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Abstract: This paper presents a new framework to generate human-like movement of a
humanoid robot in real time using the movement primitive database of a human. The framework
consists of two processes: (1) the offline motion imitation learning based on Evolutionary
Algorithm and (2) the movement generation of a humanoid robot using the database updated by
the motion imitation learning. For the offline process, the initial database contains the kinetic
characteristics of a human, since it is full of humans captured motions. The database then
develops through the proposed framework of motion learning based on Evolutionary Algorithm,
having characteristics of a humanoid in aspect of minimal torque. The humanoid generates
a human-like movement corresponding to a given task in real-time by linearly interpolating
the primitive movements in the developed database. The proposed framework is a systematic
methodology for a humanoid robot to learn human motions, considering the dynamics of the
robot. The experiment of catching a ball thrown by a man is performed to show the feasibility

of the proposed framework.

1. INTRODUCTION

Recently, humanoid robots have increasingly resembled
human beings in such motion control ability as walking
control, running control, etc. as well as in appearance.
Although the recent progress in motion generation for
humanoid robots has yield useful results in many cases, a
general approach for automatic motion generation is still
under development. Therefore it is necessary to propose an
efficient way in which a robot can coordinate its motions
for numerous kinds of tasks required in our daily life.

In spite of the great differences between a vertebrate
system and robotic system, the fields of biology and neu-
roscience have tried to derive benefits from the theories
and procedures that may help the control of an artificial
multi-joint system : motor learning (R.A. Schmidt, 1988)
and motor primitives (F. A. Mussa-Ivaldi et al., 1994).
Hollerbach and Flash (J. M. Hollerbach et al., 1982) proved
experimentally that brain may carry out inverse kine-
matics and dynamic computations when a human moves
in a purposeful. In addition, Raibert (M. Raibert et al.,
1978) observed that inverse dynamics can be represented
as the operation of a memory that associates a vector
of joint torques, angles, angular velocities and angular
accelerations-a computational device like look-up table.
Mussa-Ivaldi and colleagues (F. A. Mussa-Ivaldi et al.,
1994, 2000) insisted that the central nervous system could
create, update and exploit internal representations of limb
dynamics like a memory and motor pattern generator in
order to deal with the computation complexity of inverse
dynamics. They regarded the vectorial combination of
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the force field exerted by limbs as the representation.
Williamson (M.M.Williamson, 1996) applied this combi-
nation to a robotic system in form of postural primitives.

Imitation Learning might be an efficient approach to en-
able a robot to generate natural and abundant motions
(S. Schaal, 2002). When someone needs to learn a new
skill or new sports motion, he/she watches the actions of
a skilled person, and, subsequently, uses the demonstrated
movement as a seed to start his/her own movement. In
cognitive science work, imitation style learning has been
investigated as a source of higher order intelligence and
fast acquisition of knowledge (S. Schaal, 1999). Recorded
human motions have been a good means for teaching
various movements. Through some statistical analysis on
human motions, Mataric and colleagues have designed the
automated derivation method of kinematic-level primi-
tives and used it to classify movement and reconstruct
the original movement (A. Fod et al., 2002). Park and
colleagues appended the inverse dynamics-based optimiza-
tion to Matarics reconstruction algorithm for generating
diverse movement of robot (B. Lim et al., 2005). Their
optimization method is not good enough in computa-
tion efficiency so that it may not be suitable in online
robot motion programming. Nakanishi et al. developed the
methods of deriving robust imitation of joint trajectories
using dynamical movement primitives based on non-linear
oscillators (J. Nakanishi et al., 2004).

The goal of this paper is to develop a framework that
helps a humanoid robot to learn human-like motions us-
ing a movement primitive database, which is advanced
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Fig. 1. The overall procedure of motion generation

with an imitation learning process. The following sec-
tion introduces the motion generation based on principal
components analysis. Section 3 then describes proposed
framework of learning process for a humanoid robot using
Evolutionary Algorithm. For a Sec. 4, the simulation of
catching a ball is performed, showing the feasibility of the
proposed framework.

2. PCA-BASED MOTION GENERATION

Beyond all things, this section is described for the motion
generation in the proposed imitation learning, which uses
the principal components analysis. It consists of using the
optimization and linear interpolation. One is utilized in the
genetic operator which is the core factor in the proposed
imitation learning.(will be explained in Sec. 3.1) The other
is utilized in the online motion generation.

To generate the motion database for a given task, we first
capture human motions with various conditions during the
performing of the task. We call the joint trajectories of
such motions stored in the database as movement primi-
tives (see Fig. 1). The inverse kinematics solver based on
optimization in (B. Lim et al., 2005) is used to obtain
the joint trajectories from the marker trajectories of the
motion capture system. It should be noticed that such
movement primitives seem to have not only kinematics
information of the human but also be dynamically consis-
tent and optimized, since they are generated by the human
behaviors based on the several years of experiences.

