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Abstract: This paper discusses methods for the analysis and design of systems controlled, at
least in part, by finite state controllers, such as might be found in adaptive or highly autonomous
robotic systems. We focus on the role that feedback can play in simplifying the characterization
of trajectories and, in particular, the extent to which elementary feedback rules based on finite
state automata can be used to reduce the complexity of both the controller and the analysis.
Finally, we introduce a new control paradigm based on randomized finite state controllers and
present an analysis of a class of such systems.

1. INTRODUCTION

Over the last 50 years the most useful mathematical mod-
els for thinking about the analysis and design of con-
trol systems have been based on relatively uncomplicated
abstractions such as linear systems, asymptotic stability,
Gaussian random variables, etc. These abstractions pro-
vide an imperfect representation of reality; in the real
world there are bounds on the inputs and the state vari-
ables, nonlinearities, limitations on the size of random
variables, etc. Often the inaccuracies inherent in these
abstractions are of little importance because they can be
ignored or treated in an ad hoc way. However, in certain
areas of growing importance, such as highly autonomous
robotic systems, the familiar abstractions are less effective
because they do not provide an efficient characterization
of a large enough part of the problem and/or its solution.
This may come about because there are multiple modes
of operation, hard bounds on state variables, large and
irregularly spaced discontinuities, etc. For such problems
there is a need for efficient methods for piecing together
localized descriptions in something like the way locally
defined splines are pieced together in numerical analysis.

This process of analyzing complex systems by localizing
and piecing together can take several forms. In the area of
numerically controlled machine tools one pervasive idea
involves language driven machines. In this case the set
of possible paths is extremely large but complexity is
managed by dividing the possible motions into easily char-
acterized paths such as straight lines, circles, etc. These
elementary paths are treated as words in a formal language
which forms the instruction set for the machine. In this
case simplification is achieved by localizing in time and
at the expense of some loss in “expressiveness” in that
one can not generate completely arbitrary paths. In other
situations the localization occurs in the state space and
is achieved by local high gain feedback loops which are
are used to force trajectories onto specific submanifolds
or to “sandwich” trajectories between narrowly separated
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submanifolds. In particular, in some aspects of systems
biology one sees a large number of high gain feedback
loops, essentially operating in on-off modes to keep vari-
ables within bounds. In this way systems with a large
number of variables are kept within desired regions of the
state space even when disturbances are present.

We are concerned here with systems whose description
may involve: i) observations that are discontinuous (e.g.,
quantized data) and/or differential equations with discon-
tinuous right-hand sides. ii) hard limits on the state vari-
ables and/or the controls. iii) communication constraints
limiting the type of feedback signals available, iv) com-
putational constraints restricting the complexity of the
mapping from observations to the control values.

Our main points are captured with a few examples which
are intended to illustrate the possibilities for progress on
some of these problems. Specifically, we focus on three
questions.

• How can we best harness the capability of feedback
to simplify the implementation of control systems?

• How can we use finite automata to model and imple-
ment control strategies for continuous systems?

• In seeking to simplify the implementation of control
laws, is there a role for randomized control laws?

2. REDUCING COMPLEXITY BY FEEDBACK

In spite of its central role in the subject of control, the
concept of feedback and the reasons for using it prove to
be surprisingly difficult to catelogue. In an introductory
control course the scope may sufficiently narrow so that
this not an important issue but it becomes important
in the larger context where discussions frequently involve
biology, economics, or social dynamics. The goal of the
work reported in Egerstedt-Brockett [2003] was to show in
a quantitative way that the use of feedback can simplify
the set of instructions required to define a trajectory
leading from point A to point B. The model used is a
finite state machine and the feedback is based on the
set of observations postulated to exist at each point in
the state space, i.e., whatever observations are available
at a particular time and at a specific state lying on the
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path. The complexity of the most succinct open loop
description of the path was compared with the complexity
of descriptions which make use of the observations. It is
not a surprise that the use of feedback can shorten the
description of a provably correct navigation scheme, but
the quantitative analysis serves to focus attention on which
aspect of feedback are responsible for the improvement.

Feedback can simplify in a second sense. In biology and
economics one sees extremely complicated systems oper-
ating in a decentralized ways, accomplishing very complex
tasks. In these settings the feedback mechanisms at work
appear to be rather simple rules based on locally observed
prices, concentrations, weather, etc. In this context it is
not hard to argue that any open loop description would
be overwhelmingly complex. However, when one looks at
the elemental processes in detail there are many, if not
most, that involve discrete transactions, a cell divides or
it does not, a pound of coffee is purchased or not, etc.
Moreover, some of these decisions are frequently based on
history; e.g., I bought coffee yesterday so I won’t buy it
today.

