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Abstract: In this paper, a stochastic robust Kalman filtering problem is investigated for time-
varying linear systems with stochastic uncertainties in its measurement matrix. The influence
of parametric uncertainties on the nominal Kalman filter estimate is analyzed in the sense of
classical weighted least-squares criterion. Stochastic approximation of estimation errors due to
uncertainties allows us to obtain a recursive stochastic robust Kalman filter. The procedure of the
stochastic error compensation is interpreted as the optimization of an indefinite quadratic cost.
Considering the single stage estimation problem, the stochastic robust Kalman filter recursion
is derived. As well, its existence condition is recursively checked using the estimation error
covariance. It is shown that the weighted estimation error of the suggested filter is zero mean,
which is the distinct property compared to the previous robust filters.

1. INTRODUCTION

In practice, the system modeling required to design the
Kalman filter may be based on limited information. While
the Kalman filter is somewhat insensitive to cost function
variations and to the imperfect knowledge of a priori noise
statistics(Morris [1976]), many researchers have pointed
out that inherent uncertainties contained in an available
system model might lead to unacceptable estimation per-
formance or even cause divergence of the conventional
Kalman filter (Fitzgerald [1971], Toda et al. [1980]). To
cope with these problems, the robust Kalman filtering
problem has been received much attention during the last
decade. In general, the existing robust Kalman filtering
algorithms aim to guarantee the upper bound of estima-
tion error variances against the parametric uncertainties
(Petersen et al. [1996], Theodor et al. [1996]). Therefore,
they can effectively relax the standing assumption on the
perfect system model which is necessary for the standard
Kalman filter.

In most cases, the deterministic descriptions on the para-
metric uncertainties such as norm-bounded constraint,
polytopic constraint, and sum quadratic constraint(SQC)
(Xie et al. [1994], Geromel et al. [1998], Savkin et al. [1998],
Ra et al. [2004]) have been adopted to make the robust
Kalman filtering problem tractable. The resulting robust
filters provided robustness against all available uncertain-
ties. Despite of its validity, the conservatism of robust
filters based on the deterministic uncertainty model has
blocked the use of the robust Kalman filter in actual appli-
cations. In particular, there are many applications whose
system model is constructed by the measured information.
Therefore, as a natural way to solve the conservatism issue,
the a priori knowledge on stochastic uncertainties has
been taken into account (Wang et al. [2002], Yang et al.
[2002]). However, these stochastic robust Kalman filters

might be restricted to the systems whose multiplicative
measurement noises are correlated with the additive one.
Furthermore, they require substantial computations.

Recently, as a substitute of existing robust Kalman fil-
ters, we have been investigated the recursive robust least
squares (RLS) problem (Ra et al. [2007]). In this work, the
single tone frequency estimation from noisy sinusoid was
instanced as one of the RLS problems. To solve the RLS
problem, the error analysis of the nominal least squares
(LS) caused by the multiplicative measurement noises were
carried out. It has been shown that the stochastic approx-
imation of the LS estimation errors could be successfully
applied to the robust filtering problem. It was concluded
that the weighted error of RLS estimate become zero-
mean, hence it is not conservative. This stochastic prop-
erty distinguishes the RLS estimator from the previous
robust Kalman filters. However, since it cannot reflect the
additive noise variances on the filtering equations, it may
not be applicable for the non-stationary additive noise
cases.

This flaw motivates us to develop a novel stochastic robust
Kalman filter which evolves the RLS estimation scheme
in Ra et al. [2007]. To enjoy the benefit of computa-
tional efficiency and structural degree of freedom, the
robust Kalman filtering problem for the system with multi-
plicative measurement noises are reformulated within the
framework of weighted LS (WLS) estimation. Then, the
robust WLS (RWLS) estimation problem could be reduced
to the error compensation problem of the nominal WLS
estimator in the presence of multiplicative noises. It is also
shown that the proposed RWLS estimation scheme could
be reinterpreted as the minimization of a certain indefinite
quadratic cost function. In consequence, by solving the
single state stochastic optimization problem, the recursive
stochastic robust filter recursion and its existence condi-
tion are derived.
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2. LEAST SQUARES ESTIMATION FOR
UNCERTAIN LINEAR SYSTEMS

The Kalman filter has been referred as a optimal estimator
in the sense of weighted least squares (WLS) estimation.
Hence, the basic concept of the stochastic robust Kalman
filtering could be readily explained by addressing and solv-
ing the robust weighted least squares (RWLS) estimation
problem.