For a given task like catching a ball that will be discussed
later as an example, we need to define the conditions for
the task. In this case, the conditions are the ball positions
caught in the air. For the given task with various condi-
tions like NC different ball positions, we find NC move-
ment primitives and conditions. When a condition like
an arbitrary ball position is given, p movement primitives
in the database are selected using the distance difference
between the conditions in database and the given condi-
tion. The principal components analysis (PCA) on these
selected p movement primitives is performed and the most
dominant few principal components are obtained. Subse-
quently, these principal components are used as bases for
interpolation and optimization to generate new humanlike
motions with minimal torques. We call this procedure the
movement compiler as shown in Fig.1.

2.1 Movement Compiler via Interpolation

When a condition (in the example, a ball catching po-
sition) is given, it corresponds to the joint positions of
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a robot arm. Satisfying these final positions, the joint
trajectories of the arm need to be determined. The method
devised by (A. Fod et al., 2002) and (T. D. Sanger, 2000)
is employed to do this. Using principal components of the
selected p movement primitives for the given condition,
each of the arm joints is given in terms of the mean
trajectory, the first three dominant principal components,
and an unknown constant as fOIIOWS'

+ Z Ty me

where ¢(t) is the joint traJectory, Gmean(t) 1s the mean
trajectory obtained from N captured human motions,
dpe; (t) is the i-th most dominant principal component,
and z;(i = 1,2,3) are the scalar weighting coefficient. x4
denotes an unknown constant to represent a remaining
error term. As the condition (a set of initial and final joint
positions and velocities) is given as

we can solve these four linear equations for the three
unknowns, z;(i = 1,2, 3).

q(t) = Qmean + Ty (1)

A humanoid robot can then generate the desired motion
that satisfies the given condition. It is noticed that the
bases, principal components in Eq.(1), may play a key role
to characterize the motion. The motion can not only looks
like human’s but also needs possibly minimal torque, if
the motions in the database are optimized to minimize
torque and the principal components of such motions are
used in Eq.(1). It is therefore important how to update the
motion database. We employ the concept of Evolutionary
Algorithm to update the database, requiring minimal
torques at the joints and maintaining human-likeness for
a certain condition. The following section describes this
optimization problem.

2.2 Movement Compiler via Optimization

This subsection describes the strategy of dynamics-based
optimization using PCA in (B. Lim et al., 2005). In addi-
tion to Eq.(1), one more principal component is introduced
to make an optimization problem to minimize the joint
torques as

Q(t) + Z Ty Qpc

where x5 is defined due to the same reason as x4 in Eq.(1).

+ x5 (3)

= qmean

The equations of motion for the humanoid robot, which is
modeled as a set of coupled rigid bodies, are given as
M(q)i+ Clq,9)q+ N(g,q) =7 (4)
where M (q) € R™*™ is the mass matrix, C(q, ¢) € R™*"
is the coriolis matrix, N(q,¢) € R" includes gravity and
other forces, and 7 is the joint torque vector. n is the

degrees of freedom of the robot. For the optimization
problem, we minimize the torques as

1Y 2
win g [ ra..0)Pds (5)
x to

subject to Eq.(4) and the boundary conditions in Eq.(2).
More details on this formulation are referred to (S.Lee
et al., 2005 and J.E. Bobrow et al., 2001). Though this
procedure requires somewhat computational efforts, the
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Fig. 2. The overall process of the proposed imitation
learning

subsequent optimal motion is reflective of dynamic feature
of the humanoid robot and also closely resembles the
captured human movements as well. This problem will
be resolved to update the human motion database by im-
posing the dynamics characteristics of the robot (actually
minimal torques).

3. IMITATION LEARNING USING EA

This section describes the framework to update the motion
database, which is initially full of only captured human
motions, using an Evolutionary Algorithm.

When a humanoid robot wants to move its arm to do such
motions as grasping a cup on the table or catching a ball in
the air, it should generate the joint trajectories to reach its
arm to the target conditions like a cup position or a ball
catching position. These target conditions are arbitrary
such that the robot needs to generate the appropriate
joint motions that look like human’s motions and require
minimal torques. For this reason, the paper introduces a
framework of learning to imitate a human motion for a
given task.

The proposed framework of imitation learning is divided
into the two parts as seen in Fig.2: the offline and the
online process. The offline process updates the motion
database considering minimal torques and using Evo-
lutionary Algorithm. The online process then uses this
database to generate the human-like movement in real
time for performing a given task.

