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Abstract: Challenges in the field of systems biology are outlined from the perspective of control and 
dynamical systems. These exquisite biophysical networks have enviable properties with regard to 
robustness to disturbances and uncertainty, as well as noise tolerance. Several examples are used to 
motivate the ideas, including neurons controlling circadian rhythms, programmed cell death (apoptosis), 
and signaling pathways for glucose metabolism. 

 

1. INTRODUCTION 

Natural control systems are paragons of optimality. Over 
millennia, these architectures have been honed to achieve 
robust regulation of a myriad of processes at the levels of 
genes, proteins, cells, and entire systems. One of the more 
challenging opportunities for “systems” research is 
unraveling the multi-scale, hierarchical control that achieves 
robust performance in the face of stochastic perturbations. 
These perturbations arise from both intrinsic sources (e.g., 
inherent variability in the transcription machinery), and 
extrinsic sources (e.g., environmental fluctuations). 
Robustness in key performance variables to particular 
perturbations has been shown to be achieved at the expense 
of strong sensitivity to other perturbations. 

In this paper, several biological examples will be used to 
highlight robustly regulated behavior, including: circadian 
timekeeping in neuronal cells; the pathways underlying 
insulin resistance in diabetes; and programmed cell death 
(apoptosis). A key insight from these examples is that control 
at the cellular network level guides many properties in a 
manner that is distinct from control at the intracellular level, 
or even control at the organism level. 

A variety of tools from systems theory are employed in this 
research, including the structured singular value, sensitivity 
measures (with extensions to limit cycle behavior and 
stochastic systems), and discrete stochastic simulations. 
Those tools complement the high throughput biological 
assays that are used to interrogate the natural control circuits. 

2. SYSTEMS BIOLOGY 

Advances in molecular biology over the past 2 decades have 
shed led on the relationships between processes initiated by 
individual molecules within a cell, and their macroscopic 
phenotypic effects on cells and organisms. These studies 
provide increasingly detailed insights into the underlying 
networks, circuits, and pathways responsible for the basic 
functionality and robustness of biological systems and create 
new and exciting opportunities for the development of 

quantitative and predictive modeling and simulation tools 
(Hasty et al., 2001). Model development involves translating 
identified biological networks into coupled dynamical 
equations that are amenable to numerical simulation and 
analysis. These equations detail the complex biophysical 
processes that create interactions between the “nodes” in the 
network as well as with the external environment of the cell 
or the organism. These interactions involve hierarchical 
feedback loops that led to the robust system response to 
disturbances, including intrinsic noise, as well as 
environmental stressors. 

The discipline of Systems Biology has emerged in response 
to these challenges (Ideker et al., 2001; Kitano 2001), and 
combines approaches and methods from systems engineering, 
computational biology, statistics, genomics, molecular 
biology, biophysics, and other fields (Klipp et al., 2005; 
Palsson 2006; Szallasi et al., 2006). The recurring themes 
include: (i) integrative viewpoints towards unraveling 
complex dynamical systems, and (ii) tight iterations between 
experiments, modeling, and hypothesis generation. 

2.1 Early Successes 

Although the field of Systems Biology is relatively young, 
one can already point to early successes in a number of cases. 
The work of Adam Arkin on λ-phage was one of the first 
detailed analyses of a stochastic gene switch, and showed 
convincingly that formal stochastic treatment was required to 
understand the cell fate switch between lysis and lysogeny 
(Arkin et al., 1998). The analysis of perfect adaptation in 
chemotaxis is another example where multiple groups 
adopted a “systems” perspective, and key insights have been 
generated (Barkai and Leibler, 1997; Rao et al., 2004; Yi et 
al., 2000). Notably, the mechanism for perfect adaptation has 
been elucidated and interpreted in classical control 
engineering terms: integral feedback (Yi et al., 2000). The 
approach of model reduction and systematic analysis 
(including requisite modeling assumptions to yield perfect 
adaptation) is a perfect example of an effective “systems” 
strategy. This problem continues to generate new insights, as 
recent work has shown that disparate organisms have both 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 3470 10.3182/20080706-5-KR-1001.4276



 
 

     

 

overlapping and distinctive architectures for chemotaxis. 
Another nice example that has received considerable 
attention is the gene network underlying circadian rhythm. 
Models have been proposed (e.g., Goldbeter 1996), and 
formal robustness analysis tools have generated insights on 
biological design principles. A more detailed case study that 
might be characterized as a “success story” has emerged from 
the work of Timmer and Klingmüller on the JAK-STAT 
pathway (Muller et al., 2004). They have shown that 
modeling-experiment iterations can yield new hypothesis – 
particularly regarding unobservable components that can be 
simulated (but never measured). One implication, for the 
JAK-STAT pathway, involves pharmacological intervention. 
Current practice focuses on the phosphorylation element of 
the pathway, but the model shows that a more effective 
strategy involves the blocking of nuclear export. 

