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Abstract: In this paper, we model the recognition problem for hand gesture as that of finding an
optimal path through a Hidden Markov Model (HMM) state graph. To determine this optimal
path, we present a novel online method which decodes the observed gesture pattern and evaluates
the optimal graph node at each time frame of the continuously deepening HMM state graph. The
temporal signature is subsequently handled by introducing a rejection threshold which acts as a
depth-wise sliding window for pruning the unnecessary graph nodes. The functional depth of the
graph is defined by this depth rejection threshold. Experimental comparison of our algorithm
with other HMM-based search algorithms demonstrates the effectiveness and robustness of our
method.

1. INTRODUCTION

The wish to provide a more natural means of interaction
with computers has led to a considerable interest in the
field of hand gesture recognition. Pavlovic et al. [1997]
provides a review on the existing techniques for hand
gesture interpretation. In our aim to allow users to perform
gestures in a natural and unencumbered manner we use
vision-based techniques for gesture recognition.

While dealing with connected hand gesture recognition we
are faced with two serious hurdles:
(1) Difficulty in reliably determining the boundaries be-
tween gesture models.
(2) Difficulty in establishing how many gesture models are
contained in the sequence.

Hidden Markov Model (HMM), a stochastic process ex-
plained in detail by Rabiner [1989], provides a good
framework for such a type of recognition. HMM has been
extensively used in hand gesture recognition by Chen et al.
[2003], Lee and Kim [1999], Ng and Ranganath [2002], Ra-
mamoorthy et al. [2003]. HMM perform recognition by de-
coding this observed gesture pattern to find the underlying
gesture sequence. For connected hand gesture recognition,
we consider all the HMM gesture states s = 1, 2, ... N (M),
N is the total number of states of each reference gesture
model M , together at every time frame to form one large
HMM state graph as shown in Fig. 1.

Given an observed pattern Ot = O1, O2, ... OT , where
T is the length of the observation pattern, the reference
gesture states are then unfolded along the time axis of

Fig. 1. Illustration of path finding problem in connected
gesture recognition

the test pattern to find the optimal state sequence with
maximum joint likelihood probability as,

s∗ = argmaxs P (O, s|Λ), (1)

where Λ is the set of HMM gesture models

The task now is to design an efficient search algorithm to
deal with this huge search space and find the optimal state
sequence.

Our research is concentrated towards this decoding pro-
cess. For online recognition, with each advancement of
time the HMM graph deepens gradually. In our work, we
describe an algorithm to search online this ever deepening
HMM state graph and find the optimal node at every time
frame. The path corresponding to the optimal node repre-
sents the optimal state sequence and reveals the gestures
enacted so far.
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We implement the algorithm on the humanoid robot
MAHRU, ( You et al. [2005]). Trained hand gesture models
are used to command the robot into specific actions.

The rest of the paper is organized as follows : in Section
2 we give a comparison with related works, in Section
3 we define the probabilistic model with mathematical
formulation for our algorithm followed by the required
procedural steps, and in Section 4 we describe the details
of our real time Implementations along with the gesture
recognition framework. Finally, in Section 5 we present
an analysis of our experimental results and compare the
performance with a couple of baseline methods, followed
by a short conclusion in Section 6.

2. COMPARISON WITH RELATED WORKS

The problem of hand gesture recognition has been tackled
by using different search strategies. The standard Viterbi
algorithm is an exhaustive search procedure but a slight
modification of it as the Viterbi Beam search is rather
more effective. The N best search and A* search, also form
the basis for most works in this domain. Some proposed
improvements of these conventional methods can be found
in Deshmukh et al. [1995], Hu and Brown [1996], Illina
and Gong [1996], Nakamura and Heracleous [2002], Paul
[1992], Richardson et al. [1995]. Brown and Rabiner [1982]
employed the A* algorithm in offline speech recognition
to show that it guarantees an optimal path with fewer
computations than dynamic programming algorithms.

The significance of our algorithm is that we incorporate
this idea as a time synchronous online algorithm, guar-
anteeing an optimal path at every instant of time. We
find a significant reduction in computation time over al-
gorithms of the like of Viterbi Beam and N-Best search.
By restricting the search to investigate only the best path,
we are able to keep the number of nodes examined low
between 1

3 and 1
2 as compared to Viterbi Beam search and

N-Best algorithms, thereby leading to a 60% reduction in
computation.

Our online algorithm has more flexibility over conventional
shortest path algorithm in that our source and destination
nodes are not fixed but are arbitrarily chosen. This arbi-
trary destination acts as a temporary stop point thereby
helping in identifying a momentary pause in an online
sequence. The arbitrary source assists in selecting the
correct source gesture node out of the various HMM ges-
ture models. Further, we introduce a rejection threshold,
δth, for online pruning of unlikely path candidates thus
remaining within the memory capacity of the machine.

