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Abstract: This paper proposes a self-organising networked controller for disturbance attenuation in
multi-agent systems. A disturbance affecting a single agent has some effect on all neighbouring agents
through the communication network. To avoid large disturbance effects, the proposed self-organising
controller switches off the communication whenever the effect of the disturbance on the corresponding
agent exceeds a given bound. As a consequence, the structure of the networked controller is adjusted
to the current disturbance. It is proved that the proposed controller bounds the effect of arbitrary
disturbances on all undisturbed agents. The results are illustrated by their application to a robot
formation.
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1. INTRODUCTION

This paper deals with the disturbance attenuation in synchro-
nised multi-agent systems. A networked controller should make
the output yi(t) of all agents Pi, (i = 0, 1, ..., N) follow the
synchronous trajectory ys(t) = y0(t), which is prescribed by
the leading agent P0 (Fig. 1). The main aim is to show that the
disturbance attenuation of the overall system can be improved
if the local controllers Ci adjust their mutual communication
to the current disturbances. If a disturbance di(t) is too large,
the controller Ci of the affected agent temporarily interrupts
sending its output yi(t) towards its neighbours (dashed arrow
in the figure). Accordingly the set Yj of information that the
neighbouring controllers Cj receive changes. As the controllers
Ci decide upon the interruption of the communication indepen-
dently of each other based only on the current information that
is locally available at the corresponding agent, the networked
controller has the property of self-organisation.
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Fig. 1: Synchronisation of autonomous agents by a
networked controller

To precisely formulate the performance requirements, consider
the situation, where all agents start in the same initial state

x10 = x20 = ... = xN0 = xs0 (1)

and, hence, the undisturbed agents follow the synchronous
trajectory:

y1(t) = y2(t) = ... = yN (t) = ys(t). (2)

A self-organising networked controller shall be found that
bounds the effect of any disturbance di(t) on all undisturbed
agents such that the synchronisation error of the undisturbed
agents does not exceed a bound s̄:

|yi(t)− ys(t)| ≤ s̄, i ∈ D̄, t ≥ 0, (3)

where D̄ = {i | di(t) = 0, t ≥ 0} is the set of indices of the
undisturbed agents.

Main idea: Cutting the communication from disturbed to-
wards undisturbed agents. As the disturbances di(t) of the
agents Pi, (i 6∈ D̄) may be arbitrarily large, the control aim (3)
can only be satisfied if the undisturbed agents Pi, (i ∈ D̄)
are decoupled from the disturbances di(t), (i 6∈ D̄). This
decoupling necessitates to cut the communication links from
the controllers of the disturbed agents towards the controllers
of the undisturbed agents. The paper proposes self-organising
controllers Ci, (i = 1, 2, ..., N) that interrupt their commu-
nication towards the controllers of the neigbouring agents in
time intervals in which the effect of the disturbance di(t) on
the agent output yi(t) exceeds a bound r̄.

The main problem to be solved when elaborating such a control
scheme results from the fact that the synchronisation error
yi(t) − ysi(t) at agent Pi can be brought about either by a
disturbance di(t) acting on that agent Pi or by a change of
the information Yi that the controller Ci receives and uses
to determine the local reference trajectory ysi(t) (for details
cf. eqn. (13)). Only in the first situation the controller Ci

should interrupt its communication towards other controllers.
The first result of this paper proves that every local observer
Oi (described by eqn. (16)), which is included in the local
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controller Ci, reconstructs the effect of the disturbance di(t)
on the agent Pi (Theorem 1). Hence, the observer output ri(t)
can be used to decide upon the communication.

The second result is a method for evaluating the maximum
effect of any set of disturbances on the undisturbed agents (The-
orem 2), which can be used to choose the switching threshold r̄
so as to satisfy the control aim (3).

Literature survey. In the control literature on synchronisation,
the focus has been laid on the design of distributed controllers
for sets of identical subsystems [2, 4, 7, 8, 9]. For the syn-
chronisation with time-varying communication structures it has
been shown that in order to synchronise autonomous agents
in leader-follower structures, the communication graph has to
possess a spanning tree with the leader as root node. The con-
nectivity of the communication graph has to be retained during
sufficiently long time intervals or, for stochastic coupling, in the
sense of average couplings [3, 6, 10].