2.2 Control and Systems Biology 

In particular, the field of control engineering has had a 
pervasive influence on the discipline of systems biology. The 
chemotaxis work mentioned previously (Yi et al., 2000) 
represented a collaboration between control engineers (J. 
Doyle) and biologists (Simon). The work of this author and 
his collaborators has also been at the interface of control and 
biology: notably the robustness analysis of cellular function 
(Stelling et al., 2004b) and the unraveling of design 
principles in circadian rhythm (Stelling et al., 2004a). More 
theoretical approaches have been taken by control 
mathematicians such as Sontag, with major advances in 
understanding signal transduction (Sontag 2002), and the 
oscillations underlying a positive feedback gene switch 
(Angeli et al., 2004). There are many other contributions 
from the control community, and space precludes their 
complete enumeration here. 

3. BIOLOGICAL NETWORKS 

Biophysical networks are remarkably diverse, cover a wide 
spectrum of scales, and are inevitably characterized by a 
range of complex behaviors. These networks have attracted a 
great deal of attention at the level of gene regulation, where 
dozens of input connections may characterize the regulatory 
domain of a single gene in a eukaryote, as well as the protein 
level where literally thousands of interactions have been 
mapped in so-called protein interactome diagrams that 
illustrate the potential coupling of pairs of proteins (Barabasi, 
2004; Malcom et al., 2003). However these networks also 
exist at higher levels, including the coupling of individual 
cells via signaling molecules, the coupling of organs via 
endocrine signaling, and ultimately the coupling of organisms 
in eco-systems. To elucidate the mechanisms employed by 
these networks, biological experimentation and intuition are 
by themselves insufficient. As noted earlier, the field of 
systems biology has laid claim to this class of problems, and 
engineers, biologists, physicists, chemists, mathematicians, 
and many others have united to embrace these problems with 
interdisciplinary approaches (Kitano, 2002). In this field, 
investigators characterize dynamics via mathematical models 
and apply systems theory with the goal of guiding further 

experimentation to better understand the biological network 
that gives rise to robust performance (Kitano, 2002).  

3.1 Circadian Rhythm Network 

An ideal example of such networked biological complexity is 
the circadian clock, which coordinates daily physiological 
behaviors of most organisms. The mammalian circadian 
master clock resides in the suprachiasmatic nucleus (SCN), 
located in the hypothalamus (Reppert et al., 2002). It is a 
network of multiple autonomous noisy oscillators, which 
communicate via neuropeptides to synchronize and form a 
coherent oscillator (Herzog et al., 2004; Liu et al., 2007). At 
the core of the clock is a gene regulatory network in which 
approximately 6 key genes are regulated through an elegant 
array of time-delayed negative feedback circuits (see Figure 
1). The activity states of the proteins in this network are 
modulated (activated/inactivated) through a series of 
chemical reactions including phosphorylation and 
dimerization. These networks exist at the subcellular level. 
Above this layer is the signaling that leads to a synchromized 
response from the population of thousands of clock neurons 
in the SCN. Ultimately, this coherent oscillator then 
coordinates the timing of daily behaviors, such as the 
sleep/wake cycle. Left in constant conditions, the clock will 
free-run with a period of only approximately 24 hours such 
that its internal time, or phase, drifts away from that of its 
environment. Thus, vital to a circadian clock is its ability to 
entrain to external time through environmental factors 
(Boulos et al., 2002; Dunlap et al., 2004; Daan et al., 1976). 

 

Fig. 1. Gene regulatory network underlying circadian 
rhythms in neurons in the SCN. The large grey arrows denote 
activated complexes of proteins that inhibit the transcription 
of their corresponding genes, thus leading to time-delayed 
negative feedback and oscillations. 

