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Abstract: TThis paper gives a design method for a model predictive control (MPC) approach
based on a unified performance index throughout the start-up phase tension and looper control
which consists of the non-contact and contact modes in order to suppress the deviation of the
strip tension while the looper contacts with the strip as quickly as possible. We will formulate
the control problem by using a MPC for a piecewise affine (PWA) system with the terminal
condition and an unknown terminal time. However, in order to realize the feedback control
using a receding horizon strategy, we have to solve nonlinear equations in an on-line manner
as precisely as possible. Therefore, the paper gives a method using a continuation method
for solving the nonlinear equations efficiently. The efficiency of the proposed method is shown
through numerical simulations.

1. INTRODUCTION

In the hot strip finishing mill, several passes of rolling
are executed by tandem rolling with 6 or 7 successive
stands in the presence of interstand tension to achieve
the required reduction, final qualities and tolerances. The
looper implemented between each pair of adjacent stands
fulfills an important role in tension control. In the start-
up phase, the looper is raised above the passline just after
the leading end of the strip passes through the downstream
stand so that the looper comes into contact with the strip
and eventualy forms a loop of the stored strip between the
stands.

Several advanced multivariable control schemes have been
applied to tension and looper control. Among them are
interaction decoupling Kotera and Watanabe [1981], opti-
mal control Seki et al. [1991], H∞ control Imanari et al.
[1997] and decentralized control Asano et al. [2000]. All of
them are, however, intended for feedback control after the
start-up phase. On the other hand, both tension and looper
angle control in the start-up phase is normally performed
in an ad hoc manner; a constant value is given as the looper
motor torque reference and the feedback control does not
start until the looper comes into contact with the strip.

In such start-up phase tension and looper control in hot
strip finishing mills, a hybrid system approach has been
proposed Asano et al. [2005], Imura et al. [2004]. In this
� This research was conducted within the research group ’Novel
steel process control based on on-line optimization technology’ in
the Division of Instrumentation, Control and System Engineering,
the Iron and Steel Institute of Japan (ISIJ).

research, the transient behaviour of the tension and looper
angle in the start-up phase is modeled by a piecewise affine
(PWA) system with a sequential mode transition, and a
hybrid optimal control approach is applied. Although it
shows that the deviation of the strip tension is supressed
efficiently, it has drawbacks of heavy computational load
because it has to solve a quadratic programming problem
with constraints repeatedly in order to search the optimal
mode switching time. Hence, it is required to reduce the
calculating time of control law so that on-line implemen-
tation could be realized.

This paper gives a design method for a model predictive
control (MPC) approach by using a unified performance
index throughout the start-up phase tension and looper
control which consists of the non-contact and contact
modes in order to suppress the deviation of the strip
tension while the looper contacts with the strip as quickly
as possible. We will formulate the control problem by
using a MPC for a piecewise affine (PWA) system with
the terminal condition and an unknown terminal time.
However, in order to realize the feedback control using
a receding horizon strategy, we have to solve nonlinear
equations in an on-line manner as precisely as possible.
Therefore, the paper gives a method using a continuation
method for solving the nonlinear equations efficiently.
The efficiency of the proposed method is shown through
numerical simulations.

This research was conducted within the research group
’Novel steel process control based on on-line optimization
technology’ in the Division of Instrumentation, Control
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and System Engineering, the Iron and Steel Institute of
Japan (ISIJ).

2. TENSION AND LOOPER CONTROL SYSTEM
MODEL

Fig. 1. Looper geometry

J Looper inertia

θ Looper angle

σ Interstand tension

q Looper torque

qref Looper torque reference

D Looper damping constant

TACR Time constant of looper motor ACR

h Strip thickness

b Strip width

β Strip angle with passline

ρ Strip density

g Gravitational constant

l Half of length beween stands

r Looper arm length

WL Looper weight

rL Distance between axis and center of gravity
of looper

θG Offset angle between center of gravity of
looper and looper angle

E Young’s modulus of strip

f Forward slip

L Interstand strip length

VR Roll velocity

VRref Roll velocity reference

TASR Time constant of mill motor ASR

Table 1. Nomenclature in the Tension and
Looper Control System Model

Consider the looper and one pair of adjacent stands in the
hot strip finishing mills shown in Fig. 1. The nomenclature
in the tension and looper control system model is given in
Table. 1.