2.1 Weighted least squares criterion

Consider the following vectorial measurement equation.

y = Hx + v = [H̃ −∆H]x + v (1)
where x ∈ Rn is the vector should be estimated, y ∈ Rm

is the measurement vector and v ∈ Rm is the zero-
mean white additive measurement noise. The available
measurement matrix H̃ ∈ Rm×n can be represented as
the sum of the unknown noise-free measurement matrix
H and the stochastic uncertainty ∆H consisting of several
zero-mean white noise sources, namely H̃ = H+∆H. It is
also assumed that the following a priori statistics is given
for state estimation.

E{v} = 0, E{vvT } = R, E{∆H} = 0,

E{∆HTR−1∆H} = W, E{∆HTR−1v} = V
(2)

Remark 2.1. At this point, it should be noted that, in
our problem formulation, the measurement vector y is
generated by the noise-free measurement matrix H and is
contaminated by the additive measurement noise v. This is
same as the setting of standard Kalman filtering problem.

However, if the noise corrupted measurement matrix H̃
is only available for state estimation, the measurement
equation can be understood in a different aspect. That
is, the given measurement equation is rewritten as

y = [H̃ −∆H]x + v (3)
Thus, in (3), ∆H is regarded as a stochastic parametric un-
certainty or multiplicative measurement noise. Moreover,
it is obvious that the available noisy measurement matrix
H̃ is not deterministic and correlated with ∆H.

On the other hand, in the previous robust Kalman filtering
problem, the measurement vector y is made by not the
noise-free measurement matrix H but the noisy measure-
ment matrix H̃ containing parametric uncertainty ∆H.

y = [H+ ∆H]x + v (4)
In the above equation, the given measurement matrix H
is deterministic and is uncorrelated with ∆H. Therefore,
the robust Kalman filtering problem associated with (3) is
totally different from that related to (4).

Problem 2.1. (Optimal WLS Criterion) If the vector x̄ =
E{x}, the noise free measurement matrix H and the
weighting matrices Q > 0,R > 0 are given, the opti-
mal weighted least squares(OWLS) estimation problem is
defined as the minimization of the following regularized
quadratic cost.

JOWLS = Ja
OWLS + Jb

OWLS (5)

where

Ja
OWLS ,

1
2
(x− x̄)TQ−1(x− x̄)

Jb
OWLS ,

1
2
(y −Hx)TR−1(y −Hx)

(6)

�

From the above regularized cost function, one can consider
an equivalent WLS estimation problem for the augmented
measurement equation of the form.

ȳ = H̄x + v̄ =
[

˜̄H−∆H̄
]
x + v̄ (7)

where

ȳ ,

[
x̄
y

]
, H̄ ,

[
I
H

]
, ˜̄H ,

[
I

H̃

]
, ∆H̄ ,

[
0

∆H

]
v̄ ,

[
x̄− x

v

]
, E{v̄} = 0, R̄ , cov〈v̄, v̄〉 =

[
Q 0
0 R

]
For notational convenience, the cost function JOWLS can
be rewritten as

JOWLS =
1
2
(ȳ − H̄x)T R̄−1(ȳ − H̄x) (8)

If the noise-free measurement matrix H is given, it is
straightforward to derive the optimal solution satisfying
the above mentioned OWLS criterion.