All these results concern communication structures, the time
dependence of which is given and does not occur as a reaction
on the current disturbances. The novelty of the method devel-
oped in this paper lies in the fact that the time variation of the
communication network is invoked deliberately by the agents
in order to satisfy the control aim (3).

Notation. Scalars are denoted by italics (kij , yi(t)), vectors by
lower case boldface letters (y(t),x(t)) and matrices by upper
case boldface letters (A,K). kT is the transposed vector, Ir an
r-dimensional unity matrix and ⊗ the symbol of the Kronecker
product. In structured matrices, sometimes the vanishing blocks
are suppressed for the clarity of notation. The relations >, ≤,
>, ≥ and |.| apply elementwise for vectors and matrices.

Sets are denoted by calligraphic letters like P . |P| denotes the
cardinality (number of elements) of the set P .

2. MODELS

2.1 Agent model

The agents are described by the state-space model

Pi :

{

ẋi(t) = Axi(t) + bui(t) + edi(t), xi(0) = xi0

yi(t) = cTxi(t)
(4)

(i = 1, 2, ..., N) with

• ui(t) – scalar input of the i-th agent,
• di(t) – scalar disturbance input to the i-th agent,
• xi(t) – n-dimensional state vector,
• yi(t) – scalar output of the i-th agent.

They should be synchronised at the trajectory ys(t) generated
by the leader

P0 :

{

ẋs(t) = Axs(t), xs(0) = xs0

ys(t) = cTxs(t).
(5)

The following assumptions are used:

• The communication is instantaneous and lossless.
• The agents may only communicate their output yi(t) to

each other.
• The agents Pi are completely controllable by the input
ui(t) and completely observable through the output yi(t).

2.2 Communication structure

The communication structure of the controller is represented by
a directed graph G = (V , E) with V = {0, 1, 2, ..., N} denoting
the set of vertices (agents) and E the set of directed edges
(communication links used). The vertex 0 ∈ V represents the
reference system P0. A directed edge (i → j) ∈ E shows that
the output yi(t) of agent Pi is communicated to the controller
Cj .

The sets of predecessors of agent Pi are defined as
Pi = {j | (j → i) ∈ E}, i = 0, 1, ..., N. (6)

Clearly, P0 = ∅ holds. The graph G is called connected, if there
exist paths in the communication graph from the leader P0 to
all followers Pi, (i = 1, 2, ..., N).

This paper restricts the communication to be unidirectional,
which means that any agent Pi can send its information only
towards agents Pj with a larger index j. In the illustrations, the
couplings are restricted towards the first m followers (cf. top of
Fig. 3). Hence, the set of predecessors of the agent Pi is

P̄i = {j | max (0, i−m) ≤ j < i}, i = 1, 2, ..., N. (7)

Time-varying communication graph. The communication
structure of the networked controller proposed in this paper
changes over time, which will be explicitly stated as G(t) =
(V , E(t)) and Pi(t) = {j | (j → i) ∈ E(t)}. The changes
are restricted to the interruption of some communication links.
If the agent Pi interrupts sending its output information yi(t)
towards its neighbours, all edges starting in the vertex i are
deleted from the graph G.

A bar is used to indicate the basic communication structure,
which is represented by the graph Ḡ = (V , Ē) with all com-
munications links used in the undisturbed system. For G(t) =
(V , E(t)) the relation E(t) ⊆ Ē , (t ≥ 0) holds. P̄i denotes the
"basic" set of predecessors of the node i and for all "reduced"
sets the relation Pi(t) ⊆ P̄i, (t ≥ 0, i = 1, 2, ..., N) is valid.
The deletion of the vertex j from the set P̄i is symbolised by
Pi(t) = P̄i\{j}. For j 6∈ P̄i the operator "\" does not have any
effect.