Although there are formal definitions of complexity that
have proven to be useful in information theory and theo-
retical computer science (see, e.g., Cover [1991]), they are
based on counting arguments and have a less compelling
interpretation in settings where real numbers are involved.
We feel that it is more promising to measure complexity in
terms of the topology of the set of acceptable, or expected,
trajectories.

3. DISCRETE CONTROL AND OBSERVATION

As a first step toward formalizing the ideas to be developed
we define a type input-output models suitable for use
when the system itself is described by ordinary differential
equations but the inputs and outputs are limited to finite
sets. Given a “physical” system modeled as

ẋ = f(x, t, u)

we consider two rather different ways in which the input set
can be constrained. On one hand there is the idea of simply
specifying a list of possible inputs U = {u1, u2, ..., uk} and
imposing the condition that these are the only admissible
values for u but that one can switch from one of these
values to another at any time. We will call this quantized
control and call the set of values the control set. A second
model, one which provides a better fit in some circum-
stances is to say that there is a set U = {u1, u2, ..., uk} and
at any time it is possible to apply an impulse of strength
ui whose effect is to displace the state vector by a certain
amount. If the model is

ẋ = f(x) + g(x)u

and a unit strength impulse applied at t = ti is interpreted
as having the effect of displacing x according to

x(t+i ) = x(t−i ) + g(x(t−i ))

That we consider x : [0, t) → R
n to be continuous from

the left and consider the value of x to be “frozen” at he
previous value until the impulse is fully delivered. We will
refer to this as quantized impulse control.

An aspect of this interpretation that will be used below
is that for special choices of the functions and initial

conditions these equations can provide a realization of a
finite state machine. For example, if u(t) is constrained
to be a sequence of unit strength impulses and if z(0) ∈
{−1, 1} then the solution of

ż = −2u(t)z(t)

will take on values in {−1, 1} for all time.

Turning now to models for observation, Standard, uni-
formly spaced quantizers can be thought of as rescaled
models of q : R → Z whereby a scalar x is mapped to an
integer according to a rule such as x 7→ ⌊x + 1/2⌋. This
is idealized in that it may only be possible to accomidate
values of x in a certain range and the system may require
a certain time to “settle” to the right value. In cases
where the quantization levels are widely separated it is
sometimes necessary to look more carefully at the errors
that can arise in the quantization process. As a rule,
quantizers are subject to inaccuracy when the levels are
not crossed cleanly because the derivative of the signal
has a small absolute value when the value of the signal
is near a threshold. This can be illustrated using a phase
plot which shows regions in (ẋ, x)-space where the output
of the quantizer is unreliable.

dx/dt

x

Fig. 1. Illustrating the regions of potential inaccuracy for
a scalar quantizer in terms of subsets of phase space.

If quantization errors can not be ignored, it may be
appropriate to treat them stochastically. One approach is
to introduce a stochastic variable z ∈ {−1/2, 1/2} and
model the observation as

y(t) = q(x(t)) + z(t) ; dz = −2zdN

with N being a Poisson counter whose rate is given by
φ(ẋ, x), with φ having the general features of the function

φ =

∞
∑

i=−∞

e−(ẋ2+(x−i)2)/2σ

with σ small.

We mention a second option. Astrom and Bernhardsson
[2003] discuss the use of what they call Lebesgue sampling.
It is defined in a stochastic control context, and its
performance is compared with ordinary quantization. Here
we make use oof something very similar. Suppose that
x : [t1, t2] → R is a differentiable function. If a is a
real number then there may or may not be solutions of
the equation x(t) = a. Denote the set of all solutions
by x−1(ai), with the understanding that this set may be
empty. As in fixed point theory, (see Milnor [1965]) we
denote the number of points in this set by #x−1(ai). In
some cases it happens that instead of observing a quantity
cx(t) or a noisy version, cx(t) + n(t), we may only be able
to observe the level crossings of cx(t). In more generality,
we may postulate a number of levels {a1, a2, ..., ak} and
assume that one can observe

yi = #(cx)−1(ai)

for y defined on [0, t]. We will return to this observation
model in section 5.
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4. STATIC APPROXIMATIONS FOR FEEDBACK