Lemma 2.1. (Optimal WLS Solution) From the stationary
condition derived by the first differentiation of (5) with
respected to x

∂JOWLS

∂x
= −H̄T R̄−1(ȳ − H̄x) = 0, (9)

one can obtain the OWLS estimate as follows:

x̂OWLS =
(
H̄T R̄−1H̄

)−1 H̄T R̄−1ȳ (10)

=
(
Q−1 +HTR−1H

)−1 (
Q−1x̄ +HTR−1y

)
= x̄ +

(
Q−1 +HTR−1H

)−1HTR−1
(
y −HT x̄

)
.

The OWLS estimate (10) exists if and only if
∂2JOWLS

∂x2
= H̄T R̄−1H̄ = Q−1 +HTR−1H > 0. (11)

�

The noise-free measurement matrix H required to define
the OWLS solution would not be available in many actual
applications. In those cases, the estimate is inevitably
constructed by given matrix H̃ and it is commonly called
the nominal WLS estimate.

Lemma 2.2. (Nominal WLS Solution) Replacing H with
H̃ in (10) gives us the nominal WLS estimate.

x̂WLS =
(

˜̄H
T
R̄−1 ˜̄H

)−1 ˜̄H
T
R̄−1ȳ (12)

=
(
Q−1 + H̃TR−1H̃

)−1 (
Q−1x̄ + H̃TR−1y

)
= x̄ +

(
Q−1 + H̃TR−1H̃

)−1

H̃TR−1
(
y − H̃T x̄

)
The existence condition of the nominal WLS estimate is
given by

˜̄H
T
R̄−1 ˜̄H = Q−1 + H̃TR−1H̃ > 0 (13)

�
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It is obvious that the above nominal WLS estimate pro-
vides erroneous result in the presence of the multiplicative
measurement noise ∆H. The quantitative analysis will
unveil the characteristics of these estimation errors.

Lemma 2.3. (Error Properties of Nominal WLS Solution)
Using the measurement vector (1), the WLS estimate (12)
can be rewritten by

x̂WLS =
(

˜̄H
T
R̄−1 ˜̄H

)−1 ˜̄H
T ˜̄R

−1(
[ ˜̄H−∆H̄]x + v̄

)
, (I − α) x + β

(14)

From (14), it becomes clear that the nominal WLS esti-
mate contains the scale-factor error α and the bias error
β.

α ,
(

˜̄H
T
R̄−1 ˜̄H

)−1 ˜̄H
T
R̄−1∆H̄ (15)

=
(
Q−1 + H̃TR−1H̃

)−1

H̃TR−1∆H

β ,
(

˜̄H
T
R̄−1 ˜̄H

)−1 ˜̄H
T
R̄−1v̄ (16)

=
(
Q−1 + H̃TR−1H̃

)−1 (
Q−1(x̄− x) + H̃TR−1∆H

)
�

As shown in Lemma 2.3, the scale-factor error in the
nominal WLS solution occurs due to ∆H itself. Similarly,
the correlation between the multiplicative measurement
noise ∆H and the additive measurement noise v generates
the bias error.

2.2 Robust weighted least squares estimation based on
stochastic approximation

The RWLS estimation strategy to be suggested is strongly
motivated from the fact that the nominal WLS solution
could be sensitive to the multiplicative measurement noise
∆H which frequently appears in actual applications.

Proposition 2.1. (Approximation of Nominal WLS Esti-
mation Errors) Considering a large ensemble average of
∆H will make sense the following approximation.(

˜̄H
T
R̄−1 ˜̄H

)
α≈E

{
˜̄H

T
R̄−1∆H̄

}
= W (17)(

˜̄H
T
R̄−1 ˜̄H

)
β ≈E

{
˜̄H

T
R̄−1v̄

}
= V (18)

Then the scale-factor and bias errors of the nominal
WLS solution can be successfully approximated without
knowing the multiplicative measurement noise ∆H.

