
An Interpretation of Concurrent Hybrid

Time Systems over Multi-clock Systems

Marius C. Bujorianu, Manuela L. Bujorianu,
Rom Langerak. ∗

∗ Faculty of Computer Science, Unversity of Twente, The Netherlands
e-mail: manuela@ ewi.utwente.nl

Abstract: In this paper, we present a multiclock model for real time abstractions of hybrid
systems. We call Hybrid Time systems the resulting model, which is constructed using category
theory. Such systems are characterized by heterogeneous timing, some components having
discrete time and others continuous time. We define a timed (or clock) system as a functor
from a category of states to a category of time values. We further define concurrent composition
operators and bisimulation.

Keywords: concurrent hybrid systems, multiclock systems, real time, process algebra, category
theory.

1. INTRODUCTION

It is widely accepted the definition of hybrid systems
(abbreviated HS from now on) as systems whose behavior
exhibits discrete and continuous state space evolutions.
The most popular model is that of hybrid automata,
where a discrete automaton controls several continuous
dynamical systems. The main focus of the hybrid system
research was in modeling and verification. But a very
important problem is that of software development of these
systems. A relevant characteristic of software is discrete-
ness, which means that the continuous state spaces can not
be represented directly. An important methodological step
in constructing discrete abstractions (software models) of
HS is given by real time systems. These systems that
are characterized by a dense set of time values have now
well established development methods. HS are abstracted
into a subclass of real time systems that have some com-
ponents working in discrete time and some components
characterized by dense or real valued time. We call the
systems of this subclass hybrid time systems (abbreviated
HT systems).

It is desirable that the HT systems to preserve the main
characteristics of the HS of interest, as concurrency, bisim-
ulation and compositional semantics. In recent research
these properties have been defined using category theory.
For example, P. Tabuada, G. Pappas and coworkers in
a series of papers Tabuada [2004], Pappas [2004] have
defined and studied bisimulation of hybrid systems using
open maps and compositional specification using category
theory. A natural step to extend these concepts to RT
systems is via category theory.

We introduce a new category of real time and hybrid
systems. We define bisimulation of sytems in this category,
and we show that it coincides with the concept introduced
by Tabuada, Pappas and coworkers, in the case of hy-
brid systems. The advantages of the categorical approach
are in the compositional semantics and the definition of

bisimilarity. Using the compositionality of the semantics
we define composition operators for RT systems, the most
important being concurrent composition. We adhere to the
interleaving philosophy of concurrency, specific to process
algebra, and use the generic language of Winskel [1995].
This language is very general and it generalise the CCS
and CSP, the most used concurrency languages.

The paper is structured as follows. In the next section
we present a short categorical background (mainly to
fix the notations). In section three the category of time
systems and their bisimulation are introduced. Section
four is dedicated to examples familiar from control theory.
In section five a concurrent language for time systems is
rigorously defined. In the final section, some conclusions
are drawn and related work is discussed.

2. A QUICK TOUR IN CATEGORY THEORY

The paper makes use of category theory at an advanced
level. The excellent monograph Barr [1990] covers all
categorical background we use.

A category can be interpreted in many ways (as axiomatic
structure, as a logic theory, as a type, etc Barr [1990]). In
this paper, we deal mainly with higher order categories.
Categories are related by functors. An endofunctor is a
functor with the same domain and codomain. The functors
themselves can be organised into a category having arrows
natural transformations. These transformations can be
thought of as functors between functor categories. This
contruction can be iterated indefinitely, the resulted cate-
gories are called higher order. Functors get, in this way,
a rich algebraic structure. They can be composed by:
sequential composition, Cartesian products, tensor prod-
ucts, coproducts, pushouts and pullbacks. Functors will
be interpreted as systems and, thus, the operations of the
functorial algebra will provide composition operators for
sytems. This is key point in achieving compositionality.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 3635 10.3182/20080706-5-KR-1001.4239