If we are to limit the input values to a finite set the
values should be chosen to approximate, in some sense, the
optimal feedback control law. There are many versions of
the problem of approximating a continuous function on a
compact interval by a piecewise constant function with
a specified number of discontinuities. Suppose that the
measure of fit is integral squared error, that the function to
be approximated is f(·), and that the interval is [x0, xn+1].
This problem is then solved by minimizing with respect to
a sequence of domain values x1 < x2 < ... < xn and a
sequence of range values g0, g1, g2, ...gn the quantity

η =

n
∑

i=0

∫ xi+1

xi

(f(x) − gi)
2dx

Of course best values for the gi are the average values
f over the corresponding interval. The quality of the
approximation depends on the the integral of the square of
the deviation from these. The Wirtinger inequality asserts
that if f(0) = 0 then

∫ a

0

f2(x)dx ≤
4π2

a2

∫ a

0

(

df

dt

)2

dt

and when applied to the problem at hand we get an
inequality that shows that the integral of the square of
the derivative of f controls the quality of the fit. If the
approximation is assigned a complexity that grows with n
then we see that the quality of the approximation improves
with increasing n and that it improves with decreasing
values of

∫
(

df

dx

)2

dx

Constraining the input set can be expected to harm
performance, but will the degradation be significant? How
much degradation in performance occurs if an optimal
control law is approximated by a piecewise constant one?
As a preliminary, and more tractable version of this
problem, consider the following. optimization problem
which includes a penalty on the the “sensiitivity” of the
control with respect to the state. More precisely, we want a
feedback control u = f(x) but include in the performance
measure a term of the form

η1 =

∫

R

(

∂f

∂x

)2

dx

which, of course, would be zero if f were constant. The
following formulation addresses two issues: the fact that
the control law only needs to work over a specific range of
values and that it should have low sensitivity.

Example 1: Find f as a function of x such that for
u = f(x) and x governed by the first order system

ẋ = u ; x(0) = ±a

we minimize

η =

∫

∞

0

x2dt +

∫

R

(

∂f

∂x

)2

dx

Solution: From the equation ẋ = f(x) we have

ẋx2

f(x)
= x2

Notice that for any feedback control f that drives x to zero
we have

∫

∞

0

x2dt =

∫ 0

a

x2

f
dx

The corresponding Euler-Lagrange equation for the sum of
this integral and the integral of the square of the derivative
of f is

d2f

dx2
+

x2

f2
= 0

Clearly we have the boundary conditions f(0) = 0 and
df/dx|a = 0. The condition on the derivtive at a is a
transversality condition whose intuitive explanation is that
the square of the derivative enters the integral and at
the end point there is no benifit associated with it being
nonzero. The equation can be solved numerically, sweeping
out a range of initial conditions on the derivative at zero
to find a solution that has ∂f/∂x|a = 0. The numerical
solution is shown in the left-hand panel of Figure 2.

x

f(x)
f(x)

x

Fig. 2. Illustrating the best feedback law with a derivative
penalty and a piecewise constant approximation.

Problem 1: Given an unstable system ẋ = Ax+Bu with
observations yi = #(cx)−1(ai), find conditions on A, b, c
and the m-vector a such that there exists a control law
u(y(t)) having the property that solutions of ẋ = Ax +
∑

Bu(yi) starting close to x = 0 are contained in a ball of
a given radius. Compare with Brockett-Liberson [2000].

5. AUTOMATA AS OBSERVERS

In analyzing the properties of geometrical objects it is
sometimes helpful to approximate the object of interest
with a collection of piecewise flat structures, say plane
triangles, and compute with, or reason about, the original
object using such an approximation. Analogous thinking,
applied to differential equations, suggests that it may
be possible to replace dynamic compensation such as a
lead/lag filter by an automaton which provides similar
dynamic compensation. In this way one can hope to
achieve a reduction in the complexity and perhaps improve
reliability.

In some cases we can think of associating to a differential
equation an automaton which will provide a rough model
for its trajectories. For example, easy to see that if x(k)
takes on integer values then a clocked automaton of the
simple form

x(k + 1) = x(k) + 1 ; x ∈ Z

has much in common with the integrator

ẋ = 1 ; x ∈ R

In the same vein, a clocked automaton of the form

x(k + 1) = x(k) + 1 mod p

models the angle tan−1 (ẋ/x) associated with the harmonic
oscillator

[

ẋ1

ẋ2

]

=

[

0 1
−1 0

] [

x1

x2

]
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when the harmonic oscillator is described in polar coordi-
nates.