3.2 Apoptosis – Programmed Cell Death 

A second example is the apoptosis network in which an 
extracellular input “controls” the response of the cell as a 
result of this information processing network. Apoptosis is 
the “programmed cell death” machinery that is used by nature 
to strategically kill off un-needed cells, but this mechanism 
becomes impaired in cancer, leading to unchecked 
proliferation.  
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The specific example here is triggered by the ligand Fas. 
When an activated T-cell contacts a diseased cell, Fas and its 
natural ligand bind, resulting in the formation of the death 
inducing signaling complex. This complex then activates two 
pathways that both lead to the activation of the so-called 
executioner caspase 3. The topology of the network has been 
modelled by (Hua et al., 2006) and is illustrated in Fig. 2. In 
the Type I pathway, a feedback involving caspase-6 and 
caspase-8 regulates the amount of activated caspase-3. In the 
Type II pathway, Bcl-2 and active caspase-8 both interact 
with mitochondria, affecting the mitochondrial permeability. 
Caspase-8 allows mitochondria to become active (permeable), 
encouraging apoptosome and Smac (second mitochondrial-
activator caspase) activation (Stucki et al., 2005). The 
activated apoptosome in turn activates caspase-3, while Smac 
can remove XIAP (X-linked inhibitor of apoptosis protein), 
further enhancing caspase-3 activation. FLIP, Bcl-2, and 
XIAP are antagonists to the apoptotic signal. In Type I 
activation, significant levels of caspase-8 are required for 
caspase-3 activation. Yet, in Type II cells, only a small 
amount of caspase-8 is sufficient to induce apoptosis as the 
death signal is indirectly amplified by the mitochondrial 
activity (Bagci et al., 2006).  

 

Fig. 2. Network schematic of the Type 1 and Type 2 Fas-
induced apoptosis network (adapted from (Hua et al., 2006)). 

Understanding apoptosis in a broader sense will lead to a 
better knowledge of the common platform for emergence of 
cancer cells, and perhaps point to possible cures for certain 
types of cancer. The complexity of apoptosis, however, 
makes the understanding very difficult without a systems 
level approach using a mathematical representation of the 
pathway. Further, analysis of an apoptosis model can reveal 
the fragility points in the mechanism of programmed cell 
death that can have physiological implications not only for 
explaining the emergence of cancer cells but also for 
designing drugs or treatment for reinstating apoptosis in these 
cells. 

 

 

3.3 Insulin Signaling Pathway 

In healthy cells, the uptake of glucose is regulated by insulin, 
which is secreted by the pancreas. Simply stated, in patients 
with type 1 diabetes, the pancreas does not produce insulin, 
whereas in type 2 diabetes, among other consequences, the 
cells are unable to utilize the insulin produced by the 
pancreas. The latter phenomenon is best understood from 
detailed consideration of the insulin signalling pathway 
(illustrated in Figure 3).  The sequence of actions occurs as 
follows: (i) insulin binds to a receptor on the cell surface, 
which causes receptor autophosphorylation and activation; 
(ii) the activated insulin receptor then phosphorylates insulin 
receptor substrate-1 (IRS1), which subsequently forms a 
complex with phosphatidylinositol-3-kinase (PI3K); (iii) the 
IRS1-PI3K complex catalyzes the production of 
phosphatidylinositol triphosphate (PIP3), which then interacts 
allosterically with phosphosinositide-dependent kinase 1 
(PDK1); (iv) the PIP3-PDK1 complex phosphorylates protein 
kinases Akt and protein kinase C (PKCζ); (v) activated Akt 
and PKCζ trigger glucose transporter (GLUT4) translocation 
from an internal compartment to the cell membrane. In a 
healthy cell, this cascade ultimately leads to uptake of 
glucose, and normal “homeostasis”. In a cell characterized by 
type 2 diabetes, the cascade becomes resistant, and the 
effectiveness of the signal is diminished. 

 

Fig. 3. Insulin signalling pathway model, adapted from 
(Sedaghat et al., 2002). 

3.4 Robustness and Bio-inspired Design 

Biological networks offer a number of opportunities for 
inspired design of engineering networks. Aside from the 
overlapping computational toolkit (e.g., simulation methods 
for high dimensional, stochastic, stiff, multi-scale systems), 
there are numerous behaviors in biological networks that 
offer promise for improved communications and sensors 
networks. Given the space constraints, we highlight only two 
of them here, but refer to the reader to the thorough NRC 
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report on Network Science for additional details (Natl. Acad. 
Press, Washington DC, 2005).  