We inspire from Lawvere’s functorial semantics of equa-
tional (or type) theories Lawvere [1963]. In his approach
every element of interest is defined as a functor. In fact,
the Yoneda lemma Barr [1990] guarantees a representation
for every object in a category, as a special kind of functor
called presheaf. This is essentially a set valued functor. In
our approach, the functors are time valued. The represen-
tation of time as a set of values is insufficient since the
time has an algebraic structure (discrete, continuous and
combined). Therefore, functors representing RT systems
need to be valued in a category of time values. We define
an RT system as a functor from a category P, of states, to a
category T of time values. The category P can be thought
of as modeling the structure of the plant and the category
T models the structure of the controller. We further define
a category of RT systems, where morphisms are functors
between state spaces that preserve the timed control. The
key point is that morphisms can be used to define discrete
state space abstractions, whilst preserving the real time
behavior.

Notational Conventions. The symbols used to denote
categories will be boldfaced. The objects of a category
will be denoted by capital letters, and the arrows using
small Greek letters. Functors will be, denoted using small
letters or capital Greek letters. Given a category C, we
write |C| to denote its class of objects and C to denote
its class of arrows. Composition in a category is written
in diagrammatic order: given α : A → B and β : B → C
their composite is written as α;β : A→ C. Application of
an functor f to an argument A is denoted by f [A] or by
f.A.

When a category can be simulated in another category,
we model this situation using a pair of functors called ad-
junction. Every adjunction gives rise to a monad, defined
in the following.

Factorization Category

For every arrow A
α
→ C ∈ C, we define its corresponding

factorization category ↑α↓ having

• objects factorizations A
β
→ B

γ
→ C of α in C, and

• arrows between A
β
→ B

γ
→ C and A

β′

→ B′ γ′

→ C

given by C−arrows B
δ
→ B′ such that β′ = β; δ and

γ′ = δ; γ.

Category of Twisted Arrows

The MacLane’s category of twisted arrows of a category

C, denoted by
←→
C , has

• objects the arrows of C and

• arrows between objects A
α
→ B and A′ β

→ B′ are pairs

< A
ϕ
→ A,B′ ψ

→ B >, where A,A′, B,B′ ∈ |C|, such
that the diagram

A
α
−→ B

ϕ ↓ ↑ ψ
A′ −→

β
B′

commutes in C. By C we denote the subcategoy of
←→
C having arrows of the form 〈id, ψ〉 .

Tensor Category

The tensor category C⊗D of two small categories C and
D has

• objects given by pairs A⊗B, with A ∈ |C| and B ∈
|D|,
• arrows given by shuffled sequences of nonidentic com-

posable arrows in C and D

Monad over a Category

A monad over the category C is a triple (T, η, µ), where T
is an endofunctor on C and η : idc → T and µ : T 2 → T
are defined by

C
idc ↑

η
→ ↑ T

C

C
T 2

↑
µ
→ ↑ T

C

are natural transformations, subject to the following con-
ditions:

1. µ; (T ;µ) ≡ µ; (µ;T) (The associative law);

2. µ; (η;T) ≡ 1F ≡ µ; (T ; η) (The left and right unit laws).

3. A CATEGORICAL ACCOUNT OF TIME SYSTEMS

Let Plant and Time be two small categories.

A real time system (RT system for short) over a small
category Time is a functor

Λ : Plant→ Time

satisfying the so called Lawvere condition Lawvere [1986]:
for every configuration P ∈ Plant and T0, T1 ∈ Time, if
Λ.P = T0 · T1 in Time then there exist unique configura-
tions P0, P1 in Plant for which

P = P0;P1 and Λ.P0 = T0 and Λ.P1 = T1

The category Time⇑ has:

• objects: RT systems over Time and

• arrows given by functors Plant
f
→ Plant′ such that

Λ = Λ′; f .

The Plant can be, for example, the category of models of
a formal specification Bujorianu [2004].

We denote by Time↑ the category of functors Plant
f
→

Plant′ for which the Lawvere condition is omitted.

It is possible to define a faithful functor from
←→
T to T⇑ .