α̂ ,
(

˜̄H
T
R̄−1 ˜̄H

)−1

W =
(
Q−1 + H̃TR−1H̃

)−1

W (19)

β̂ ,
(

˜̄H
T
R̄−1 ˜̄H

)−1

V =
(
Q−1 + H̃TR−1H̃

)−1

V (20)
�

Combining the nominal WLS estimate and error com-
pensating terms (19) and (20), one can derive a RWLS
solution.

Proposition 2.2. (RWLS Solution) Under the assumption
that the nominal WLS solution always exists, from the

form of WLS estimation errors (14), one gets the RWLS
solution.

x̂RWLS , (I − α̂)−1
(
x̂WLS − β̂

)
=

(
˜̄H

T
R̄−1 ˜̄H−W

)−1( ˜̄H
T
R̄−1ȳ − V

)
= P

(
Q−1x̄ + H̃TR−1y − V

)
= (I+PW ) x̄ + PH̃TR−1(y − H̃x̄)−PV

(21)

where the Gramian matrix P is

P ,
(

˜̄H
T
R̄−1 ˜̄H−W

)−1

=
(
Q−1+H̃TR−1H̃−W

)−1

(22)

�

Eq. (22) implies that the Gramian matrix P must be
invertible to ensure the existence of the RWLS solution
(21).

Lemma 2.4. (Existence of RWLS Solution) The RWLS
solution exists if P > 0.

�

Proof. Recalling the fact that the proposed RWLS so-
lution is derived from the nominal WLS solution, the
existence condition of the nominal WLS solution should be
checked together with the nonsingularity of the Gramian
matrix P. Since one can assume that W ≥ 0 without loss
of generality, if the Gramian matrix P is positive definite,
the following result can be obtained.

P−1 > 0 → Q−1 + H̃TR−1H̃ > W ≥ 0 (23)
Therefore, the positive definiteness of P is a sufficient
condition for the existence of the nominal WLS solution
as well as the proposed RWLS solution.

�

Different from the existing robust filters, the proposed
RWLS estimation scheme provides unique stochastic prop-
erty.

Lemma 2.5. (Unbiasedness of Weighted RWLS Estimate)
The weighted RWLS estimation error is zero mean.

E
{
P−1 (x̂RWLS − x)

}
= 0 (24)

�
Proof. It is straightforward to prove the unbiasedness of
weighted RWLS estimate. Substituting (1) into (21) results
in

P−1 (x̂RWLS−x)=− ˜̄H
T
R̄−1∆H̄x+ ˜̄H

T
R̄−1v̄ − V +Wx.

Taking expectation for both sides, one can obtain the
desired result.

�

3. STOCHASTIC ROBUST KALMAN FILTERING

3.1 Reformulation of RWLS estimation problem

Now, an alternative viewpoint to the proposed RWLS
solution is introduced. The RWLS solution derived by
using the stochastic error compensation could be regarded
as the unique minimizing solution of a certain indefinite
quadratic cost function.
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Recall the cost function (8) of the optimal WLS problem
in Lemma 2.1 and decompose it as follows:

JOWLS = Ja
OWLS + Jb1

OWLS + Jb2
OWLS (25)

where

Jb1
OWLS ,

1
2
(ȳ− ˜̄Hx)TR̄−1(ȳ− ˜̄Hx)

Jb2
OWLS ,

1
2
(∆H̄x)TR̄−1(ȳ− ˜̄Hx)+

1
2
(ȳ− ˜̄Hx)TR̄−1(∆H̄x)

+
1
2
(∆H̄x)TR̄−1(∆H̄x)

Taking expectation for the second term gives us the
approximated cost function.

ĴOWLS = Ja
OWLS + Jb1

OWLS + E{Jb2
OWLS} (26)

=
1
2

([
ȳ
0

]
−

[ ˜̄H
−I

]
x

)T [
R̄−1 0

0 −W

]([
ȳ
0

]
−

[ ˜̄H
−I

]
x

)
+

1
2

(
xT V + V T x

)
It is noteworthy that the resultant quadratic cost function
is not positive or negative definite but indefinite. Hence,
the problem is to find the saddle point of the given
indefinite cost. Differentiating the above indefinite cost
yields the stationarizing condition.