The modes associated with linear systems without re-
peated roots are either spirals, if the eigenvalue is complex
or real exponentials. If we want track the qualitative as-
pects of the trajectories of such modes we need to know
which type of behavior to look for. We begin with a vari-
ation on one of the classic problems in automatic control,
an example usually described in terms of hysteresis. In the
usual setting the hysteresis function has an internal state
variable that takes on a continuum of values. What we
now describe is simpler, although in the normal operating
mode the trajectories are nearly the same. This solution
illustrates a solution to a a regulator problem using a three
state automaton.

Example 2: Let c and d be real numbers c > d > 0 and
consider the first order scalar system with observations

ẋ = −x + u

y1 = #x̂−1(c) ; ; y1 = x̂−1(d)

with x being regarded as a function on [0, t). Consider a
three state automaton taking on the values 1, 0,−1 and
driven by the observations in accordance with

ż = −(2z + 1)
d

dt

(

#x−1(d)
)

+ (−2z + 1)
d

dt

(

#x−1(c)
)

With this definition of z, the control law

u(t) = az(k) ; a > 1

results in a trajectory that ultimately lies in the range

|x(t) − (c + d)/2| ≤ r

for suitable r.

This solution is robust in the sense that if we replace
the level crossing observation by the stochastic version
of section 3 the resulting stochastic equation has similar
properties.

t

x

c

d

y  (c)

-1

-1

y  (d)

y  (c)

-1

-1

y  (d)

Fig. 3. Typical open loop trajectory and automaton for
closed loop control

The next example addresses a similar problem but now
with a system whose response is oscillatory. In complete
generality, the problem of determining information about
x(0) from an observation of the level crossings of ceAtx(0)
ranges from the well understood to the unrewarding,
depending on how densely the level crossings are spaced
and the degree of observability of the pair (A, c). If the
levels are narrowly spaced, as in a conventional quantizer,
this is almost the same as recovering x(0) from ceAtx(0);
however the situation becomes less clear if the eigenvalues
of A are close to each other. The following second order
case avoids this issue and allows us to focus on a situation
with few levels.

Example 3: Consider the system

ẍ + 2ξẋ + x = u

with |ξ| < 1. Of course if u = 0 this system has solutions
that are exponentially weighted sinusoids

x(t) = eξt sin(ωt + φ)

Suppose now that ξ < 0 so that the uncontrolled system
is unstable and that we wish to provide a feedback control
that will keep the solution within some bound. For this
purpose there are available observations in the form of the
level crossings or coincidence detectors as discussed above.

y1 = #x−1(1) ; y0 = #x−1(0). ; y−1 = #x−1(−1)

with x being regarded as a function on [0, t). As in the
previous example, we want to construct an automaton
driven by these observations and with a small number of
states such that there exists a choice of u depending on
the state of the automaton which accomplishes this task.

1

2

34

5

dx/dt

x

a

b

c

d

e

Fig. 4. The state diagram of an automata for controlling
the system of the example.

The state of the automaton will be denoted by z with the
labels for the states being such that z(t) ∈ {1, 2, 3, 4, 5}.
Roughly speaking, the states will be identified with regions
of the phase space in accordance with

z = 1 if x ∈ (0, 1) ; ẋ > 0
z = 2 if x > 1
z = 3 if |x| < 1 ; ẋ < 0
z = 4 if x < −1
z = 5 if x ∈ (−1, 0] ; ẋ > 0
but the precise definition of the automaton is as follows.
Let Ik(z) be the indicator function for state k, i.e., Ik(z)
is one if z is in state k and zero otherwise. The evolution
equation for the state is

ż = (I1(z) + I2
d

dt
y1 − 4I0(z)

d

dt
y0 + (I3(z) + I4(z))

d

dt
y−1

The level lines, together with the ẋ = 0 axis divide (ẋ, x)-
space into 6 sectors but we merge two of these, ẋ < 0, 1 >
x > 0 and ẋ < 0, 0 > x > −1 as indicated by the listing of
the states. Thus if the trajectory x starts in sector i and
z(0) = i Z and x will stay synchronized. But if i 6= j then
a complete rotation will result in synchronization.

The control law itself is to be selected so that it is only
nonzero when the automaton is in state 1. Observe that the
uncontrolled system has period 2π/

√

1 − ξ2 and thus over
one period the the uncontrolled dynamics would satisfy

d

dt
(ẋ2 + x2) = −2ξẋ2 > 0

When in state one the control should provide a pulse of
size u0 scaled so that u0ẋ removes somewhat more energy
than the natural dynamics provides over one cycle. This
need not be closely calibrated; it is only important that
u0 be scaled so that its strength is enough to more than
offset the growth in ẋ2 + x2 that occurs as a result of the
natural dynamics.