This functor sends:

• each
←→
T -object A

α
→ B to the T⇑ -object defined

by αT : ↑α↓ → T, where the RT system αT maps

A
α
→ B

β
→ C into B and

• each < A
ϕ
→ A,B′ ψ

→ B > into the functor
fϕ,ψ : ↑α↓ → ↑β↓ that associates to (α, β) the pair
(ϕ;α, β;ψ).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3636

This embedding says, essentially, that Time⇑ is the free

cocompletion of
←→
T with respect to the pushouts of the

form

idB
(α,idB)

ւ |
(idB ,β)

ց
α h β

ց
(idA,β)

↓ ւ
(α,idC)

α;β

where A
α
→ B

β
→ C in C.

We can also consider the obvious embedding of
←−
T in T⇑.

For every RT system Λ : Plant→ Time we define the
category

TimeΛ
⇑ ,

having

• objects given by triples (X,Ω, f) where X is a cat-
egory, Ω : X→ Time is an RT system and f :
Plant→ X is a functor
• arrows (X,Ω, f)

g
→ (X′,Ω′, f ′) given by functors

g : X→ X′ such that Ω′; g = Ω and f ′ = f ; g.

Assumption 1. From now on we suppose that, for each

arrow α the category ↑α↓ is a linear preorder.

Consider a functor Λ : P→ T. We define the category P
having

• objects: pairs (T, π) where T ∈ |T| and π ∈ T↑

is a morphism between (pseudo)systems (idT)T :
↑idT ↓→ T and Λ : P→ T.
• arrows between (T, π) and (T ′π′) are given by pairs

(t, κ) where t : T → T ′ ∈ T and κ is morphism
between systems tT : ↑t↓→ T and Λ : P→ T such
that π = fidT ,t;κ and π′ = fidT ′ ,t;κ
• the identities are id(T,π) = (idT , π) and arrow com-

position given by pushout

Proposition 1. The embedding Time⇑ →֒ Time↑ admits
a right adjoint ̥ : Time↑ −→ Time⇑

Hint for proof: define ̥[Λ], for Λ : P→ T, as the first
projection functor P→ T.

Consider two arbitrary RT systems Λ : Plant→ Time

and Λ′ : Plant′→ Time′ and a functor Plant
f
→ Plant′.

A simulation Winskel [1995] between Λ and Λ′ is a relation
ρ between |Plant| and |Plant

′| such that:

if S1(ρ)S
′
1 then, for every arrow S1

α
→ S2 in Plant

there is an arrow S′
1
α′

→ S′
2 in Plant′ with S2(ρ)S

′
2 and

Λ.α = Λ′.α′.

Two states S ∈ |Plant| and S′ ∈ |Plant′| with Λ.S =
Λ′.S′ are called open bisimilar if there is a span of open

functors Winskel [1996] Plant
f
← Plant$ f ′

→ Plant′

such that there is S$ ∈ |Plant$| with f [S$] = S and
f ′[S$] = S′.

Proposition 2. The functor f is open w.r.t. the embedding

of
←−
T in T⇑ if and only if for each S ∈ |Plant| and

f [S]
α′

→ S′ in Plant′ there exists S
α
→ S$ in Plant with

f [α] = α′.

This proposition, adapted from Bunge [2000], states that
the concepts of bisimilarity and open bisimilarity coincide
for RT systems.

4. EXAMPLES

In this section we consider the main instantiations of
the theory of RT systems from the previous section.
The Time⇑ can be instantiated with categories of states
modelling both discrete and continuous (time) plants, by
simply taking Time to be Z+, the nonnegative integers
or R+, the nonnegative real numbers (which are simple
monoidal categories). An important instantiation of Time
is the category [A] generated by the free monoid (A∗, •, ǫ)
formed with symbols from the set A.

The category TimeǫTime

⇑ is the important category of

transition systems with initial state (the labelled transition
systems).

As the categorical theory of transition systems with dis-
crete time is better understood Winskel [1995], in the fol-
lowing we detail the structure of continuous time systems.

A duration Lawvere [1986] is a functor RT : Plant→ R+

such that, for every P ∈ Plant and t0, t1 ∈ R+, if
RT [P] = t0 + t1 in Time then there exists a unique
factorisation P = P0 · P1 in Plant for which f(P0) = t0
and f(P1) = t1.