The looper dynamics are described by the following equa-
tions:

Jθ̈ = q − δ{Kσ(θ)σ + Ks(θ)} − KL(θ) − Dθ̇ (1)

q̇ =− 1
TACR

(q − qref ) (2)

where Kσ, Ks and KL denote the looper load torque by
the tension, strip weight and looper weight, respectively,
and are given as follows:

Kσ(θ) �= 2bhr cos θ sinβ (3)

Ks(θ)
�= 2ρhbg

1
cosβ

r cos θ (4)

KL(θ) �= WLgrL cos(θ + θG) (5)

δ is a 0-1 variable which denotes the two modes: δ = 1
in the contact mode (C-mode) and δ = 0 in the non-
contact mode (N-mode). The mode transition rule is given
as follows:

δ =
{

0 if θ ≤ θmin

1 if θ ≥ θmin
(6)

where θmin is the looper angle when the looper is raised to
the passline.

The tension dynamics are governed by the following equa-
tions:

σ̇ =
E

2l

{
−{1 + f(σ)}VR +

∂L

∂θ
θ̇

}
(7)

V̇R =− 1
TASR

(VR − VRref ) (8)

The looper angular velocity and the tension at the tran-
sition from the N-mode to the C-mode are assumed as
follows;

θ̇(t) = ε1θ̇(t−), if N-mode → C-mode (9)

σ(t) = σ(t−) + ε2θ̇(t−), if N-mode → C-mode

(10)
where ε1 and ε2 are each an appropriately estimated
constant, θ̇(t−) �= limτ↑t θ̇(τ) and σ(t−) �= limτ↑t σ(τ).

3. MPC FOR TENSION AND LOOPER CONTROL IN
THE START-UP PHASE

3.1 Piecewise Affine Model

This subsection introduces a PWA model which represents
the tension and looper control in the start-up phase from
the initial state in the N-mode to the final state in the
C-mode shown in Fig. 2.

Fig. 2. Control modes

The first, we derive linearized model around an operat-
ing point of C-mode. The operating point of C-mode is
described by (θc, 0, σc, qc, VRc), which are satisfied with

qc = qrefc = Kσ(θc)σ + Ks(θc) + KL(θc) (11)

VRc = VRfefc (12)

Then, the following equations are derived by linearizing
Eqs.(1)-(10) with δ = 1:
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J ¨̄θ = q̄ − Kσ(θc)σ̄ − K(θc, σc)θ̄ − D ˙̄θ (13)

˙̄σ = F1(σc)V̄R + F2(σc, VRc)σ̄ + F3(θc) ˙̄θ (14)

˙̄q =− 1
TACR

(q̄ − q̄ref ) (15)

˙̄V R =− 1
TASR

(
V̄R − V̄Rref

)
(16)

˙̄θ(t) = ε1
˙̄θ(t−), if N-mode → C-mode (17)

σ̄(t) = σ̄(t−) + ε2
˙̄θ(t−), if N-mode → C-mode

(18)

where

K(θc, σc)
�= σc

∂Kσ

∂θ

∣∣∣∣
θ=θc

+
∂Ks

∂θ

∣∣∣∣
θ=θc

+
∂KL

∂θ

∣∣∣∣
θ=θc

(19)

F1(σc)
�=−E

2l
{1 + f(σc)} (20)

F2(σc, VRc)
�=−EVRc

2l

∂f

∂σ

∣∣∣∣
σ=σc

(21)

F3(θc)
�=

E

2l

∂L

∂θ

∣∣∣∣
θ=θc

(22)

The next, we derive linearized model around an operat-
ing point of N-mode. The operating point of N-mode is
described by (θn, 0, qn), which are satisfied with

qn = qrefn = KL(θn) (23)

Then, the following equations are derived by linearizing
Eqs.(1)-(10) with δ = 0:

J
¨̃
θ = q̃ − ∂KL

∂θ

∣∣∣∣
θ=θn

θ̃ − D
˙̃
θ (24)

˙̃q =− 1
TACR

(q̃ − q̃ref ) (25)

Noting that the tension is measured by a tensiometer
mounted on the looper, so it is unmeasurable in the N-
mode. Hence, the dynamic equations in terms of tension
and roll velocity are not included in the N-mode because
it is assumed that the roll velocity reference signal VRref

is kept constant in the N-mode.