Problem 2: Given the unstable linear time invariant
system

ẋ = Ax + bu ; ; y = cT x
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x

x

+d-d

x

x
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α

β

Fig. 5. A typical trajectory and the level crossing pattern.

Suppose that there exists no static feedback control law
u = f(y) that makes the null solution asymptotically sta-
ble. Under what additional assumption will it be possible
to find a quantization scheme and an automaton with N
or fewer states such that when it is used as part of a
feedback system which is otherwise memoryless there is
a ball, S = {x|||x|| ≤ a}, such that any x(0) ∈ S generates
a bounded trajectory.

6. RANDOMIZED FINITE STATE CONTROL

In this section we give the outline of a new and promising
approach to finite state control. It is based on a partic-
ular kind of randomization involving finite state Markov
processes whose transition rates are adjustable.

The subject of continuous time Markov chains is concerned
with stochastic processes which take on a finite set of
values and which jump discontinuously between these val-
ues at rates identified with the corresponding infinitesimal
generator. That is, the evolution of the vector of probabili-
ties whose ith component is the probability that the system
is in state i at time t takes the form ṗ = Ap with A being
a, possibly time varying, infinitesimally stochastic matrix.
One general method for realizing a sample path description
of such processes uses counting processes N(t). These are
random processes taking on values in the nonnegative
integers, monotone increasing, and having a counting rate
such that

E(N(t) − N(τ)) =

∫ t

τ

λ(σ)dσ

Such counters can be used to generate sample paths using
stochastic equations of the Itô type

dz =

m
∑

i=1

fi(z, t)dNi ; z(t) ∈ S = {s1, s2, ..., sk}

provided that the fi are chosen appropriately. If the
counting rates are allowed to depend on other variables, it
is possible to exercise some control over the transitions and
there is a well developed stochastic calculus for computing
statistical properties of the solutions. We will show that if
we allow the counting rates to depend on the state of the
system to be controlled then such systems can create a
containment region in the state space of the system to
be controlled, even though the controller is finite state
and the feedback control takes on only a finite set of
values. (Compare with Wong-Brockett [1999].) The size
of the containment region and the size of the steady
state error can be estimated from the properties of an
associated variance equation. For suitable choices of the
rate dependencies, this equation is linear if the system to
be controlled is linear, even though the controller is a finite
state system. In this way the model provides guidance as
to how the the gains affect the containment region.

The general theory behind this circle of ideas will be given
elsewhere but many of the basic ideas are present in the
following example, which involves controlling a neutrally
stable harmonic oscillator.

Example 4: Consider the system
[

ẋ1

ẋ2

]

=

[

0 1
−1 0

] [

x1

x2

]

+

[

0
b

]

z

dz = −2zdN ; z(0) ∈ {±1}

with the rate of the counter N being a suitably chosen
function of x. It is convenient to relabel z as x3 and to
describe the system and controller using a single vector
equation expressed in Itô notation

[

dx1

dx2

dx3

]

=

[

0 1 0
−1 0 0
0 0 0

] [

x1

x2

x3

]

dt +

[

0 0 0
0 0 0
0 0 −2

] [

x1

x2

x3

]

dN

If we take expectations we can replace this by a determin-
istic equation, however first we must decide on how the
counting rate is to depend on the state. This is a critical
choice because it is the mechanism by which control is
exercised. For reasons that will become clear we chose the
form λ+cx2z, noting that this is meaningful only for values
of x such that λ + cx1z ≥ 0. There are two points to be
made immeadiately. The first is that the dependence of
the rate on z is actually just a notational convenience and
will not be the source of technical difficulties. The second
is that the bound λ+cx1z ≥ 0 has important implications
for the outer limit of the domain of confinement as will be
seen. With the given choice for the rate, the epected vale
of x satisfies

d

dt
E

[

x1

x2

x3

]

=

[

0 1 0
−1 0 b
2c 0 −2λ

]

E

[

x1

x2

x3

]

The relevant characteristic equation is s3+2λs2+s+2(λ−
bc) = 0 so that if 0 < bc < λ then the eigenvalues have
negative real parts. The corresponding equation for the
matrix of second moments