The category Dur has

• objects: durations (flows) and

• arrows: functors Plant
G
→ Plant′ such that RT =

RT ′;G.

The most important examples of durations are provided
by the solutions of differential equations (the flows). Let
us consider the differential equation

dx

dt
= a (eq)

whose initial value problem with initial condition x(0) = s
has unique solution

s̃(t) = a.t+ s.

It can be regarded as the flow Plant→ R+ mapping

arrows s0
t
→ s1 to t > 0, where

|Plant|
def
= R

and, for t ∈ R+, we have s0
t
→ s1in S if and only if there

exists a solution of (eq) σ : I → R and t0 ≤ t1 in I such
that

σ(t0) = s0, σ(t1) = s1, and t1 − t0 = t

(i.e., if and only if s̃0(t) = s1).

The category of continuous paths, denoted by
←→
R ,has

• the set of positive reals as objects and

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3637

• an arrow t→ t′ a way of placing an interval of length
t within an interval of length t′ , i.e. pairs (x, y) in
R+ such that x+ t+ y = t′.

The category
←−
R is the subcategory of

←→
R arrows of the

form (0, y).

There is an embedding
←→
R →֒ Dur that sends a non-

negative real number t to the difference flow

|t| → R+ , x ≤ y → y − x ,

where |t| is the interval poset ([0, t],≤). We can consider

further the faithful functors
←−
R →

←→
R →֒ Dur

5. COMPOSITIONS OF RT SYSTEMS

The composition operators unary or binary. They apply
to RT systems and produce new RT systems. As any
system is a functor, it results that composition operators
are functors from functor categories to functor categories.
When the composition operator is binary, we deal with
bifunctors. In defining composition operators, one can
expect then many tricky compositions from functorial
algebra: products, coproducts, pullbacks, pushouts, tensor
product, etc. We use both prefix and infix notations and
the position of the arguments is indicated by underscores.

Control translation

We define two unary operators that describe two different
ways to translate RT systems when translating the control
category.

Let θ : Time→ Time′ be a functor.

Define the functor ΓΥθ : Time⇑ → Time′⇑ that maps

Λ : Plant→ Time into Λ; θΥ : Plant→ Time′.

The functor ̥θ : Time⇑ → Time′⇑ that maps Λ :

Plant→ Time into ̥[Λ; θΥ] : Plant→ Time′.

Restriction and pullback composition of RT systems

Consider two arbitrary RT systems Λ : Plant→ Time

and Λ′ : Plant→ Time′ and a functor Time
Υ
→ Time′.

For any morphism of RT systems Plant
f
→ Plant′ define

• the functor ()|f : TimeΛ
⇑ → TimeΛ′

⇑ that maps
(X,Ω, g) to (X,Ω, f ; g).

• the pullback functor f̂ , along f , as the functor f̂ :
Time

′
⇑ → Time⇑ that maps the RT system Λ :

Plant→ Time into f̂Λ : f̂ .Plant→ Time, where

f̂ .Plant is the subcategory of Time×Plant with

arrows (T, S)
(λ,α)
−→ (T ′, S′) such that Υ.λ = Λ.α.

Process algebra

We recall the basic operators of the process algebra from
Winskel [1995].

Process Terms

P =: nil | P↾i | P{λ} | P × P
′ | P‖P ′ | P + P ′ | l.P

Process Equations

Eq =: P = P ′ where P, P ′ are process terms.

A specification consists of a signature and a set of equa-
tions.

In the following, we construct a semantics of this process
algebra where every term (process) is a RT system.

Sum and product of RT systems

The operations of sum (+) and product (×) between
functors generate RT system operations.