Representation of the coupling structure by a labeled graph.
For the determination of the reference signal of the agents,
a labeled graph Ḡ = (V , Ē ,K) is used, where each edge
(j → i) ∈ Ē has a real label kij > 0. For (j → i) 6∈ Ē ,
the label is defined to be kij = 0 (cf. eqn. (13)), in particular
kii = 0, (i = 0, 1, ..., N). Due to the unidirectional couplings,

kij = 0, i < j (8)

holds. All labels kij form the (N+1, N+1)-matrixK = (kij).

For the time-varying labeled graph G(t) = (V , E(t),K) the
labels kij remain the same for all edges (j → i) ∈ E(t) as in Ē .
The in-degree is generalised to be
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|Pi(t)| =
∑

j∈Pi(t)

kij . (9)

Assumption 2.1. The basic communication graph Ḡ is assumed
to have the property

P̄i 6= ∅, i = 1, 2, ..., N. (10)

Hence, the basic communication graph is connected.

2.3 Networked controller

The networked controller consists of the communication net-
work and the local controllers Ci, (i = 1, 2, ..., N), each of
which includes a feedback Fi, a state observer Oi, and a deci-
sion component Di (Fig. 2).
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Fig. 2: Analysis of a single agent

The feedback component determines the local control error
ei(t) = ysi(t)− yi(t) (11)

and feeds it back to the agent input:
Fi : ui(t) = −k(yi(t)− ysi(t)), i = 1, 2, ..., N. (12)

The local reference trajectory ysi(t) is determined by using the
information Yi(t) = {yj(t) | j ∈ Pi(t)} received according to

ysi(t) =
1

|Pi(t)|

∑

j∈Pi(t)

kijyj(t) =
∑

j∈Pi(t)

k̃ij(t)yj(t) (13)

with y0(t) = ys(t) and k̃ij(t) =
kij

|Pi(t)|
for Pi(t) 6= ∅.

Consequently,
ysi(t) = 0, if Pi(t) = ∅. (14)

Due to eqn. (9), the modified weightings k̃ij satisfy the relation
∑

j∈Pi(t)

k̃ij(t) = 1. (15)

The elements k̃ij , (i, j = 0, 1, ..., N) constitute the matrix
K̃(t) = (k̃ij(t)).

The state observer

Oi :







˙̂xi(t) = Ax̂i(t) + bui(t) + l(yi(t)− ŷi(t))

x̂i(0) = x̂i0

ŷi(t) = cTx̂i(t)

ri(t) = yi(t)− cTx̂i(t)

(16)

generates the output signal ri(t) to be used by the decision
component.

The information sent by the decision component Di towards
the controller of the neighbouring agents is denoted by ỹi(t).
As long as the agent is not sufficiently disturbed, the equality
ỹi(t) = yi(t) holds. If the observer output exceeds a given
bound r̄ (|ri(t)| > r̄), the decision component Di interrupts
the communication and sends the symbolic value ε to indicate
that no output information is available:

ỹi(t) =

{
yi(t) if |ri(t)| ≤ r̄
ε otherwise. (17)

If I(t) denotes the set of the indices of all agents that have
interrupted their communication at time t

I(t) = {i | |ri(t)| > r̄}, (18)

then the set of agents that currently send information towards
the agent Pi is given by

Pi(t) = P̄i \ I(t), i = 1, 2, ..., N. (19)

As eqn. (13) is applied to the information ỹi(t) received over
the communication network, it has to be written as

ysi(t) =
1

|Pi(t)|

∑

j∈Pi(t)

kij ỹj(t) =
∑

j∈Pi(t)

k̃ij(t) ỹj(t). (20)

As ỹj(t) = yj(t) holds for all j ∈ Pi(t), the result is the
same. A distinction has to be made between both versions of
this equation in Section 4 in the analysis of the disturbance
behaviour of the overall system after communication links have
been switched off.
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Fig. 3: Five different structures of the networked
controller that appear due to different disturbance

situations (m = 2)
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The effect of the self-organising adaptation of the information
structure of the networked controller is illustrated in Fig. 3.
Without the switching (19), the disturbances have influence,
through the communication network, on all following agents.
As the communication network does not only contribute to the
synchronisation of the overall system, but also to the penetra-
tion of a disturbance through the overall system, the communi-
cation is interrupted if the effect of the disturbance exceeds the
bound r̄.