The paper considers a MPC based on a unified perfor-
mance index througout the start-up phase tension and
looper control. Hence, the linear model in the N-mode is
unified based on the coordinate systems of the C-mode,
which yields the following representation:

J ¨̄θ = q̄ − ∂KL

∂θ

∣∣∣∣
θ=θn

θ̄ − D ˙̄θ + ΔSθ (26)

˙̄q = − 1
TACR

(q̄ − q̄ref ) (27)

where

ΔSθ
�= qc − qn − ∂KL

∂θ

∣∣∣∣
θ=θn

(θc − θn) (28)

From Eqs.(13) -(18) and Eqs.(26) -(27), PWA models for
the tension and looper control in the start-up phase are
given as follows:

N-mode:
∂

∂t
x(t) = A1x(t, τ) + B1u1(t, τ) + a,

if cTx(t, τ) − p0 ≤ 0 (29)

NC-mode:

x(t, 0) = Encx(t−) + enc,

if cTx(t−) − p0 = 0,

and N-mode → C-mode (30)

C-mode:
∂

∂t
x(t) = A2x(t, τ) + B2u(t, τ),

if cTx(t, τ) − p0 ≥ 0 (31)
where

x
�=

[
θ̄, ˙̄θ, q̄, σ̄, V̄R

]T

, u
�=

[
q̄ref , V̄Rref

]T

x1
�=

[
θ̄, ˙̄θ, q̄

]T

, x2
�=

[
σ̄, V̄R

]T
, u1

�= q̄ref

A1
�=

[ 0 1 0
a21 a22 a23

0 0 a33

]
, B1

�=

[ 0
0
b1

]
, a

�=

[ 0
f
0

]

(32)

A2
�=

⎡
⎢⎢⎢⎣

0 1 0 0 0
a′
21 a′

22 a′
23 a′

24 0
0 0 a33 0 0
0 a′

42 0 a′
44 a′

45
0 0 0 0 a55

⎤
⎥⎥⎥⎦ , B1

�=

⎡
⎢⎢⎢⎣

0
0
b1

0
0

⎤
⎥⎥⎥⎦

(33)

B2
�=

⎡
⎢⎢⎢⎣

0 0
0 0
b1 0
0 0
0 b2

⎤
⎥⎥⎥⎦ , Enc

�=

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 ε1 0 0 0
0 0 1 0 0
0 ε2 0 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎦ , (34)

enc
�=

[
enc1

enc2

]
�=

⎡
⎢⎢⎢⎣

0
0
0

σn − σc

0

⎤
⎥⎥⎥⎦ , (35)

cT �= [1 0 0 0 0], p0
�= θn − θc (36)

a21
�= − 1

J

∂KL

∂θ

∣∣∣∣
θ=θn

, a22
�= − 1

J
D, a23

�=
1
J

a33
�= − 1

TACR
, b1

�=
1

TACR
, f

�=
1
J

ΔSθ

a′
21

�= − 1
J

K(θc, σc), a′
22

�= − 1
J

D, a′
23

�=
1
J

a′
24

�= − 1
J

Kσ(θc), a′
42

�= F3(θc)

a′
44

�= F2(σc, VRc), a′
45

�= F1(σc)

a′
55

�= − 1
TASR

, b2
�=

1
TASR

Here, the initial state is x10
�= [θn − θc, 0, 0]T.
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3.2 MPC Formulation

Now, we assume that the mode transition from the N-mode
to the C-mode occurs sequentially, and once the C-mode
starts, it never returns N-mode. Under the assumption,
let’s consider a MPC for the looper and tension control
in the start-up phase which consists of non-contact and
contact modes. The performance index is unified one which
evaluates the performance from N-mode to the C-mode
shown in the next:

Jt =

∞∫
0

{
xT(t, τ)Qx(t, τ) + u(t, τ)TRu(t, τ)

}
dτ

−→ min, Q ≥ 0, R > 0 (37)

where, τ is a virtual time for the calulation of optimal
control law, and t stands for the real time which starts the
looper and tension control at a initial time t0. From the
receding horizon strategy, just u(t, 0), actually u(t, τ), t ≤
τ ≤ t+ε, ε > 0, is applied to the system after the optimal
control law is derived.