∂ĴOWLS

∂x
=−

(
˜̄H

T
R̄−1(ȳ− ˜̄Hx)+Wx

)
+V =0 (27)

From the above stationarizing condition, one gets the
same estimate with the RWLS solution (21). If the second
differentiation of ĴOWLS at the stationarizing point is
positive definite, it becomes the unique minimum of the
indefinite cost function ĴOWLS .

∂2ĴOWLS

∂x2
=

(
˜̄H

T
R̄−1 ˜̄H−W

)
= P−1 > 0 (28)

This minimum condition exactly coincides with the exis-
tence condition in Lemma 2.4 required to derive the RWLS
solution using stochastic approximation. Accordingly, the
cost function JRWLS of the proposed RWLS estimation
scheme is equivalent to the approximated optimal WLS
criterion ĴOWLS .

Problem 3.1. (RWLS Criterion) The RWLS estimate is
the minimizing solution of the indefinite quadratic cost
(26). That is,

JRWLS , ĴOWLS (29)

3.2 Stochastic robust Kalman filter recursion

Let’s consider the linear time-varying uncertain system
which contains the multiplicative noise ∆Hk.{

xk+1 = Fkxk + Gkuk

yk = Hkxk + vk = [H̃k −∆Hk]xk + vk
(30)

In the above state-space realization, with the initial guess
x̂0|−1 and its estimation error x̃0|−1 = x0− x̂0|−1, the zero-
mean white noises uk and vk satisfies

cov〈

[
x̃0|−1

uk

vk

]
,

[
x̃0|−1

uj

vj

]
〉 =

P0|−1 0

0
[
Qk 0
0 Rk

]
δkj

 . (31)

where δkj means the Dirac-delta function.

In addition, it is assumed that the noisy measurement
matrix H̃k and the statistics on the unknown variable ∆Hk

are given for the Kalman filtering.

E{∆HT
k R−1

k ∆Hk} = Wk,

E{∆HT
k uk} = 0, E{∆HT

k vk} = Vk

(32)

If the a posteriori estimate x̂k|k is given at k, , it is well-
known that, in the context of the stochastic optimization
in Bryson et al. [1975], the standard Kalman filtering
problem is defined as a single-stage minimization problem
of

JKF = ‖xk − x̂k|k‖2P−1
k|k

+ ‖uk‖2Q−1
k

+‖yk+1 − [H̃k+1 −∆Hk+1]xk+1‖2R−1
k+1

= Ja
KF + Jb1

KF + Jb2
KF

(33)

where

Ja
KF = ‖xk − x̂k|k‖2P−1

k|k
+ ‖uk‖2Q−1

k

Jb1
KF = ‖yk+1−H̃k+1xk+1‖2R−1

k+1

Jb2
KF = ‖yk+1−[H̃k+1−∆Hk+1]xk+1‖2R−1

k+1
−Jb1

KF

According to the observation in Problem 3.1, we are able
to set the cost function of a stochastic robust Kalman
filtering.

JSRKF = ĴKF = Ja
KF + Jb1

KF + E{Jb2
KF }

=
∥∥∥∥[

xk − x̂k|k
uk

]∥∥∥∥2

P−1
k|k⊕ Q−1

k

+
∥∥∥∥[

yk+1

0

]
−

[
H̃k+1

I

]
xk+1

∥∥∥∥2

R−1
k+1⊕−Wk+1

+ xT
k+1Vk+1 + V T

k+1xk+1

(34)

Theorem 3.1. (Stochastic Robust Kalman Filter Recur-
sion) For linear time-varying systems (30) with multi-
plicative measurement noise ∆Hk and the additive noises
uk and vk, the stationarizing solution of the indefinite
quadratic cost function JSRKF is recursively computed by
the following formulas.
(measurement update):

x̂k|k =
(
I + Pk|kWk

)
x̂k|k−1

+ Pk|kH̃T
k R−1

k

(
yk − H̃kx̂k|k−1

)
− Pk|kVk

P−1
k|k = P−1

k|k−1 + H̃T
k R−1

k H̃k −Wk

(35)