The sum functor is defined by

+ : Time⇑ ×Time′⇑ → (Time + Time′)⇑

Λ + Λ′ : Plant + Plant′ → Time + Time′

The fibred sum ⊕ is defined by Time⇑ × Time⇑
+
→

(Time + Time)⇑
Γ[id,id]
−→ Time⇑

The product functor is defined by

× : Time⇑ ×Time
′
⇑ → (Time×Time

′)⇑

Λ × Λ′ : Plant×Plant′ → Time×Time′

Tensor product and pushout composition of RT systems

The tensor product of two systems Λ : Plant1→[S] and
Γ : Plant2→[T] is induced by the tensor category of
two monoids, which is their coproduct in the category of
monoids:

[S ∪ T] = [S]⊗ [T]

Therefore, we can consider a functor ⊗ : [S]⇑ × [T]⇑ →
[S ∪ T]⇑ given by

Λ⊗ Γ : Plant1 ⊗Plant2 → [S]⊗ [T]

Consider two arbitrary RT systems Λ1 : P1 → T and

Λ2 : P2 → T and P1

p
−→ P2 in T⇑.

The pushout functor, along p, as the functor p⊙ : TΛ1
⇑ →

TΛ2
⇑ that maps (X,Ω, f) into (P2⊙X,Λ2⊙Ω, p⊙f) where

P2 ⊙ X, Λ2 ⊙ Ω and p ⊙ f are given by the following
commutative diagram

P1

p ւ ցf

P2 X
ց
p⊙f

ւ

Λ2 : P2 → T

P2 ⊙X

Λ2 ⊙ Ω ↓
T

Ω : X→ T

Saturation

The saturation operation was introduced in Winskel [1996]
for studying weak bisimulation. Saturation (with silent
steps) by a functor θ : T1 → T2 is defined by the monad

on T1
⇑ induced by the following adjoints T1

⇑

̥

⇆ T1
↑

θ̂

⇆
Γθ

T2
↑.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3638

6. HYBRID TIME SYSTEMS

6.1 The shuffle model

Let L be a set and [L] be the generated (category) free
monoid. The category [L]⇑ corresponds to the discrete,
L− labelled transition systems.

Consider R+ the category of positive reals. The category
(R+)⇑ corresponds to the category of durations (i.e. con-

tinuous dynamical systems).

A HT system is an object of the category

([L]⊗R+)⇑

i.e. an RT system Ψ : S→[L]⊗R+ for which the evolutions
in the state space S factor uniquely as shuffles of discrete
and continuous evolutions.

One can observe that hybrid systems as defined in Hen-
zinger [1996] are models of HT systems.

There exist two adjunctions

[L]⇑ ⇆ ([L]⊗R+)⇑

and (R+)⇑ ⇆ ([L] ⊗ R+)⇑ that relate the models of
discrete time, real time and hybrid time systems. In this
way, the concepts of open maps and bisimilarity for HT
systems extend that of discrete and continuous systems.

6.2 Concurrency and Abstraction

The symbol τ denotes the silent action.

Relabelling

Consider a function µ : M → N and define the functor
{µ} : [M]⇑ → [N]⇑ as Λ{µ} = Γµ∗ [Λ] where µ∗ is the

free homomorphic extension of the function which maps
m ∈M 7→ µ(m).

Restriction

Consider an inclusion function ι : M → N and define the
functor |ι : [N]⇑ → [M]⇑ as Λ|ι = (̂µ∗)[Λ]

Prefix

The prefix with an action m ∈ M is given by the functor
m. : [M]

ǫ[M]

⇑ → [M]
ǫ[M]

⇑ defined as m.Λ = (fm,ε ⊙

Λ); (Λ|fm,ε)

Choice

Consider the inclusion function ιM : M → M ∪ N ,
ιN : N → M ∪ N and define the functor ∨ : [M]⇑ ×
[N]⇑ → [M ∪N]⇑ as Λ ∨ Ω = (Λ{ιM},Ω{ιN}); (Λ⊕ Ω)

Parallel composition of RT systems

We follow Winskel [1995] and define parallel composition
using product, restriction and relabelling.

Let us consider two RT systems, belonging to the cate-
gories [M ∪ N ∪ {τ}]⇑ and {N ∪ L ∪ {τ}]⇑. The set of
actions N plays the role synchronization. Their parallel
composition is given by the functor

|| : T1
⇑ ×T2

⇑ → T3
⇑

defined by

Λ1||Λ2 = Ξ̂[Λ1,Λ2]; Γρ,

where Ξ : T1 × T2 → S is called the synchronization
functor and ρ : S→ T3 is a (“relabelled”) RT system.