Now, noting that the MPC control law is equivalent to a
linear optimal regulator after the C-mode, and the optimal
value of the perfomance index during the C-mode, could
be evaluated by using the state variables just when the C-
mode starts, the MPC for the start-up phase looper and
tension control could be reduced as the MPC in the N-
mode which is formulated in the following way.

Jt =

ts∫
0

{
xT

1 (t, τ)Q1x1(t, τ) + r1u1(t, τ)2
}

dτ

+
[

x̄1(t, ts)
x̄2(t, ts)

]T

P

[
x̄1(t, ts)
x̄2(t, ts)

]
−→ min, (38)

Q1 ≥ 0, r1 > 0

s.t.
∂

∂t
x1(t, τ) = A1x1(t, τ) + B1u1(t, τ)

+a (39)

c̄Tx1(ts) − p0 = 0, c̄T �= [1, 0, 0] (40)[
x̄1(ts)
x̄2(ts)

]
= Enc

[
x1(ts)
x2(ts)

]
+ enc (41)

where P is a positive definite matrix of Ricatti equation
for the state space equation in the C-mode, which gives
the optimal value of performance index after C-mode.

ts is a switching time, which is unkonwn beforehand.
Eq.(40) is the contact condition at the switching time ts.
Eq.(40) represents the state jump at NC-mode.

4. MPC USING A CONTINUATION METHOD

From the necessary condition of optimal control problem
with the terminal condition and unknown terminal time,
the necessary conditions of the control law in the N-mode
are given by

∂

∂τ
λ(t, τ) =−HT

x1
, Hu1 = 0 (42)

∂

∂τ
x1(t, τ) = A1x1(t, τ) + B1u1(t, τ) + a (43)

x1(t0, 0) = x10, c̄Tx1(t, ts) − p0 = 0 (44)

λ(t, ts) = Kx1(t, ts) + L + ν(t)c̄ (45)

[H ]τ=0 = 0, (46)
where, the Hamiltonian H is defined as

H = xT
1 (τ)Q1x1(τ) + r1u1(τ)2

+λT(τ) (A1x1(τ) + B1u1(τ) + a)
(47)

and K and L are defined as

K
�= 2

(
ET

1 P 1E1 + 2ET
1 P 2E2 + ET

2 P 3E2

)
L

�= 2
(
ET

1 P T
2 + ET

2 P 3

)
E3x2(ts)

+2
(
ET

2 P 3 + ET
1 P 2

)
enc2 (48)[

E1 0
E2 E3

]
�= Enc,

[
P 1 P 2

P T
2 P 3

]
�= P (49)

From the conditions Eqs.(42)-(46), the MPC control law
in the N-mode can be given as

u1(t, 0) = − 1
2r1

BT
1 λ(t, 0) (50)

so that the following nonlinear equations in terms of the
unknown variables vector, U(t) = [λ(t, 0)T, ν(t), ts(t)]T
are satisfied.

F (U(t),x1(t, 0)) =

[
F 1(U(t),x1(t, 0))
F2(U(t),x1(t, 0))
F3(U(t),x1(t, 0))

]

= 0 (51)

F 1(U(t),x1(t, 0))
�= {M4(ts(t)) − KM2(ts(t))}λ(t, 0)

−c̄ν(t) − KW 1(ts(t)) + W 2(ts(t)) − L (52)

F2(U(t),x1(t, 0))
�= c̄M 2(ts(t)) − p0 + c̄TW 1(ts(t)) (53)

F3(U(t),x1(t, 0))
�= xT

1 (t, 0)Q1x1(t, 0) − 1
4r1

λT(t, 0)B1B
T
1 λ(t, 0)

+λT(t, 0)A1x1(t, 0) + λT(t, 0)a (54)
where

M
�=

⎡
⎣ A1 − 1

2r1
B1B

T
1

−2Q1 −AT
1

⎤
⎦ (55)

[
M 1(ts(t)) M2(ts(t))
M 3(ts(t)) M4(ts(t))

]
�= exp (M ts(t)) (56)

W 1(ts(t))
�= M 1(ts(t))x1(t, 0) + a1(ts(t)) (57)

W 2(ts(t))
�= M 3(ts(t))x1(t, 0) + a2(ts(t)) (58)

[
a1(ts(t))
a2(ts(t))

]
�=

ts(t)∫
0

exp (Mτ) dτ

[
a
0

]
(59)

However, in order to realize the feedback control Eqn.
(50) using a receding horizon strategy, we have to solve

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7285



a nonlinear equations Eqn. (51) on an on-line manner
as precisely as possible. Therefore, the paper proposes
the method using a continuation method for solving the
nonlinear equations efficiently.