3.1 Offline Process : imitation learning

For a task like catching a ball or grasping a cup, this
process updates the database, which is initially full of only
human captured motions that are recorded as many times
as possible using a motion capture system or others. There
are several reasons to update the database. One is that it
may be hard to obtain all the necessary motions from a
human for doing the given task. Therefore, the database
needs to be enriched to make up the motions that are
not recorded from the human. Secondly there are needs
for involving the dynamics characteristics of a humanoid
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Fig. 3. The overall offline process

robot, which is to require minimal torques. The other one
is to maintain human-likeness in movement.

Due to the reasons above, the paper uses an Evolutionary
Algorithm(EA) to deal with optimizing the database, not
a single objective function. Evolutionary Algorithm(EA)s
are a family of optimization and searching techniques
inspired by the Darwin’s Theory of Evolution (A.E. Eiben
et al., 2003). EA is known to be proper not only to
get a single candidate solution but to obtain a whole
collection of candidate solutions simultaneously like our
motion database.

Figure3 shows the overall procedure of the imitation
learning in the offline part. We explain the procedure in
sequence.

1) Initialization : We use the captured human motions data
as an original movement primitive database. As population
is the collection of candidate solutions(movement primi-
tives), so-called individuals. Because a movement primitive
is vector time series data of joint angle, the individual is
represented by real-value vectors.

2) Parent : Parents are the collection of movements, which
denotes to the movement primitive database. An initial
parent uses the original movement primitive database. The
role of next generation parent selection is to distinguish
among individuals based on their quality, in particular, to
allow the better individuals to become new parents for the
next generation. In the problem of motion generation, such
a conditions as initial joint angle, final joint angle, joint an-
gular velocity vary according to intrinsic characteristic. So
it is hard to define a general metric of quality. Therefore,
before parent selection, we create a set of conditions that
has a strong likelihood of happening in online stage. This
set of conditions is used repeatedly in the subsequent evo-
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lution process, the learned movement primitive database
that is the output of our learning system is full of optimal
motions with respect to the set of conditions.

3) Genetic Operator : Genetic Operator is the core factor

procedure in EA. This is the variation operator to create
new individuals from old ones. This operation is fully
conducted by movement compiler via optimization with
respect to a set of conditions given in parent selection
component. For instance, assuming that we need the mo-
tion satisfying one condition, then we select n movement
primitives which are analogous to the condition from a
movement primitive database. The analogousness is de-
termined by a suitable distance metric, e.g. the distance
for position vector condition. Using then the movement
compiler via optimization, we get the resultant movement
satisfying the condition. The above procedure is performed
for the all conditions, e.g. if the number of condition is ,
we can acquire resultant movement primitives.

4) Offspring : As the result of Genetic Operator procedure,
there are as many movements as the number of condition,
so-called ’offspring’. For each generation, we can require
movements, having a same end-position, because of setting
the same conditions for it.

5) Survivor Selection : Now, we have to select survivor
among offspring and parent based on their quality. The one
cycle of EA is called a generation. The survivor becomes
the individual for the next generation as the environmental
pressure causes natural selection in nature. We choose
the sum of torque needed to operate the movement as a
quality criterion, so we intend to gradually improve the
movement primitive database into inverse dynamics-based
optimal data set. The fitness function to be minimized is
defined as Eq.(5). The joint torque vector is calculated by
robot inverse dynamics theory, given the joint trajectory
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Fig. 6. The motion capture system

vector. we then discard the wrong offspring that a joint
trajectories exceed the allowable limit of robot.

6) Repeating : The above procedure is repeated until
the total number of fitness evaluations reaches a given
limit. As the evolution processes, the individuals lose
the characteristics of human motions more and become
adapted to the physical feature of the robot. So, for
the purpose of the harmony of two characters, a proper
number of generations of evolution have to be chosen.

8.2 Online Process : real-time motion generation

In this online process, the humanoid robot can generate an
arbitrary motion in real time satisfying a desired motion,
which can be done using the resultant of learning process.
The motion generation by the humanoid is accomplished
using 'the movement compiler via interpolation’. Although
the result robot motion is just mathematically interpo-
lated, its basis functions are based on human motions ini-
tially and reflect the dynamic property of robotic system.
So we regard it as natural looking and pseudo-optimal
robot movement.

4. SIMULATION : CATCHING A BALL

In this section, we show the performance of proposed
imitation learning method in application of learning the
task to catch a ball by humanoid robot that are called
"Mahru I’ and developed by KIST (B. J. You et al., 2005).
When someone throws a ball to a robot, it has to generate
within a short time catching motion of 7 d.o.f. serial
manipulator of waist and right arm. Actually, for robot to
catch a ball, it has to get ability to estimate the trajectory
of a flying ball, to stretch out its arm to a prospective
falling point and to grasp the ball. Nevertheless, since our
interest is the human-like motion generation, we focus on
how it stretches out its arm. We assume that the estimated
falling point of a ball is given.