(time update):

x̂k+1|k = Fkx̂k|k
Pk+1|k = FkPk|kFT

k + GkQkGT
k

(36)

�

Proof. Using the state-space equation (30) describing the
given system, JSRKF can be rewritten as

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12549



JSRKF =
∥∥∥∥[

xk − x̂k|k
uk

]∥∥∥∥2

P−1
k|k⊕ Q−1

k

(37)

+
∥∥∥∥[

yk+1

0

]
−

[
H̃k+1 [Fk Gk]

I

][
xk

uk

]∥∥∥∥2

R−1
k+1⊕−W

′
k+1

+
[
xk

uk

]T

[Fk Gk]T Vk+1+V T
k+1 [Fk Gk]

[
xk

uk

]
where

W
′

k+1 , [Fk Gk]T Wk+1 [Fk Gk]
Comparing (37) with (26) yields the following correspon-
dences.

x 7→
[
xk

uk

]
, x̄ 7→

[
x̂k|k
0

]
, y 7→ yk+1

H̃ 7→ H̃k+1 [Fk Gk] ,Q 7→
[
Pk|k 0
0 Qk

]
,R 7→ Rk+1,

W 7→ W
′

k+1, V 7→ [Fk Gk]T Vk+1

(38)

Substituting the above relation for the RWLS solution (21)
results in

P−1

[
x̂k|k+1

ûk|k+1

]
(39)

=
[
P−1

k|k 0
0 Q−1

k

][
x̂k|k
0

]
+

[
FT

k

GT
k

]
H̃T

k+1R
−1
k+1yk+1−

[
FT

k

GT
k

]
Vk+1

where, by definitions of (2) and (22),

P−1 =
[
P−1

k|k 0
0 Q−1

k

]
+

[
FT

k

GT
k

](
H̃T

k+1R
−1
k+1H̃k+1−Wk+1

)
[Fk Gk]

(40)
At this point, it is helpful for further argument to define
the a posteriori estimate at k + 1 using interim variables
x̂k|k+1 and ûk|k+1.

x̂k+1|k+1 , Fkx̂k|k+1 + Gkûk|k+1 (41)
Then (39) can be simplified as follows:[

x̂k|k+1−x̂k|k
ûk|k+1

]
=

[
Pk|k 0
0 Qk

][
FT

k

GT
k

]
× (42)([

H̃T
k+1R

−1
k−1 Wk+1

] [
yk+1−H̃k+1x̂k+1|k+1

x̂k+1|k+1

]
− Vk+1

)
Inserting x̂k|k+1 and ûk|k+1 in (42) into (41) yields
x̂k+1|k+1 = x̂k+1|k (43)

+ Pk+1|kH̃T
k+1R

−1
k+1(yk+1 − H̃k+1x̂k+1|k+1)

+ Pk+1|kWk+1x̂k+1|k+1 − Pk+1|kVk+1

=
(
I + Pk+1|k(H̃T

k+1R
−1
k+1H̃k+1 −Wk+1)

)−1

×(
x̂k+1|k + Pk+1|kH̃T

k+1R
−1
k+1yk+1 − Pk+1|kVk+1

)
where the a priori estimate x̂k+1|k and its error covariance
Pk+1|k are

x̂k+1|k = Fkx̂k|k, (44)

Pk+1|k = FkPk|kFT
k + GkQkGT

k . (45)
As a result, these equations constitute time-update equa-
tions of the proposed filter.