The coexistence of extreme robustness and fragility 
constitutes one of the most salient features of highly evolved 
or designed complexity (Stelling et al., 2004b). Optimally 
robust systems are those that balance their robustness to 
frequent environmental variations with their coexisting 
sensitivity to rare events. As a result, robustness and 
sensitivity analysis are key measures in understanding and 
controlling system performance. Robust performance reflects 
a relative insensitivity to perturbations; it is the persistence of 
a system’s characteristic behavior under perturbations or 
conditions of uncertainty. Measuring the robustness of a 
system determines the behavior (the output or performance) 
as a function of the input (the disturbance). Formal sensitivity 
analysis allows the investigation of robustness and fragility 
properties of mathematical models, yielding local properties 
with respect to a particular choice of parameter values. 

3.5 Synchronization 

Synchronization is manifested in natural circuits in, among 
other ways, the coherent response of an ensemble of 
otherwise noisy components. There are a number of examples 
of this behavior in neuronal systems, most notably the 
coherence in circadian timekeeping achieved by cells in the 
suprachiasmatic nucleus (Herzog et al., 2004). The 
remarkable feature of these cells is that their individual 
characteristics are remarkably diverse, with individual 
periods ranging from 21 to 26 hours, and moreover, a given 
cell may exhibit fluctuations in the period of its firing rate 
from 2-10 hours between consecutive cycles. Despite this 
huge range of “component tolerances”, the intact signaling 
network is able to reduce this dispersion by over an order of 
magnitude in timekeeping precision. By contrast, engineering 
networks are built from high precision components, yet often 
struggle with network performance characteristics such as 
time synchrony. Detailed mathematical models have begun to 
shed light on the molecular originals of this robustness (To et 
al., 2006). 

4. ROBUSTNESS IN THE CIRCADIAN CLOCK 

4.1 Sensitivity Analysis for Robustness Analysis 

In our work over the last 10 years, we have demonstrated that 
sensitivity analysis can provide unique insights into the 
functioning of complex biophysical networks. Of particular 
interest is the behaviour of biological circuits that exhibit 
oscillations (e.g., circadian rhythm, cell cycle, neuron firing, 
cardiac cycles, etc.). Space precludes a detailed mathematical 
review of the methods employed, instead we will highlight 
some conclusions of those analyses and refer the interested 
reader to the original sources for detailed results (Gunawan 
and Doyle III, 2006; Doyle III et al., 2006; Doyle III and 
Stelling, 2006; Gunawan and Doyle, 2007). 

In (Bagheri et al., 2007a), we introduced a novel set of 
sensitivity metrics for performance that were based on a 
number of different phase-measures: period, phase, corrected 
phase and relative phase. Our motivation was that phase 
appears to be the biological imperative, rather than period, for 
optimal regulation. Both state- and phase-based tools were 
applied to free-running (absence of light—dark cycles) 
Drosophila melanogaster and Mus musculus circadian 
models. Each metric produced unique sensitivity values used 
to rank parameters from least to most sensitive. Similarities 
among the resulting rank distributions strongly suggested a 
conservation of sensitivity with respect to parameter function 
and type. A consistent result, for instance, is that model 
performance of biological oscillators is more sensitive to 
global parameters than local (i.e. circadian specific) 
parameters. Differences across the metrics revealed that the 
conclusions about robustness were dependent on the metric 
employed for performance. 

In (Taylor et al., 2008), we derived a novel sensitivity 
measure, the parametric impulse phase response curve 
(pIPRC), which both characterizes the phase behavior of an 
oscillator and provides the means for computing the response 
to an arbitrary signal (in the form of parametric perturbation). 
The pIPRC builds on the knowledge that biologists have 
collected for decades in the form of phase response curves 
(PRCs), to more general classes of input perturbations. The 
PRCs and infinitesimal PRCs presented in that study 
provided quantifiable measures of robustness for oscillators 
acting as pacemakers. In these systems, robust performance 
involves proper maintenance of phase behavior. In the case of 
the circadian clock, this means that the PRC to light must 
have not only the proper shape, but also the correct 
magnitude. In previous work (Zeilinger et al., 2006), we were 
able to invalidate a model of the circadian clock in the plant 
Arabidopsis thaliana, because the pIPRC had neither the 
proper shape nor the proper magnitude.  