In the discrete case, the synchronization functor is defined

as Ξ̂ρ[,] : [M∪N∪{τ}]⇑×{N∪L∪{τ}]⇑→ [M∪L∪{τ}]⇑
with the synchronisation map

[M ∪N ∪ L ∪ {(τ , ∗)} ∪ {(∗, τ)}]
Ξ
→ [M ∪N ∪ {τ}]× [N ∪

L ∪ {τ}]

given as the free homomorphic extension of the function
mapping:

m ∈M 7→ (m, ε), (τ , ∗) 7→ (τ , ε), n ∈ N 7→ (n, n),

(∗, τ) 7→ (ε, τ), l ∈ L 7→ (ε, l);

and where the relabelling function M ∪ {(τ, ∗)} ∪ N ∪

{(∗, τ)} ∪ L
ρ
→M ∪ {τ} ∪ L is the following mapping:

m ∈M 7→ m, (τ , ∗) 7→ τ , n ∈ N 7→ τ ,

(∗, τ) 7→ τ , l ∈ L 7→ l.

Time abstraction of HT systems

Consider the monoid B = ({id, τ}, •, id} with τ • τ = τ ,
τ • id = τ and the pullback square

C
f
−→ [M]⊗R+

σ ↓ ↓ σ
[M ∪ {τ}] −→

f
[M]×B

where σ : [M] ⊗ R+ → [M] × B is the unique homo-
morphism mapping m ∈ M 7→ m, t ∈ R+ 7→ τ and
f : [M∪{τ}]→ [M]×B is the free homomorphic extension
of the function mapping m ∈M 7→ m, τ 7→ τ

The time abstraction is defined by the functor ∂ : [M] ⊗

R+ → [M ∪ {τ}] computed as ∂ = ̥σ;
̂(f)

7. FINAL REMARKS

In this paper, we have defined a functorial semantics for
time systems. Such a system is simply a functor from
a category of “abstract states” (also generically called
the plant) to a category of “abstract time” (generically
called the control). We have introduced a concept of
bisimulation and composition operators for these systems.
We have shown that when the control category is the free
monoid, generated by a set of labels L, then the time
systems are precisely the category of L-labelled transition
systems. When the control category is the monoid of
nonnegative reals then the time systems are precisely the
category of continuous dynamical systems. A semantics of
the concurrent language from Winskel [1995] is defined in
this category, and a bisimulation concept is introduced.
Moreover, in Bujorianu [2004] we show that the standard
operational semantics from Winskel [1995] is sound in this
categorical semantics (that means that the two semantics
are compatible, with the categorical semantics playing the
role of the denotational one). This construction provides a
very elegant specification of concurrent real time systems,

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3639

as well a rigorous semantics for sytem verification (in the
spirit of Tabuada [2004]). Many theoretical results and
verification algorithms become in this way available for
timed systems.

An important class of time systems constitutes the hybrid
time systems. These systems have the control category
given by the product of a free semigroup and the monoid of
nonnegative reals. The evolutions in the system state space
consist of sequences interleaving discrete and continuous
transitions. Obviously, hybrid automata are examples of
hybrid time systems. There are also HT systems that are
not necessarily hybrid automata. That is happening when
the state space is discrete and some system behaviours are
real time. We have defined software viewpoints that are
HT systems and we have constructed their unification. In
general, viewpoint unification is very difficult to construct
and to the authors’ knowledge there is no such construc-
tion for time systems.

The most succesful categorical approaches in control en-
gineering are those of Tabuada [2004], Pappas [2004], and
van Schuppen [2005]. The most related to our approach is
obviously that of P. Tabuada, G. Pappas e.a.: in section 3
we have shown actually that our concept of bisimulation is
equivalent with their concept. Our work is based on differ-
ent primitives, both in hybrid systems and category theory.
We continue their line of research, which is characterised
by a very clear connection between system engineering
and computer science, by introducing process algebra and
modular development. The functorial semantics is very
suitable for simulations using functional languages (like
ML and Haskell). For future work we consider developing
further the multiclock interpretation towards an imple-
mentation into synchronous languages.