3. OPTIMAL PATH DECODER IN A HMM STATE
DAG

3.1 Computation of the score of a path passing through a
graph node

The HMM state graph of Fig. 1 is represented as directed
acyclic graph (DAG) in the sense that the conditional
probabilities that exist between HMM states and time
is irreversible. A node, i, in the DAG represents a state
instance of a gesture model, m, at a particular time, t,
giving the coordinates as i(m) = (t, st). We denote the

possibility of a path in the DAG to pass through the
ith node as the probability measure P (oT

1 , st = i(m)),
where t ≤ T , T :current time. We compute this probability
measure as,

P (oT
1 , st = i(m)) = P (ot

1, st = i(m), oT
t+1)

= P (ot
1, st = i(m)) P (oT

t+1|st = i(m))
= αt

1(i
(m)) βT

t (i(m)),
(2)

considering ob
a = (ot; a ≤ t ≤ b). Taking log on both sides

to keep the calculations within the dynamic range of the
machine,

log[P (ot
1, st = i(m), oT

t+1)] = log[αt
1(i

(m))]
+ log[βT

t (i(m))].
(3)

The probability measure of eq( 3) gives the score for any
path passing through the ith node. The above eq( 3) can
be re-written in the form,

fT (i(m)) = gt
1(i

(m)) + hT
t (i(m)), (4)

where gt
1(i

(m)) is the score of the path of this node from
the arbitrary source node, hT

t (i(m)) is the score from this
node to the arbitrary destination node. fT (i(m)) is the
evaluation function of the node giving the score along the
path of the ith node of the graph.
Definition 1. An Optimal node i(m) = (t, st) is the node
with the highest score of fT (i(m)) selected at the current
time T , such that t = T .

3.2 The Evaluation function

The efficiency of our algorithm strategy depends crucially
on the specification of the evaluation function given in
eq ( 4). We define gt

1(i
(m)) as the probability of the

observation sequence ot
1 to give the state st = i(m).

• Initially at time t = 1,

g1
1(i(m)) = log[πs1=i(m) bs1=i(m)(O1)]. (5)

• At any gesture interior we reach the ith node after a
legal transition from its parent node j, hence

gt
1(i

(m)) = gt−1
1 (j(m))

+ log[ ast−1=j(m),st=i(m)bst=i(m)(Ot) ]. (6)

• At any gesture boundary along the recognized opti-
mal path, when there is a transition from the jth node
of any gesture M ′ to the ith node of the new gesture
M ,

gt
1(i

(M)) = gt−1
1 (j(M ′)) + log[πst=i(M) bst=i(M)(Ot)]. (7)

To evaluate hT
t (i(m)) we determine the probability of

observing the partial sequence from t to current time T
given the state st = i(m). Now, to compute hT

t (i(m)), we
need to be able to perceive the possible transitions made
by the node i(m) to reach T . We assume that the expected
route of the ith node is made by transitions along the same
state instance of current gesture, m = M , till it reaches
T . This results in T − t number of transitions along the
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same state instance of gesture M . Solving by induction for
hT

t (i(m)) we have,

hT
t (i(m)) = log[aT−t

st=i(M),st=i(M)

T∏
t

bst=i(M)(OT )]. (8)

where m = M . At time T = t we will have hT
T (i(m)) = 0.

By observing the value of hT
t (i(m)), the algorithm can

predict whether the test and reference pattern are of the
same gesture class or not.

Fig. 2. Comparing the test and reference pattern at each
time frame

On examining the Fig. 2 which matches the hT
t (i(m))

value of the test and reference gesture classes for an online
sequence of 5 connected hand gestures, we find that,
(1) At gesture interior, nodes belonging to different ges-
ture classes have a negligible value for hT

t (i(m)) which
reduces the f-score to a minimum, thus eliminating the
computation of these unlikely nodes. However, there exists
a consistent high value for the same test and reference
gesture class.
(2) At gesture boundary, the value of hT

t (i(m)) for same
class is very high as compared to that of different gesture
class. This results in fixing on the correct gesture promptly.

Therefore, the value of hT
t (i(m)) is the predominant factor

during the calculation of the evaluation function fT (i(m))
of a node in the HMM state DAG.

3.3 The Optimal Path Decoder

At any instant of time t, the path through the node ith

node is given by eq( 4) and the node is characterized by :
• the node coordinates i(m) = (t, st).
• the time τ upto which the node has been evaluated.
• gt

1(i
(m)), which facilitates in computing the probability

measure of a successor node.
• hτ

t (i(m)), which is updated as we move forward in time
thereby updating fτ (i(m)).
• a path list from the arbitrary source node to itself.