Defining the a posteriori estimation error covariance
P−1

k+1|k+1 = P−1
k+1|k + H̃T

k+1R
−1
k+1H̃k+1 −Wk+1, (46)

after simple matrix manipulations, one gets the measure-
ment update equation .

x̂k+1|k+1 =
(
I + Pk+1|k+1Wk+1

)
x̂k+1|k (47)

+ Pk+1|k+1H̃
T
k+1R

−1
k+1

(
yk+1 − H̃k+1x̂k+1|k

)
− Pk+1|k+1Vk+1

This is the end of proof. �

Theorem 3.2. (Existence Condition of the Stochastic Ro-
bust Kalman Filter) If P0|−1 > 0, Qk > 0, Rk is invertible
and [Fk Gk] has full rank, then the stochastic robust
Kalman filter estimates minimizes the indefinite quadratic
cost function if and only if

P−1
k|k = P−1

k|k−1 + H̃T
k R−1

k H̃k −Wk > 0. (48)

�

Proof. If the symmetric matrix Wk+1 can be decomposed
by Wk+1 = ET

k+1Ek+1, from (28) and (40), the unique
minimum of the indefinite quadratic cost JRWS is exists if
and only if

P−1 = Rz −RzyR−1
y Ryz > 0 (49)

where

Rz =
[
P−1

k|k 0
0 Q−1

k

]
, Ry = −

[
Rk+1 0

0 −I

]
,

Ryz = RT
zy =

[
Hk+1

Ek+1

]
[Fk Gk]

According to the Sylvester’s law, the above inequality
condition is equivalent to the following inertia conditions.

(49)⇔I− {Ry} = I−1 {Rz}+ I−
{
Ry −RyzR

−1
z Rzy

}
⇔Rz > 0, I− {Ry} = I−

{
Ry −RyzR

−1
z Rzy

}
(50)

where I−{•} means the number of negative eigenvalues of
the given matrix.

Let’s assume that Rz > 0, and [Fk Gk] has full rank.
Then, from the Riccati equation (36), it is obvious that
Pk+1|k > 0. Therefore, to prove the existence condition in
the above lemma, we should check the inertia condition
(50).

Using the congruent transform, we have

I−
{[
A BT

B C

]}
= I−

{[
A 0
0 C − BTA−1B

]}
(51)

= I−
{[
A− BC−1BT 0

0 C

]}
(52)

where it has been defined that

A =
[
P−1

k+1|k 0
0 Q−1

k+1

]
, B =

[
HT

k+1 ET
k+1

0 0

]
, C = Ry,

A− BC−1BT =
[
P−1

k+1|k+1 0
0 Q−1

k+1

]
,

C − BTA−1B = Ry −RyzR
−1
z Rzy.

Since A > 0 when Pk|k > 0, Qk > 0 and [Fk Gk] has full
rank, we can analogize the following results.
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A− BC−1BT > 0, I−
{
C − BTA−1B

}
= I− {C} (53)

That is, the inertia condition (50) is satisfied.

P−1
k+1|k+1 > 0, I− {Ry} = I−

{
Ry −RyzR

−1
z Rzy

}
(54)

Therefore, the existence of the stochastic robust Kalman
filtering solution can be recursively checked by Pk|k > 0
under the assumption that P0|−1 > 0, Qk > 0, and
[Fk Gk] has full rank for all k. This is the end of proof.

�

4. CONCLUSION

A new approach has been taken to the problem of robust
Kalman filtering for linear time-varying uncertain systems
with a noisy measurement matrix and a multiplicative
measurement noise. Aside from the classical approaches,
the problem was treated in view of classical weighted least
squares estimation. The estimation errors of the nominal
Kalman filter caused by multiplicative noise were char-
acterized and approximated by the stochastic approxima-
tion method. The error compensating methodology has
been used to solve the stochastic robust Kalman filtering
problem without conservatism. It was shown that the
stochastic robust Kalman filtering problem is equivalent to
the minimization of a certain indefinite quadratic cost. The
proposed robust Kalman filter and its existence condition
have been derived in terms of just single discrete Riccati
recursion. Moreover, the resulting filter had the structural
flexibility of the RLS estimator, hence it could account for
the cross-correlation between the multiplicative and addi-
tive measurement noises as well as the auto-correlation of
the state-dependent noise itself.
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