There is also a limited number of categorical approaches to
hybrid systems from computer science, but none of them
has generated a line of research relevant to the control
system community. These approaches comprise:

- Sernadas [2000] have defined hybrid systems as specifi-
cations in an institution. An institution is a categorical,
model theoretic formalisation of logics (in this case a
temporal logic). This work treats only the logical aspects
of a specification language for hybrid systems.

- Jacobs [2000] has defined a coalgebraic model for hybrid
systems. In this model, discrete and continuous transitions
coexist on a common state space. The model is reach
in examples and the coalgebraic concept of bisimulation
can be defined. This approach is based on a different
branch of category theory, and it is mainly focuss on
defining bisimulation of hybrid systems using coalgebraic
bisimulation.

- Bunge [2000] and Fiore [2000] have defined a model
for linear control systems using fibrations (i.e. categorical
logic). This model is rich in universal characterisations
and it is similar to our approach. The system development
approach used is driven by refinement.

The mathematical “cookbook” relies heavily on the func-
torial algebra. The abstractness of the mathematical
framework is the only price to pay for constructing a

compositional semantics for a class of systems that are
not, in general, easy composable.

In a forthcoming paper, we will define a modular develop-
ment methodology based on viewpoints citeAMST and we
will present case studies, as well HT systems abstractions
of hybrid systems.

ACKNOWLEDGEMENTS

This work was partially supported by the NWO project
AiSHA. The authors thank Glynn Winskel and Marcelo
Fiore for useful suggestions.

REFERENCES

M. Barr and G. Wells. Category theory for computing
science. Prentice Hall, 1990.

M.C. Bujorianu. Integration of specification languages
using viewpoints. IFM 2004, Springer-Verlag LNCS
2999, pages 421–440, 2004.

M.C. Bujorianu and E.A. Boiten. Towards correspondence
carrying specifications. AMAST 2004, Springer-Verlag
LNCS, 2004.

M. Bunge and M.P. Fiore. Unique factorisation lifting
functors and categories of linearly-controlled processes.
Mathematical Structures in Computer Science, 10(2):
137–163, 2000.

M.P. Fiore. Fibred models of processes. IFIP TCS 2000,
Springer-Verlag, pages 457–473, 1956.

Hagverdi, P. Tabuada, and G.J. Pappas Bisimulation
relations for dynamical and control systems. Category
Theory and Computer Science, ENTCS, 2004.

T.A. Henzinger. The theory of hybrid automata. LICS’96,
IEEE Press, pages 278–292, 1996.

B. Jacobs. Object-oriented hybrid systems of coalgebras
plus monoid actions. Theoretical Computer Science,
239(1):41–95, 2000.

A. Joyal, M. Nielsen, G. Winskel. Bisimulation from Open
Maps. Information and Computation, 14(2):203-238,
1996.

J. Komenda, J.H. van Schuppen. Control of discrete
event systems with partial observations using coalgebra
and coinduction. Discrete Event Systems: Theory and
Applications, 127(2):164–185, 2005.

F.W. Lawvere. Functorial semantics of algebraic theories.
Proc. Nat. Acad. Sci. USA, 1963.

F.W. Lawvere and S.H. Schaunel. Categories in continuum
physics. Springer Verlag, Lecture Notes in Mathematics,
vol. 1174, pages 1–16, 1986.

H. Lourenco, A. Sernadas. An Institution of Hybrid
Systems. WADT 2000, Springer-Verlag LNCS 1827,
pages 219–236, 2000.

P. Tabuada, G.J. Pappas, P. Lima. Compositional Ab-
stractions of Hybrid Control Systems. Journal of Dis-
crete Event Dynamical Systems, 14(2):203-238, 2004.

G. Winskel and M. Nielsen. Models for concurrency.
Handbook of Logic and the Foundations of Computer
Science 4, Oxford University Press, pages 1–148, 1995.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3640