4.1 Motion Capture and FEztracting Basis Functions

A man executes the motion of catching a ball 311 times
with various falling point of a ball.(see Fig.6) He use only
right arm and waist and do not walk or stride. The princi-
pal components and observation sequences are calculated
from joint angle trajectories of the 10 movements as shown
in Fig.4.

4.2 Conditions and Distance Metric

A set of 300 conditions is randomly created. Each condi-
tion contains the information of final joint angle, velocity
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Fig. 7. Front and side view for comparison of catching
motion in terms of 1th generation (the upper snap-
shots) and 10th generation(the lower snapshots) of
movement primitive database while evolving
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Fig. 8. The joint angles of the movement in the 10th
generation (red solid line) and 1th generation (black
dashed line) database. Each graph is present for right
arm joint (3 shoulder, 1 elbow, 2 wrist) from upper to
lower, respectively

and final position and rotation of right hand, i.e. the trunk
and right arm posture when a robot catches a ball. As a
matter of course, the movement in the database has its own
condition. The similarity between them is determined by

d(ci, ¢5) = wi|lps — pil| + wa| | R Ry|| (6)
where (R;,p;) is the homogenous transformation matrix
of ¢;, and w; is a scalar weighting coefficient. In here, we
choose the movement primitives within a 15¢m radius. In
this instance, due to the orientation in catching a ball is
almost equal for the movements within regular distance,
we consider only the position.

4.8 Survivor Selection
For both human'’s property and robot’s property (minimized

torque) are reflected in the generated movement, we choice
to survive the original movement primitive database(initial
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Fig. 9. Front view for comparison of catching motion
in terms of 10th generation of movement primitive
database (the upper snap shots: interpolation, the
lower snap shots: optimization)
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parent) for the any generation. Therefore, the any genera-
tion consists of the original movement primitive database
and the survived offspring.

4.4 Learned Movement Primitive Database

Our movement primitive database evolves 9 times from
motion capture data to learned movements. It takes nine
hours at Pentium IV computer with 2GB ram. We imple-
ment evolutionary algorithm using C++. DONLP2 library
is used for local optimization at our genetic operator,
which is a nonlinear optimizer library and implements
sequential equality constrained quadratic programming
method (P. Spelluccui, DONLP2-INTV-DYN). Through
survivor selection, the movement primitive database is
updated gradually by replacing old ones with better off-
spring. Consequently, the average of required torque at
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each generation of evolution becomes smaller (see Fig.5).
It shows that the joint angle patterns in database become
optimal motions with the dynamic properties being fully
reflected. The resulting motions are shown in Fig.7 and 8.
The sum of require torque at all joint of the motion at 10th
generation of evolution is 275.889N - m and it is smaller
than 370.088N - m, that of the motion at 1th generation.
It shows that our learning method may work well with
respect to inverse dynamics-optimization.

4.5 Online Motion Generation

Now, we can generate arbitrary motions using learned
movement primitive database if the condition of the target
motion is not largely different from a set of conditions
used in learning system. The comparison motion generated
by pure interpolation with one database by optimization
using the output database of learning system is shown
in Fig.9 and 10. As the learned database is sufficiently
optimal, we can get human-like (meaning the robot’s own
dynamic property is considered) motions through simple
mathematical calculation such as PCA and interpolation.
As shown in Fig.10, the joint trajectory of motion by
mathematical interpolation is similar to the result motion
by dynamics-based optimization and has the main char-
acteristics of the result motion by dynamics-based opti-
mization. So we can generate pseudo-optimal motions, i.e.
similar motions to optimized result without computational
optimization process.

5. SUMMARY AND DISCUSSION

This paper has presented a methodology for evolving
movement primitive database that enables a humanoid
robot to imitate human motions as a human learns new
motions and do them. Raibert mentioned that human’s
motion learning ability is based on the capacity for stor-
age and retrieval of a great variety of optimal movement
patterns.(M. Raibert et al., 1978) Similarly, our approach
is divided into two processes: (1) the offline process for
building motion database through the proposed learning
procedure and (2) the online process to generate the
motions in real time using the database. In the offline
process, we update the movement primitive database using
the proposed learning procedure with Evolutionary Algo-
rithm, minimizing joint torques. In the online process, we
generate a desired motion in real time by simply interpo-
lating the principal components obtained from the learned
movement primitive database.

We are planning to extend our methodology to include
more complex motions and full-body motions in the future.
It was observed that some motions from the proposed
framework were not good enough to behave like human
or violated some of the joint limits. For resolving this, we
would like to consider joint limits, self-collision prevention
and so on in the online process.

This work was supported by the IT R&D program of
MIC/IITA. [2006-S028-01, Development of Cooperative
Network-based Humanoids Technology].
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