In our most recent work (Mirsky et al., 2008) we have 
employed sensitivity methods to predict the likelihood that 
noise propagates in stochastic models of the circadian 
network. We found that noise introduced into a sensitive 
point in the clock propagates very well while noise 
introduced into an insensitive (or robust) point is 
undetectable elsewhere. The noise propagates without regard 
to distance from point of introduction to point of 
measurement. We conclude that the sensitive global 
parameters are the sites of effective noise propagation in the 
clock. We hypothesize that global parameters govern 
reactions at critical points in our network and therefore may 
suggest those parts of other systems most worthy of 
investigation. 

The previous studies had focused on single cell models, yet – 
as the title of this paper suggests – network properties must 
also be analyzed at higher levels in the system. In (Bagheri et 
al., 2008b), we demonstrated that computational techniques 
applied to single cell data are fundamental for tuning and 
predicting the behaviour of oscillatory phenomena at the 
population level (To et al., 2007), since the results of such 
investigations point to the coupling mechanisms that give rise 
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to spontaneously synchronized networks of stochastic 
biophysical nodes. Without such insight, we would not have 
been able to reproduce the synchrony observed in the SCN. 
As a result, it is important for experimental biologists to 
adopt the tools necessary to analyze the structure of both in 
vitro and in vivo systems. 

4.2 Control Insights for Novel Drug Targets 

As the previous section reviewed, sensitivity analysis can be 
used to develop insight on the parts of a network that are 
most sensitive, consequently, the most susceptible to 
intervention such as the targeting of a drug. However, a 
typical application will require a temporal forcing of a node 
(or nodes) in a network to elicit an optimal response. In our 
recent work, we have employed model predictive control 
algorithms to generate the optimal “forcing protocol” that 
will reset the circadian clock from a condition of phase offset 
(i.e., jet-lag) (Bagheri et al., 2007b; Bagheri et al., 2008a). 
Through parametric state sensitivity analysis, we identified 
key driving mechanisms for optimal manipulation of the 
large complex circadian network. We demonstrate, for 
instance, that the use of non-photic control inputs outperform 
light-based phase resetting dynamics. Aside from targeting 
individual parameters as control inputs, our Fisher 
Information Matrix based parametric sensitivity analyses 
identified combinations of parameters for control (i.e., vector 
strategies). The derived MPC algorithm is found to be robust 
to model mismatch and outperforms the open-loop 24 hour 
sun cycle based phase recovery strategy by nearly 3-fold. 

5. SOME OPEN TECHNICAL CHALLENGES 

The field of systems biology is, in many respects, at an early 
stage – but it is clear that the control and dynamics 
community have become quickly integrated as an essential 
component of the interdisciplinary research team that is 
advancing on multiple frontiers. The open questions are 
numerous, and we will highlight only a few of them here. A 
selected list of such challenges was formulated at a recent 
conference that aimed to bring the control community 
together with the biologists (Foundations of Systems Biology 
in Engineering, FOSBE, Santa Barbara, 2005 – 
www.fosbe.org): 

• How can one use systems biology and genomic data 
to analyze, interpret, and predict the relation 
between an organism's genotype and its phenotype? 

• What are the best methods to combine data from 
hypothesis-driven research with data from high-
throughput studies to create models of cells, 
communities of cells, and entire organisms? How 
can one drive iteration and innovation in this model 
building process? 

• What is an appropriate computational infrastructure 
for maximizing the mining of bioinformatic data? 
What are the data format and databasing challenges? 

• How do the complex network structures constrain 
intracellular signaling processing? 

• What are the promising techniques for estimating 
model parameters from high throughput data 
records? How can identification methods be used to 
drive effective design of experiments? 

• How can biological domain knowledge be combined 
with systems engineering methods to yield model 
reduction methodologies that capture essential 
features of biological regulation across multiple 
scales of time and space? 

• How do we educate, train and develop the systems 
biologists of the future? 

We will highlight two of the more critical issues here, that of 
model inference (model identification), and that of model 
(in)validation. Clearly, analysis of robustness properties of a 
biophysical network are predicated upon accurate 
mathematical descriptions. 