These nonlinear equations can be represented as
F (U (t),x1(t, 0)) = 0 (60)

where U(t) = [λ(t, 0), ν(t), ts(t)]T. The solution of the
equations Eqn. (60) can be traced using the following
differential equation.

d

dt
F (U (t),x1(t, 0)) = −ζF (U(t),x1(t, 0)) (61)

where ζ > 0. From Eqn. (61), it follows that
d

dt
U(t) = F U

−1

(
−ζF − Fx1

∂

∂t
x1(t, 0)

)
(62)

Now, F U and Fx1 can be calculated explicitly as follows.

F U =

⎡
⎣ M 4(ts(t)) − KM 2(ts(t)) −c̄ X1

c̄TM 2(ts(t)) 0 X2

X3 0 0

⎤
⎦ (63)

where[
X1

X2

]
�=

[−K I
c̄T 0

]
exp(M ts(t))

×
{

M

[
x1(t, 0)
λ(t, 0)

]
+

[
a
0

]}
(64)

X3
�=− 1

2r1
λ(t, 0)TB1B

T
1 + x(t, 0)TAT

1 + aT

(65)

Fx1 =

⎡
⎣−KM1(ts(t)) + M3(ts(t))

c̄M1(ts(t))
2x1(t, 0)TQ1 + λ(t, 0)TA1

⎤
⎦ (66)

Since the proposed MPC control law is given in the
Eqn. (50) where the λ(t, 0) is determined by solving the
differential equation Eqn. (62). Thus, we can realize the
feedback control using a receding horizon strategy.

5. NUMERICAL SIMULATION

In this section, we will show the efficiency of the proposed
method. The system parameters in Eqs.(32)-(36) are the
same as ones given in the literature Imura et al. [2004].
The control objective in the simulation is to raise the
looper angle from the initial horizontal position (θ = 0o) to
the operating point of the C-mode (θ = 20o) through the
passline (θ = 10o), while keeping the interstand tension a
operating point σn = σc = 1.06(kg/(m)2). The weighting
matrix Q1 and r of the performance index in the N-mode
is given by

Q1 = diag [ 100, 10000, 0.001 ] , r1 = 0.0005

The weighting matrix Q2 and R2 of the performance index
in the C-mode is given by

Q2 = diag [ 100, 10000, 0.001, 1000, 1 ] ,
R2 = diag [ 0.001, 0.001 ]

From Fig. 3, we can see that the proposed control law
works well to control the looper and tension in the hot strip

mill even in the presence of disturbances. Furthermore,
the calculation time for deriving the control law in the
non-contact mode is around 1.1[msec] on the average even
in the presence of disturbances, while it takes around
100[msec] on the average in the case of Imura et al. [2004],
Asano et al. [2005]. Therefore, we can claim that the
proposed method improves efficiency of the calculation
load, which leads to implement in on-line manner.

The simlation was executed using Workstation Astrike
Windows XP Preinstallation Model, Xeon (TM) CPU
3.06GHz 1.00GB RAM, Matlab Ver 7.1.0.246 (R14).

Fig. 3. Looper angle, interstand tension by the proposed
MPC

The figure Fig. 4 shows the comparative results the nonlin-
ear function F in Eqn. (60) during in the N-mode between
with and without continuation method. From the figure,
it follows that the proposed approach using continuation
method could obtain even more precise solutions of the
nonlinear equations F in Eqn. (60) than ones without
using a continuation method.

Fig. 4. The norm of nonlinear function F without using a
continuation method (dashed line) and with using the
continuation method (solid line)

6. CONCLUDING REMARKS

This paper showed the tension and looper control in the
hot strip finishing mill based on PWA (piecewise affine)
systems with the terminal condition and an unknown
terminal time. While the approach in the earlier litera-
tureImura et al. [2004], Asano et al. [2005] have difficulty
to implement in an on-line manner, the proposed method
improves efficiency of the calculation load. Although the
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paper focused on reducing the calculation load, the per-
formance improvement in the contact mode remains for
future works.
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