2.4 Controlled agents

The controlled agent (4), (12) is described by

P̄i :







ẋi(t) = (A− bkcT)xi(t) + bkysi(t) + edi(t)

xi(0) = xi0

yi(t) = cTxi(t).

(21)

The feedback gain k should satisfy the following assumption:
Assumption 2.2. The feedback gain k is chosen so as to make
the matrix A− bkcT asymptotically stable.

Note that such a stabilising feedback gain k exists if and only if
the agents are synchronisable [4].

Standard analysis methods for the synchronisation of identi-
cal agents show that under the Assumptions 2.1 and 2.2, the
undisturbed overall system is asymptotically synchronised for
all initial states xi0:

lim
t→∞

|yi(t)− yj(t)| = 0, ∀i, j = 1, 2, ..., N. (22)

3. RECONSTRUCTION OF THE DISTURBANCE EFFECT

This section investigates how the effect of the disturbance di(t)
on the behaviour of the controlled agent P̄i can be reconstructed
by means of the observer Oi. As the agent (21) has the two
inputs di(t) and ysi(t), its output can be represented as sum

yi(t) = cT e(A− bkcT)t xi0
︸ ︷︷ ︸

y0i(t)

+ gyd ∗ di
︸ ︷︷ ︸

ydi(t)

+ gyy ∗ ysi
︸ ︷︷ ︸

yyi(t)

(23)

of the free motion y0i(t), the disturbance behaviour ydi(t) and
the reference behaviour yyi(t) with the impulse responses

gyd(t) = cT e(A− bkcT)t e (24)

gyy(t) = cT e(A− bkcT)t bk (25)

and the asterisk denoting the convolution operation.

Theorem 1. Consider the observer Oi represented by
eqn. (16) for

l = bk (26)

with k satisfying Assumption 2.2. The observer output
ri(t) asymptotically describes the disturbance behaviour
ydi(t) of the controlled agent P̄i:

lim
t→∞

|ri(t)− ydi(t)| = 0. (27)

Proof. Equations (12), (16) and (21) yield
(
ẋi(t)

˙̂xi(t)

)

=

(

A− bkcT O

lcT − bkcT A− lcT

)(
xi(t)

x̂i(t)

)

+

(
bk

bk

)

ysi(t) +

(
e

0

)

di(t)

(
xi(0)

x̂i(0)

)

=

(
xi0

x̂i0

)

ri(t) = (cT − cT)

(
xi(t)

x̂i(t)

)

.

This model is transformed by
(
xi(t)

ei(t)

)

=

(
I

I −I

)(
xi(t)

x̂i(t)

)

and reduced to its controllable and observable part

∆Oi :







ėi(t) = (A− lcT)ei(t) + edi(t)
ei(0) = xi0 − x̂i0

ri(t) = cTei(t).
(28)

For the observer feedback (26) this model leads to

ri(t) = cT e(A− bkcT)t(xi0 − x̂i0)
︸ ︷︷ ︸

r0i(t)

+ gyd ∗ di

with gyd(t) defined by eqn. (24). Due to Assumption 2.2, the
first addend vanishes asymptotically. As the second addend
coincides with the second term in eqn. (23), the claim (27) is
obtained. ✷

Interpretation. Theorem 1 shows that the observer can be
used to reconstruct the effect of the unknown disturbance di(t)
on the behaviour of the controlled agent P̄i. After the free
motion r0i(t) of the observer, which is initiated by the unknown
state difference xi0 − x̂i0, has asymptotically vanished, the
observer Oi delivers the "pure" disturbance effect ydi(t). This
fact is true independently of the reference signal ysi(t) that the
agent should follow. Consequently, the observer is a means to
decide whether a non-vanishing control error ysi(t) − yi(t) is
brought about by a changing reference signal ysi(t) or by the
disturbance di(t) affecting the agent P̄i. In both cases a non-
vanishing control error occurs. However, in the first case the
observer generates an asymptotically vanishing output (ri(t) →
0), whereas in the second case the observer output shows the
effect of the disturbance on the agent output (ri(t) → ydi(t)).