5.1 Network Inference and Model Structure 

The “inference” problem involves the estimation of the 
interactions of elements in a biophysical network (e.g., gene-
gene, gene-protein, protein-protein, etc.), given time series 
data of activities of different nodes (e.g., gene interactions 
from gene expression data). The goals of the inference 
problem are multiple, and include: (i) hypothesis generation, 
(ii) design of experiment, (iii) understanding of cellular 
function, and (iv) unraveling design principles, among others. 
The sources of information for these inference problems 
include large scale deletion projects, and vast numbers of 
microarray experiments. In the early years of bioinformatics 
studies, the structural localization properties were inferred 
(e.g., which transcription factors regulate the transcription of 
which genes), although experimental methods now exist for 
identifying protein-DNA interactions on a genomic scale, 
such as ChiP (chromatin immunoprecipitation) assays, that 
yield structural knowledge. 

Given the wide variety of modeling objectives, as well as the 
heterogeneous sources of data, it is not surprising that many 
approaches exist for capturing network interactions in the 
form of mathematical structures, for example: 

• Boolean Networks – in which the network is 
represented as a graph of nodes, with directed edges between 
nodes and a function for each node (e.g., Ideker et al., 2000). 

• Petri Nets – another graph theoretic structure in 
which nodes (or places) are connected by arcs and activities 
are modeled by transitions (e.g., Nagasaki et al., 2004) 

• Bayesian Nets – combine directed acyclic graphs 
with a conditional distribution for each random variable 
(vertices in graph) (e.g., Pe’er et al., 2001) 
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• Signed Directed Graphs – another graph theoretic 
structure in which a signed directed edge is used to represent 
activation versus inhibition (depending on sign) (e.g., Kyoda 
et al., 2004) 

• S-systems – notably a dynamic approach in which 
polynomial nonlinear dynamic nodes are used to capture 
network behavior (e.g., Kimura et al., 2005) 

A significant challenge in constructing these network models 
from data, particularly for gene network models, is the fact 
that the node dimension (number of genes) can be on the 
order of 10,000 – leading to a computationally untenable 
problem for inference (i.e., determination of 108 coefficients 
of interaction!). In reality the network is tremendously sparse 
and highly structured, such that there are orders of magnitude 
fewer “interactions” that must be captured with coefficients. 
The knowledge that not every gene regulates every other 
gene, and the fact that not every transcription factor regulates 
every gene can be exploited to prune significantly the number 
of coefficients for network identification. 

A related concept that can be exploited is the knowledge that 
the low dimensional connection structures in these networks 
obey regular hierarchies, which create opportunities for 
structured model identification. Many biophysical networks 
can be decomposed into modular components that recur 
across and within given organisms. One hierarchical 
classification is to label the top level as a network, which is 
comprised of interacting regulatory motifs consisting of 
groups of 2-4 genes (Lee et al., 2002; Shen-Orr et al., 2002; 
Zak et al., 2003). At the lowest level in this hierarchy is the 
module that describes transcriptional regulation, of which a 
nice example is given in (Barkai and Leibler, 2000). At the 
motif level, one can use pattern searching techniques to 
determine the frequency of occurrence of these simple motifs 
(Shen-Orr et al., 2002), leading to the postulation that these 
are basic building blocks in biological networks. Many of 
these components have direct analogs in system engineering 
architectures. Consider the three dominant network motifs 
found in E. coli (Shen-Orr et al., 2002): (i) feedforward loop, 
(ii) single input module, and (iii) densely overlapping regulon. 
Similar studies in a completely different organism, S. 
cerevisiae, yielded six related or overlapping network motifs 
(Lee et al., 2002): (i) autoregulatory motif, (ii) feedforward 
loop, (iii) multi-component loop, (iv) regulator chain, (v) 
single input module, and (vi) multi-input module. 

Beyond structural classification, one can analyze these motifs 
for their functional character, as shown by (Wolf and Arkin, 
2003), and again, one finds the recurring dynamic functional 
motifs in circuits and signal processing: (i) switches, (ii) 
oscillators, (iii) amplitude filters, (iv) bandpass filters, (v) 
memory, (vi) noise filters, and (viii) noise amplifiers. 

