w (ϑ)≥ 0,

Wr

∑
w=1

δ (r)
w (ϑ) = 1 ∀ϑ ∈ Θr

...
WR

∑
w=1

δ (R)
w (ϑ(t))B(R)

w , δ (R)
w (ϑ)≥ 0,

WR

∑
w=1

δ (R)
w (ϑ) = 1 ∀ϑ ∈ ΘR

(42)

K (ϑ(t)) =



N1

∑
i=1

γ(1)i (ϑ(t))K(1)
i , ∀ϑ ∈ Θ1

...
Nr

∑
i=1

γ(r)i (ϑ(t))K(r)
i , ∀ϑ ∈ Θr

...
NR

∑
i=1

γ(R)i (ϑ(t))K(R)
i , ∀ϑ ∈ ΘR

(43)

where ϑ1, . . . ,ϑR are subsets of the varying parameter space
Θ, such that Θ = Θ1 ∪ . . .∪Θr ∪ . . .∪ΘR. In each subset ϑr,
r = 1, . . . ,R, the system is described by a polytopic combination
of vertex systems. The controller (28) with gain (43) assures
that the error system (27) with state and input matrix as in (41)
and (42), respectively, is quadratically stable and has poles in
D if there exist X = XT > 0 and Γ(r)

i , i = 1, . . . ,Nr, r = 1, . . . ,R,
such that 4 : (

A(r)
i X +B(r)

w Γ(r)
i

)
+
(

A(r)
i X +B(r)

w Γ(r)
i

)T
< 0 (44)[

αklX +βkl

(
A(r)

i X +B(r)
w Γ(r)

i

)
+βlk

(
A(r)

i X +B(r)
w Γ(r)

i

)T
]

< 0
1≤k,l≤m

(45)

with i = 1, . . . ,NR, w = 1, . . . ,WR and r = 1, . . . ,R.

Using (41)-(45), the problem arising due to the loss of control-
lability for ϑ4 = ϑ5 = 0 can be avoided by splitting the subset
of the parameter space generated by ϑ4 and ϑ5 in more regions,
4 This result is a particular case of the one obtained in He et al. (2010), where
a common parameter-dependent Lyapunov function has been used for control
design of switched LPV systems. In this paper, a common fixed Lyapunov
function is used instead, since it has proved to be enough for stabilizing the
four wheeled omnidirectional mobile robot and placing its poles in the desired
LMI region D .
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such that in each region the resulting polytopic approximation
does not include the origin. In particular, in this work, the
quadrants have been considered as regions, with θ = kπ/2,
k ∈ N being the switching condition (see Fig. 2). Then, a tri-
angular polytopic approximation has been used in each region,
as shown in Fig. 2.
Remark 4.1. In the case of quasi-LPV systems obtained from a
nonlinear system, the closed loop system could be unstable for
some operating conditions despite the feasibility of the design
conditions. A rigorous analysis of the stability should also take
into account the region of attraction estimates as in Bruzelius
et al. (2003).

5. RESULTS

The overall polytopic approximation (41)-(42) of the four
wheeled omnidirectional mobile robot quasi-LPV model (13)
has been obtained by considering:

ϑ1 ∈
[
ϑ 1,ϑ 1

]
= [min(A11,A22) ,max(A11,A22)]

ϑ2 ∈
[
ϑ 2,ϑ 2

]
=

[
min

θ
((A11 −A22)sθ cθ )−ω,max

θ
((A11 −A22)sθ cθ )−ω

]
ϑ3 ∈

[
ϑ 3,ϑ 3

]
=

[
min

θ
((A11 −A22)sθ cθ )+ω,max

θ
((A11 −A22)sθ cθ )+ω

]
with:

ω =−ω =

(
B31umax

0 +B32umax
1 +B33umax

2 +B34umax
3 +K33

)
A33

where umax
i = 12V , i = 1, . . . ,4 denotes the maximum input

voltage that can be applied to the ith motor, that is assumed
to be limited by symmetric constant saturation limits, ui ∈
[−umax

i ,umax
i ].

The controller has been designed using (44) and (45), to assure
stability and pole clustering in:

D = {z ∈ C : Re(z)<−0.1}

The results shown in this paper refer to a simulation which lasts
20s, where the four wheeled mobile robot is driven from the
initial state:

(x(0),vx(0),y(0),vy(0),θ(0),ω(0))T = 06×1

to the desired trajectory, defined as in (14)-(16) with ρ = 2
and T = 20s. The desired trajectory has been generated by the
reference model (7)-(12) using the reference inputs calculated
as described in Section 3, and starting from the initial reference
state:(

xr(0),vr
x(0),yr(0),vr

y(0),θr(0),ωr(0)
)T

= (ρ ,0,0,2πρ/T,0,2π/T )T

Fig. 3 shows the tracking of the desired circular trajectory in the
(x− y) plane. It can be seen that the robot (blue line) reaches
asymptotically the reference vehicle trajectory (red line) that
coincides with the desired one (black line). All the tracking
errors go to zero, as depicted in Fig. 4. Finally, in Fig. 5, the
control inputs are shown. It can be seen that, except in the very
beginning of the simulation, the control inputs are such that all
the motors are working in their linear region.

Remark: It has been noticed that, whereas the real system state
is too different from the reference vehicle one, the effect of satu-
rations could be such that the system becomes unstable. Hence,
on one hand, special attention should be paid in planning the
experiment (e.g. choosing the reference trajectory and the robot
initial condition), while on the other hand some future line of
research would be to include some mechanism that enforces the
system stability despite the actuator saturations.
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Fig. 3. Switching LPV control of the four wheeled omnidi-
rectional mobile robot: tracking of the desired circular
trajectory.
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Fig. 4. Switching LPV control of the four wheeled omnidirec-
tional mobile robot: tracking errors.

6. CONCLUSIONS AND FUTURE WORK

In this paper, the problem of controlling a four wheeled omni-
directional mobile robot such that it tracks a desired trajectory
has been solved. The proposed solution relies on the use of
a reference model that describes the desired trajectory. The
resulting nonlinear error model is brought to a quasi-LPV form
that is used for designing a switching LPV controller using
LMI-based techniques. The results obtained in simulation en-
vironment have demonstrated the effectiveness of the proposed
technique.

Future work will follow different directions. Since it has been
noticed that saturations can play an important role, degrading
the system performance and even leading the system to insta-
bility, some mechanisms will be included in order to improve
the control system effectiveness against actuator saturations.
Another line of investigation is the application of the proposed
technique to the real setup, taking into account the errors due
to the model uncertainty and the sensor noise. Finally, the four
wheeled omnidirectional robot is a system characterized by ac-
tuator redundancy, characteristic that could make it an interest-
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ing testbed for testing Fault Tolerant Control (FTC) techniques
against actuator breakdown or faults.
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Fig. 5. Switching LPV control of the four wheeled omnidirec-
tional mobile robot: control inputs.
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