Therefore, the following assumption is used:
Assumption 3.1. The observer feedback is chosen according to
eqn. (26).

4. DISTURBANCE BEHAVIOUR OF THE OVERALL
SYSTEM

This section analyses the disturbance behaviour of the overall
system and shows that this behaviour is improved if disturbed
agents interrupt the communication to other agents according to
eqn. (17). The following situation is considered in the analysis:

• The agents are initially synchronised due to the common
initial state (1).
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• The agents are classified as disturbed (i 6∈ D̄) and undis-
turbed (i ∈ D̄) and this fact is represented by the scalars

αi =

{

1 if i 6∈ D̄

0 otherwise,
i = 0, 1, ..., N.

The following assumption is made:
Assumption 4.1. The overall system remains connected, which
implies

Pi(t) 6= ∅, i = 1, 2, ..., N, t ≥ 0.

The investigations of this section assume that the transient
behaviour ri0(t) of all observers Oi has vanished: ri(t) =
ydi(t). They deal with the deviations

∆yi(t) = yi(t)− ys(t)

∆ỹi(t) = ỹi(t)− ys(t)

∆ysi(t) = ysi(t)− ys(t), i = 0, 1, ..., N

of the three local signals yi(t), ỹi(t), ysi(t) from the syn-
chronous trajectory ys(t). Equation (17) leads to

∆ỹi(t) =

{
∆yi(t) if |ri(t)| ≤ r̄

0 otherwise, (29)

where ∆ỹi(t) is defined to vanish if the output yi(t) is not sent
to the neighbouring agents.

Theorem 2. Consider a synchronised overall system (4),
(5), (12), (16), (17), (20) subject to an arbitrary distur-
bance d(t). Under the Assumption 3.1 the effect of the
disturbances on the synchronised system is bounded from
above by

|∆ỹ(t)| ≤ ∆y = (I −MyyKd)
−1

αr̄ (30)

with

Myy =

∞∫

0

|gyy(τ)| dτ

Kd = (kdij) with kdij =
kij

|P̄i| −
∑

j∈P̄i
αj

α= (α0 α1 ... αN )T.

The inverse matrix exists, because Kd is a lower-triangular
matrix with vanishing diagonal elements (cf. eqn. (15)). Hence,
the matrix I−MyyKd to be inverted has the eigenvalue 1 with
multiplicity N +1. Furthermore, this matrix is an M-matrix [1]
and, hence, its inverse is a nonnegative matrix.

Interpretation. Theorem 2 shows that the effect of an arbitrary
disturbanced(t) on a synchronised system can be bounded by a
self-organising controller. The communication is broken down
by the control units of the disturbed agents for the time interval
in which the effect of the disturbance exceeds a threshold r̄.
Note that for this decision the controller uses only locally
available information.

Equation (30) is relevant only for the components ∆ỹi(t),
i ∈ D̄ of the undisturbed agents, because for the other agents,

eqn. (29) defines this signal to vanish. Hence, the theorem
provides an upper bound for the deviation of the output of the
undisturbed agents from the synchronous trajectory.

With the result of the theorem, a switching threshold r̄ can be
determined such that the requirement (3) on the disturbance
effect is satisfied. Whether or not this requirement can be met,
depends upon the disturbance situation. If, for example, only
the k-th agent is disturbed and the effect of the disturbance
dk(t) on the neighbouring (k + 1)-st agent should be bounded,
eqn. (30) yields

∆yk+1 = ẽT (I −MyyKd)
−1

α̃r̄

with ẽT denoting a vector with the (k + 1)-st element equal
to 1 and all other elements vanishing and with α̃ being a
vector with the elements αk = 1 and αi = 0, (i 6= k).
Hence, requirement (3) on the (k + 1)-st agent is satisfied if
the switching threshold is chosen to be

r̄ <
s̄

ẽT (I −MyyKd)
−1

α̃
.