In effect, these studies demonstrate that, in both eukaryotic 
and prokaryotic systems, cell function is controlled by 
sophisticated networks of control loops which are cascading 
onto, and interconnected with, other (transcriptional) control 
loops. The noteworthy insight here is that the complex 
networks that underly biological regulation appear to be 
constructed of elementary systems components, not unlike a 

digital circuit. This creates opportunity for network inference 
methods that incorporate such knowledge via constrained 
search methods, or exploiting prior knowledge in Bayesian 
frameworks. 

In addition to the two classes of models mentioned 
previously (based on complexity and detail), there is an 
intermediate class consisting of optimization-based models. 
In many respects, this class has a hybrid character of 
empiricism and fundamental details. The underlying 
assumption is that cells have been organized over 
evolutionary time scales to optimize their operations in a 
manner consistent with mathematical principles of optimality. 
The cybernetic approach developed by Ramkrishna and co-
workers (Varner and Ramkrishna, 1998) is founded on a 
simple principle; evolution has programmed or conditioned 
biological systems to optimally achieve physiological 
objectives. This straightforward concept can be translated 
into a set of optimal resource allocation problems that are 
solved at every time step in parallel with the model mass 
balances (basic metabolic network model). Thus, at every 
instant in time, gene expression and enzyme activity is 
rationalized as choice between sets of competing alternatives 
each with a relative cost and benefit for the organism. 
Mathematically, this can be translated into an instantaneous 
objective function. The potential shortcoming is a limited 
handling of more flexible objective functions that are 
commonly observed in biological systems. An alternative 
approach is the Flux Balance Analysis (FBA) (Watson, 1986), 
in which a suitable linear programming problem is posed and 
solved (Edwards et al., 1999). The resulting model is not a 
dynamic model, and does not yield an analytical formulation, 
but the computational solution time is modest, and the 
approach has yielded success for a number of biological 
examples. Essential to the development of the model are the 
formulation of the system constraints, consisting of: (i) 
stoichiometric constraints that represent flux balances; (ii) 
thermodynamic constraints to restrict the directional flow 
through enzymatic reactions; and (iii) physicochemical 
capacity constraints to account for maximum flux through 
individual reactions. Recent extensions have addressed the 
problem of regulation by including additional time-dependent 
constraints in the formulation. The incorporation of 
transcriptional regulatory events in the FBA framework has 
extended the validity of the methodology for a number of 
complex dynamic system responses (Covert et al., 2001). In 
an alternate formulation, dynamic mechanistic details are 
incorporated as constraints leading to a dynamic FBA 
extension (Mahadevan, et al., 2002).  

As we have noted multiple times in this paper – dynamic  
behavior is an essential property of complex biophysical 
networks that must be captured in models of those networks. 
There are some preliminary ideas in capturing network 
behavior in the form of dynamic models – both discrete time 
(Hartemink et al., 2002) and continuous (Zak et al., 2004). 
There are many challenges in developing dynamic models 
from the type of data that is typically generated in the 
corresponding experiments, including: (i) sampling rate is 
rarely uniform and (ii) data is often the combined with other 
labs, introducing a number of biases. The previously noted 
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problems of the curse of dimensionality are more pronounced 
in the case of dynamic models, if one augments the network 
interconnection dimensionality with a large number of 
possible dynamic states (activated, repressed, silenced, etc.), 
let alone the full continuum of dynamic response. 

5.2 Validation, Iteration, Discrimination, and Identifiability 

One of the major issues in reverse-engineering of genetic 
regulatory network is the challenge of uniquely identifying 
the gene interactions (i.e., model parameters) from 
experimental data, such as gene expression profiling. This 
issue, known as identifiability in control theory (Ljung, 1999), 
deals with the information content of the data; the quantity 
and quality of the measurements with respect to the model 
parameters. Recent work in the US and in Europe on the 
identifiability of gene networks revealed that full knowledge 
of gene interconnections and perfect measurements still could 
not guarantee full identifiability of gene interactions (Zak et 
al., 2003), and, furthermore, that improved experimental 
protocol was far more effective than increased measurements 
(J. Stelling, unpublished data, 2005).  The latter study points 
to the fact that perturbations should be designed strategically. 
Typical knockouts involve so-called “direct effects” in which 
the expression level of various genes are altered in a network 
arrangement that involves direct connectivity to cis-
regulatory elements of downstream genes (possible multiple 
cascades). An “indirect effect” can also be used in which a 
mediating component (e.g., mRNA) is introduced to correct 
an intermediate element in the direct action cascade described 
previously. 