We introduce the concept of a virtual arbitrary source
node for facilitating initialization of all the HMM gesture
classes and a temporary termination on the selection of
the optimal node i(m) = (t, st) at current time T such
that t = T . Our optimal path decoder is summarized as
below

1 Initialization :
at time T = 1 an arbitrary virtual source node initializes

each gesture. These nodes are inserted in an “Open” list
which maintains a list entry of all the potential Optimal
nodes sorted in descending order of fT (i(m)). A Priority
Queue (PQ) is used to retain this list.

2 Iteration at each time frame T
(a) The optimal node obtained at T − 1 is selected at
current time frame T . Its evaluation function is updated,
Fig. 3(a), and reinserted in the open list.
(b) From the open list the head node i(m) = (t, st) is
popped and,
• if t < T − δth, then the node is deleted.
• if τ < T , then the evaluation score fτ (i(m)) of the node
is updated such that τ = T giving a new score fT (i(m)),
Fig. 3(a).
• If τ = T , then the node generates permitted successor
nodes, Fig. 3(b) and 3(c). Each successor node inherits
the path list of its parent node and we compute new
path scores fT . These are then inserted into the Open
list. When a node i is successfully expanded then it is
removed from the Open list and placed in the “Closed”
list which contains a list of all nodes to which the
optimal path has been found. We use a Hash Table to
store this Closed list.
• if t = τ = T , then i is the Optimal node in the current
time frame T , Fig. 3(d). Its evaluation function need
not be re-computed as it is already computed till T .
(c) Stop if end of time frame or iterate with T = T + 1.

Online trace back of the path of the Optimal node at time
T gives the gestures traced out so far.

(a) Update Score (b) Generating Successor
Node

(c) Generating Successor
Node

(d) Optimal Node at any Time frame

Fig. 3. Algorithmic Steps

The path of the Optimal node is optimal only if it fulfills
the following conditions:
1) the expansion is consistent for all nodes.
2) gt

1(i
(m)) 6= 0, ∀i and gt

1(i
(m)) is monotonic.

3) hτ
t (i(m)) 6= 0, ∀i 6= T , and hτ

t (i(m)) is monotonic for all
potential paths.
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Fig. 4. Gesture Classification

4) fτ (j(m)) ≤ fτ (i(m)), ∀j ≤ i, with j lieing on the path
of i.

These conditions are sufficient for the algorithm to find
the Optimal path.

4. IMPLEMENTATION IN HAND GESTURE
RECOGNITION

4.1 Observation Feature Vector

We adopt a depth feature space for analyzing the stereo
images by employing a factory calibrated Pointgrey (Bum-
blebee) stereo vision camera with 4mm focal length lens
producing disparity images at 15 fps with 320x240 res-
olution. As the actor faces the camera relatively closer
than any other background objects, the foreground image
which is the region of interest is extracted by perform-
ing human face detection using Open Source Computer
Vision Library (OpenCV) face detector and estimate the
foreground region ( Oh and Lee [2004]) as,

F (x, y) =
{

0 , D(x, y) > Df + c
F (x, y) , D(x, y) ≤ Df + c

(9)

where F (x, y) results in the foreground image having
values for each pixel position (x,y), D(x, y) is the depth of
each pixel, Df is the average depth of the human face and
c is a constant of body thickness.

The values of each depth foreground image produces a
high dimensional feature vector which is subjected to lin-
ear dimension reduction by using Principal Components
Analysis (PCA). From the resulting eigenvectors, a subset
n is chosen covering a desired amount of the data variance.
This forms the linear subspace representing the observable
feature vectors Ot, where t = 1, 2, ..., used for experimen-
tation purpose.

4.2 Gesture Classification

Out of the wide variety of human gestures, for experimen-
tation purposes, we selected five different dynamic gestures
with which to command the robot into performing actions.
The commands used in training the robot are - “ByeBye”,
“Come”, “Love”, “Stop” and “You”. Each of the Gesture
Models depict the patterns traced out by the hand motion
of the Gesture Image. The arrow shows the direction of

motion. The “initial pose” indicates the start and end of
a gesture command.

For each gesture we train a left-right HMM, λ = (A,O, π).
4 actors enacted separately each of the 5 gestures, to
produce 5 sets of observation sequences O = O1, O2, ...OT ,
one for each gesture respectively. These are used for of-
fline training producing 5 user independent trained HMM
gesture classes, each consisting of an unique identification
number.

4.3 System Description

Fig. 5. Overview of Processing Steps

For real time implementation, we divide the gesture recog-
nition task into two threads, grabber and processor op-
erating as synchronized threads. The grabber acquires
images online from the camera at a rate of 15 fps and
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(a) Number of Nodes Selected (b) Number of Nodes Expanded (c) Number of Computations

Fig. 6. Plots matching test and reference patterns from the same (correct) and different(incorrect) gesture classes

stores the images in a buffer of 4 images; the processor
reads the images sequentially from the buffer and performs
recognition on the region of interest of the image.