Σ = ExxT = E





x2
1 x1x2 x1z

x1x2 x2
2 x2z

x1z x2z z2





is given by
Σ̇ = FΣ + ΣFT + G

with

F =

[

0 1 0
−1 0 b
2c 0 −2λ

]

; G =

[

0 0 0
0 0 b
0 b 0

]

Thus we have
d

dt
Ex2

1 = 2Ex1x2 ;
d

dt
Ex1x2 = 2cE(x2

2 −−x2
1 + bx1x3)

d

dt
Ex1x3 = E(x2x3 + 2cx2

1 − 2λx1x3)

d

dt
Ex2

2 = E(−2x1x2) + 2b

d

dt
Ex2x3 = 2cE(x1x2 − x1x3 − 2x2x3) + 2b

Solving for the steady state values for these variances we
have

Ex2
1 =

λb

λ + bc
; Ex1x3 =

bc

λ + bc
; Ex2

2 = b ; Ex2
3 = 1

and the remaining values are 0.
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As noted, the model will only be meaningful in that region
of (x1, x2)-space having the property that λ + cx1z ≥ 0.
Because z can change to -1 at any time this means λ > cx1.
Given the expression for the variance, this suggests we
make λ a multiple of the root mean square value of x1 as
computed above. Calling this multiple m we impose

λ > mc

√

λb

λ + bc
With such a choice the containment region will be approx-

imated by an annulus with inner radius c
√

λb
λ+bc and outer

radius mc
√

λb
λ+bc .

What if the system to be controlled had been exponentially
unstable? To see the implications we need to examine
anew the characteristic equation that lead to the stability
condition. Suppose we have

[

ẋ1

ẋ2

]

=

[

ξ 1
−1 ξ

] [

x1

x2

]

+

[

0
b

]

z

dz = −2zdN ; z(0) ∈ {±1}

the analysis proceeds as above yielding, eventually, the
equation for the expected values

d

dt
E

[

x1

x2

x3

]

=

[

ξ 1 0
−1 ξ b
2c 0 −2λ

]

E

[

x1

x2

x3

]

The relevant characteristic equation is now more complex,

s3 + 2(λ − ξ)s2 + (1 − 4ξλ + ξ2)s + 2(λ + λξ2 − bc) = 0

The presence of ξ takes away the possibility of achieving
stability by letting λ become large and points to the need
for controllers with more states.

We only have room to sketch the more general theory in
which the finite state controller has an arbitrary number
of states. It that setting it is convenient to represent the
states as the n standard basis vectors in R

n, i.e., the state
space is {e1, e2, ..., en}, as in Brockett [2008]. The sample
path description is constructed using Poisson counters
N1, N2, ..., Nm in an Itô equation of the form

dx =
m

∑

i=1

GixdNi

with the rates of the counters being dependent on the
state. That is, the transition probabilities associated with
a Markov chain can be functions of x. The matrices Gi

are chosen to have entries either zero or ±1. The off-
diagonals are nonnegative and the columns sum to zero.
The resulting Itô equation generates a Markov process
whose transition probabilities are related to the rates of
the Poisson counters in accordance with

A(t) =

m
∑

i=1

Giλi(t)

We refer this representation of the sample paths of a
Markov process as a unit vector represention. Insofar as
finite state Markov processes are concerned, this represen-
tation is completely general. Note that Ex(t) = p(t).

If we combine this with the state evolution of a linear
system we have

[

dx
dz

]

=

[

A B
C 0

] [

x
z

]

dt +
∑

[

0 0
0 Gi

] [

x
z

]

dNi

Now after a suitable x-dependent choice of the rates of the
counters and after taking expectations we get a coupled set
of equations of the form

d

dt
E

[

x
z

]

=

[

A B
C G

]

E

[

x
z

]

The matrix B can be chosen freely but because the matrix
C comes from an x-dependent choice of the counting rates
it must have columns that sum to zero. This then provides
a setting in which to study the stabilization and control of
linear systems using randomized finite state machines.

7. CONCLUSIONS

At one point in time computer control was thought to
mean sampled data control of linear systems; now it
is more typically thought to encompass various aspects
robotic control, vision guided control, etc. These new prob-
lems have lead to an expanded view of what control should
achieve, especially when it comes to problems involving
many variables, high levels of autonomy, and distributed
solutions. The subject of hybrid control attempts to bring
many of these ideas together and is perhaps the most
agressive view of nonlinear control currently being studied.
Our hope is that the ideas presented here will help inspire
further progress.
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