Coupled to this, noise in the measurements and the inherent 
stochastic nature of gene expression make practical 
identification of genetic regulatory networks difficult. In 
practice, the reverse-engineering of gene network should 
involve a careful design of the experiments using prior 
knowledge of the system, to obtain the most informative 
measurements. Further, this process should be iterative in 
which the result from each trial is used to better design the 
next experiment. Here, a measure of the informativeness of 
data, such as the Fisher Information Matrix (FIM), can lead 
to a formal procedure for the optimal design of experiment. 
Aside from the aspect of the quality of data, another practical 
limitation in most (if not all) of the reverse-engineering of 
gene network is the limited quantity of data, in terms of 
sampling frequency and number of independent 
measurements. For example, although gene expression 
profiling can provide high throughput data to estimate 
interactions among thousands of genes, this method still does 
not depict the protein-mediated regulatory effects. In many 
cases, parameter estimation from limited measurements 
suffers from stringent computational requirement and 
degeneracy, where many parameter combinations give 
similar agreement to the observed behavior. Here, 
measurement selection procedures can help identify the 
combination of measurements that give the best 
identifiability.  

Given the iterative nature of this framework for model 
development and refinement of experimental protocol, a 
termination criterion must be established. In the application 

domain of systems engineering, it is understood that for 
certain experimental data, it is not possible to confirm 
whether the model is really valid; however, one can conclude 
whether the model is not contradicted by the given data 
(Poolla et al., 1994). Such model (in)validation tests can be 
formulated for the network inference problems described in 
this chapter, and are usually based on the difference between 
the simulated and measured output and some statistics about 
these differences. Typical statistics for the model errors 
include maximum absolute value, mean value and variance. 
These methods are slowly migrating from the engineering 
domain, and are likely to find greater application in systems 
biology as experimental methods are refined, and closer 
collaborations are developed between modelers and 
experimentalists. 

8. SUMMARY 

One might conclude from all of this that the aims of control 
researchers in the field of systems biology are to elucidate 
mechanisms in biology to advance the state of understanding. 
While this is certainly true, there is much broader impact of 
this line of investigation. In particular, medical therapeutics 
and treatments are the focus of many of the research teams 
working in systems biology. 

The medical driving forces include the identification of 
“targets” in the network for therapeutic intervention. A 
“systems” analysis reveals that a single point perturbation is 
often less effective than a vectoral perturbation, and at the 
same time, a point perturbation will often propagate beyond 
the intended action, leading to undesirable side effects. 
Systems methods are also applied to these networks to 
determine “signatures” of the propagation of a disease state 
(or markers). For example, the temporal progression of the 
apoptic response in the network in Figure 2 could be tracked 
by gene expression profiling, and one can determine the time 
course of the response, and apply appropriate therapy at the 
optimal point in the disease progression.  

The size and complexity of cellular networks make intuition 
inadequate for deducing cellular behavior from the 
underlying gene and protein interactions. Such analysis is 
critical to guide the development of medical solutions for 
problems where the network has “failed”. In cellular 
networks, high sensitivities or strong gain directions point to 
the weakest links in the system. Perturbations on these links 
can potentially lead to a large disruption in the network 
behavior, i.e., the network is not robust (fragile) to the 
uncertainty in these pathways. These “hot spots” (or fragile 
nodes) have several implications. First, further model 
refinements on the hot spots in the network may be necessary. 
Second, when the model is sufficiently accurate, these 
“targets” offer coherent strategies for intervention in an 
otherwise complex circuit diagram (such as those depicted in 
Figures 1, 2, and 3). In the case of circadian timekeeping, the 
regulatory network insights could shed light on drug targets 
for jet lag or sleep disorders. Of course, one has to link the 
subcellular network in Figure 1 with whole body function 
(Kronauer et al., 2007). Tracking the progression of 
apoptosis through the network in Figure 2 can lead to both 
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signatures of the disease for monitoring, as well as vectoral 
intervention strategies for treatment. For the insulin 
signalling pathway (Figure 3), opportunities to restore insulin 
sensitivity could result in the case where the pathway has 
become resistant (type 2 diabetes). 

It is indeed an early stage in the field of systems biology, 
with such complex biophysical networks waiting to be 
unravelled, but it is abundantly clear that control and 
dynamics researchers will play a key role as this field 
progresses. 
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