5. EXAMPLE: ROBOT POSITIONING PROBLEM

Consider the positioning problem for N robots illustrated by
Fig. 4. Robot P0 generates the reference position

ys(t) = s0 + v̄t (31)

that all other robots should assume. The networked controller
has the communication structure shown on top of Fig. 3.

1
2 3

4

y 2 y 3

y 4

0
y 1

y r e f
5

y 5

6

y 6

Fig. 4: Positioning problem for robots

For initially synchronised robots, Fig. 5 shows the disturbance
d3(t) applied to the Robot P3 together with the output r3(t)
of the observer O3. Around t = 0 the non-zero observer
output results from the deviation of the initial state x̂30 of the
observer from the initial state x30 of Robot P3. When after time
t = 100 s the disturbance brings about deviations of the robot
position y3(t) from the synchronous trajectory ys3(t) = ys(t)
as indicated by the signal r3(t), the communication of the
position from Robot P3 towards the neighbouring robots is
interrupted. The time intervals, in which this interruption occurs
(ỹ3(t) = ε), are marked by black bars in the lower part of the
figure. The tolerance used in the switching rule (18), (19) was
set to r̄ = 1m.

It is interesting to see that the interruption of communication
does occur only in short time intervals compared to the long
time interval in which the disturbance d3(t) has a large magni-
tude. The reason for the intermediate recovery of communica-
tion is the ability of the local feedbackF3 to attenuate a constant
disturbance d3(t).

Figure 6 shows the behaviour of the overall system with three
disturbances affecting the Robots 2, 3 and 5. The black bars
in the second subplot show the time intervals in which the
communication is interrupted. The performance of the overall
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Fig. 5: Disturbance d3(t) and observer output r3(t)
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Fig. 6: Behaviour of the overall system with
self-organising controller

system with switching controller shown in the lower part of the
figure has to be compared with the performance of the robot
formation controlled by the non-switching controller shown in
Fig. 7. The grey band marks the switching threshold r̄.
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Fig. 7: Behaviour of the overall system with
non-switching controller subject to the same disturbance

as in Fig. 6

As the disturbances d2(t), d3(t) and d5(t) act in different
time intervals, the robots react to these disturbances in differ-
ent, possibly overlapping time intervals with interrupting their
communication. Hence, five different controller structures oc-
cur (Fig. 3), all of which satisfy Assumption 4.1. Hence, the
undisturbed robots are synchronised, i. e. satisfy the require-
ment (22).

Figure 3 illustrates that self-organisation leads to a control
structure that is adjusted to the current disturbances affecting
three robots. Note that the robots act completely independently
of each other and by using local information only.

6. CONCLUSIONS AND OUTLOOK

The paper proposes a self-organising networked controller
where each local unit Ci has three typical components:

• an observer to evaluate the current state of the agent,
• a decision logic that decides when to change the commu-

nication and
• a local feedback that solves the control task for the agent.

These three components have been taylored to the disturbance
attenuation task considered here but can be extended to other
control tasks.

The results have been derived in this paper for identical single-
input single-output agents, but they can be generalised without
difficult problems for multiple-input multiple-output systems
and for agents with individual dynamics.

The restriction to cycle-free coupling graphs simplify the analy-
sis in the sense that cutting communication links cannot endan-
ger the stability of the overall system. The extension to com-
munication graphs with cycles poses the difficult problem that
before switching off communication links the local controllers
Ci have to test whether this action will jeopardise the stability
and, hence, the synchrony of the overall system. The local
controllers have to be enabled to carry out this test by using
local information only. The second problem is to prove that
switching off the communication leads indeed to an improved
disturbance behaviour of the remaining agents.