Each image goes through the processing steps as shown
in Fig. 5. The trained gesture classes are invoked by
the recognition system, the results of which is output
as system response. Using our proposed Optimal Path
Decoder algorithm for HMM state DAG we performed
experiments for online sequences of connected gestures.
An analysis of experimental results are given in Section
5.

5. EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Optimal Path Decoding Experimental Results

For our decoding experiments, 4 actors (different from
training actors) performed different hand gestures taken
from the training set, thereby producing a set of 4 online
test patterns comprising of observable Ot where t = 1, 2....

The experimental results are presented in Table 1 gives
the statistics for each sequence.

Table 1. Recognition Statistics for Connected
Gesture Sequences

Sequence Number
(Length of Sequence)

1 2 3 4
(290) (320) (492) (400)

Number of 3 3 5 4
connected gestures

Number of
correct/incorrect 3/0 3/0 5/0 4/0

gestures

statistics per gesture

Average 200 150 170 170
Time (ms)

Number of 280 275 335 300
Nodes Selected

Number of 122 175 209 148
Nodes Expanded

Number of 292 300 337 305
Computations

The graphical results obtained from the third sequence
are as shown in Fig. 6. Graphical Results from the other
sequences showed similar behavior.

Examination of all the three graphs in the Fig. 6 shows,
(1) At gesture interiors, the number of incorrect references
decreases to zero as compared to the number of correct
references which is a constant of 1 node, or more when
state boundaries occur (shown by the peaks in the blue
plot).
(2) At gesture boundaries, although the number of incor-
rect references increases as compared to the correct gesture
references, but it is seen that within a short period of time
the algorithm fixes on the correct gesture path.
(3) All the nodes selected are not expanded indicating less
memory consumption. At each time frame T , only if the
selected node, i(m) = (t, st), has t = τ = T then it is
expanded to generate child nodes.
(4) The number of computations per time frame is slightly
less then the nodes selected, since only the nodes whose
t < δth, δth = rejection threshold time, are computed
otherwise the selected node is pruned online.

Observations (1) and (2) indicates the accuracy of the
algorithm while (3) and (4) gives an insight to the time
and memory usage.

A reduction of 61% in memory consumption is observed
by using online pruning using the rejection threshold
value. The value of the rejection threshold is an important
criteria for maintaining the size of the open list. For large

Fig. 7. Nodes in Open List

values the size of the open list maybe too large for practical
online recognition, and lower values might empty the open
list. Using a static rejection threshold value of 25, Fig. 7
shows that the node count in the open list is maintained
at an average of 46 throughout. While without the online
pruning the size open list rises constantly reaching the
limit of memory capacity very soon.
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5.2 Comparison with baseline methods

The results obtained in Table 2 indicates that the Optimal
Path Decoder achieves a reduction of almost 1

2 in compu-
tation time without loss in accuracy. This is because the
number of nodes considered by the Optimal Path Decoder
is far less which also reduces the number of computations
required per time frame. The data is based on the same
sequence, as above, of length 492 and comprising of 5
connected gestures.

Table 2. Comparing Optimal Path De-
coder with Viterbi Beam and N-Best algo-
rithms.(values are recorded at the end of each

recognized gesture)

Algorithm Average Total Total Accuracy
time Nodes Number of
(ms) computations

Viterbi 350 700 742 100%
Beam

N-Best 280 610 670 100%

Optimal
Path 170 336 337 100%

Decoder

Fig. 8. Comparison of computation time at each time
frame.

Figure 8 shows that the time required to fix on the
optimal node by our algorithm at each time frame is
comparable, if not better, to the time required to prune
out the unwanted hypothesis in Viterbi Beam and N-Best
algorithms. On closer examination, we see that Optimal
path Decoder algorithm is able to obtain a reduction in
computation time by a factor of 1.6 as compared to N-Best
and approximately 2.0 compared to Viterbi beam search.

6. CONCLUSION

We have presented an online optimal path graph search
algorithm which is
(a) computationally cheaper,
(b) reduces search space without overlooking the Optimal
path.

We also introduced a rejection threshold time to monitor
the nodes considered as we advance forward in DAG and
prune online the unlikely path candidates.

The experimental results indicate that at least 60% fewer
computations are required as compared with baseline
methods like Viterbi Beam Search and N-Best algorithms.
This leads to 15-20% speed up in recognition. The recogni-
tion experiments show that Online Optimal Path Decoder
outperforms the baseline methods in both computation
time and usage of search space.
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