The analysis of this paper is valid only if the Assumption 4.1
holds. This assumption ensures that the overall system re-
mains synchronisable with the reduced communication struc-
ture. Whether or not the overall system satisfies this require-
ment depends upon the current disturbance. In the basic com-
munication graph defined in eqn. (7), disturbances acting on
m neigbouring agents and reaching a simultaneous interruption
of the communication make the overall system fall apart into
independent subsystems. Then the overall system cannot be
synchronised any longer, which demonstrates the necessity of
Assumption 4.1.
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APPENDIX: PROOF OF THEOREM 2

Equations (15) and (20) yield

∆ysi(t) =
∑

j∈Pi(t)

k̃ij(t)∆ỹj(t). (32)

max
t

|∆ysi(t)| ≤
∑

j∈Pi(t)

max
t

k̃ij(t) ·max
t

|∆ỹj(t)|

≤
∑

j∈P̄i

kij

mint |Pi(t)|
·max

t
|∆ỹj(t)|.

≤
∑

j∈P̄i

kij

|P̄i| −
∑

j∈P̄i
αj

max
t

|∆ỹj(t)|. (33)

Next, assuming that the reference signal ysi(t) of the agent
deviates from the synchronous signal ys(t) by ∆ysi(t), a bound
on the signal ∆ỹi(t) should be found. For the leading agent P0,
the relation ∆ỹ0(t) = 0, (t ≥ 0) holds. For all other agents, the
model (21) of the initially synchronised controlled agent yields

P̄i :







ẋi(t) = (A− bkcT)xi(t) + bk(ys(t) + ∆ysi(t))
+edi(t), xi(0) = xs0

yi(t) = cTxi(t).

After introducing the difference state ∆xi(t) = xi(t) − xs(t),
the following representation of ∆yi(t) is obtained:

∆P̄i :







∆ẋi(t) = (A− bkcT)∆xi(t) + bk∆ysi(t)
+edi(t), ∆xi(0) = 0

∆yi(t) = cT∆xi(t).

Hence,

∆yi(t) = gyy ∗∆ysi + ydi(t)

holds with the impulse response gyy(t) defined in eqn. (25). A
bound for |∆yi(t)| can be obtained as follows:

|∆yi(t)|=

∣
∣
∣
∣
∣
∣

t∫

0

gyy(t− τ)∆ysi(τ) dτ + ydi(t)

∣
∣
∣
∣
∣
∣

≤

∞∫

0

|gyy(τ)| dτ ·max
t

|∆ysi(t)|+ |ydi(t)|.

The information ỹi(t) sent to the neighbouring agents deviates
from the synchronous trajectory by ∆ỹi(t) with

max
t

|∆ỹi(t)| ≤

{
Myy ·max

t
|∆ysi(t)|+ αir̄ if |ri(t)| ≤ r̄

0 otherwise.

(34)

The factor αi has been introduced in order to indicate that for
all undisturbed agents P̄i, (i ∈ D̄) with αi = 0 the relation
ydi(t) = 0 holds and, hence, the upper bound does not have a
term related to the disturbance di(t).

Equations (33) and (35) yield

max
t

|∆ỹi(t)| ≤Myy ·max
t

|∆ysi(t)|+ αir̄

≤Myy

∑

j∈P̄i

kij

mint |Pi(t)|
·max

t
|∆ỹj(t)|+ αir̄

and in vector notation








max
t

|∆ỹ0(t)|

max
t

|∆ỹ1(t)|

...
max

t
|∆ỹN (t)|









≤MyyKd









max
t

|∆ỹ0(t)|

max
t

|∆ỹ1(t)|

...
max

t
|∆ỹN (t)|









+







α0

α1

...
αN






r̄

with

min
t

|Pi(t)| = P̄i −
∑

j∈P̄i

αj .

The inequality can be reformulated as








max
t

|∆ỹ0(t)|

max
t

|∆ỹ1(t)|

...
max

t
|∆ỹN (t)|









≤ (I −MyyKd)
−1







α0

α1

...
αN







r̄

where the inverse matrix exists and is nonnegative. Hence, the
final result (30) follows. ✷
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