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Abstract: Data driven variable selection, without including physical knowledge, is an important 
prerequisite for many applications in the field of data based modeling. This paper deals with a novel 
approach to optimize the dimension of the input space by a combination of common variable selection 
methods with multivariate correlation analysis. The results are input structures with revised pseudo 
correlations between input channels and a physically better interpretable structure. The presented method 
is successfully applied to measured data from steel industry. Some exemplary results are shown in this 
paper. 

 

1. INTRODUCTION 

Complex industrial systems are often equipped with extended 
data recording facilities, so that huge quantities of measured 
data are available describing the production process. These 
data can be used for various purposes. In some cases they are 
only protocol data which are stored into archives. But in a 
growing field of applications these measured data are used 
for information extraction to gain more knowledge about the 
underlying process, in order to improve process models, the 
realization of system monitoring or control optimization (Shi 
and Skelton (2000)). 

A data based approach proves especially for industrial 
systems because of their complexity. Often not even process 
experts are aware of all relationships of their systems and 
able to understand every behaviour. The effort for physical 
modeling is mostly not reasonable and so data based 
modeling is chosen. In the presented application area one big 
challenge is the fact that such processes typically are rich of 
data but poor of information, since the plants are often kept in 
a few operating points and an arbitrary excitation is not 
possible due to cost concerns. The consequence of this fact is 
often an ill-conditioned problem and the need for methods to 
improve the solvability conditions. 

However, independent of the final goal of an analysis, e. g. 
system monitoring or causal structure analysis, one important 
point in data based input channel selection is the dimension 
reduction of the solution space for the approximate solution. 
By using statistical methods for input selection the dimension 
is only bounded above by the dimension of the measured 
channel set and below by zero. Even for the same modelled 

channel the dimension is not unique, the result depends 
always on the used variable selection method.  

To find relationships within measured data Gertler (2005) 
used principal component analysis (PCA) for modeling with 
a significantly reduced dimensionality by an orthogonal 
linear transformation of the data to a new coordinate system, 
in fact a creation of new variables with no physical meaning. 
George and Foster (2000) presented an empirical Bayes 
variable selection by using a priori distribution for the 
coefficients of a normal linear regression model. A nonlinear 
regression approach is shown by Yu et al (2007). They 
optimized nonparametric noise estimation and used it for 
analysing financial data. A survey of several two dimensional 
and multivariate variable selection methods is given by 
Guyon and Elisseeff (2003). Bühlmann (2007) presented an 
application on molecular biology. Here a further variation of 
a linear variable selection method for high dimensional data 
is discussed. All of these methods deal with the proper 
dimension estimation of the selected variable space, mostly in 
combination with maximizing the achievable model quality, 
to get data based models with optimized input structure. 

In this paper we present a further reduction of dimensionality 
by elimination of pseudo correlations between selected input 
variables, which often leads to significantly improved input 
structures of the used models. We introduce a combination of 
different variable selection methods with multivariate 
correlation analysis that in fact is a step toward causal 
modeling like Pichler and Schrems (2007) showed. 

The paper is organized as follows. Section 2 gives a short 
problem description and considers two dimensional and 
multivariate correlation methods. Section 3 introduces the 
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method for optimizing the dimensionality of the input space. 
Two exemplary results of a multivariate pseudo correlation 
analysis of a temper rolling mill are shown in section 4 and 
finally our conclusions are given in section 5.  

2. PROBLEM DESCRIPTION 

The overall goal of this paper is to generate data based 
models out of complex systems measurement data, in this 
case steel plants. Denote with (1) ( 2 ) ( )( , , ..., )Ny y y y= the 
target variable of this measuring system with N observations, 
thus the variable to be modelled. All other measurement 
channels will be denoted with 

1 , ..., nx x whereas (1) ( 2 ) ( )( , , ..., )N

i i i ix x x x= for 1, ...,i n= . These 
channels are the possible input variables (e. g. the possible 
independent variables in regression models) of the model. So 
the modelled channel ŷ for the target variable y is of the form 

( )1ˆ ,..., my f x x= , (1) 

whereas : N m Nf × →  is unknown just like 

1{ , ..., }i nx x x∈  for 1, ...,i m=  and m n≤ . 

Assume one gets perfect model parameter estimates from 
modeling the target variable using all input variables. Then it 
would be rather simple to obtain the appropriate input 
variables ix by inversion of the model f . As measuring 
systems of steel plants tend to be data rich, but relatively 
information poor, the modeling process is a strongly ill-
conditioned problem which is hard to handle. So the first step 
of the algorithm should not be the modeling, but the 
optimization of the solution space dimension, basically the 
number of input variables. This will be achieved in this paper 
by applying both common variable selection and multivariate 
correlation analysis. From the physical point of view this 
means to identify those variables, which are actually 
associated with the target variable y . The variables with no 
or just an indirect dependence to the target variable should 
not be considered in the model. 

In two dimensional analysis one can compute the usual 
Pearson correlation coefficient to identify relationships 
between y and ix , {1, ..., }i n∈ . This method is not optimal for 
multivariate analysis as it does not consider possible 
influences of other variables jx , j i≠ , on the correlation 

of y and ix . Therefore it is not sufficient to select input 
variables with a high Pearson correlation to the target 
variable. In the literature it is recommended to use 
multidimensional correlation measures such as partial 
correlation (Garson (online), Mori and Kurata (2007) used it 
in power systems with a few known input variables) and part 
correlation (Wendorf (online)). Using these measures we are 
able to detect the so called pseudo correlations within the 
measuring system and to eliminate the according input 
variables from the modeling process. 

Recapitulatory we use three correlation measures to optimize 
the dimension of a selected set of input variables: 

1. Pearson correlation coefficient 

2. Partial correlation coefficient 

3. Part correlation coefficient 

To illustrate the ideas behind those measures we make use of 
Venn diagrams. W. l. o. g. we assume a double regression 
model with the dependent variable y and the independent 

variables 1x and 2x . This can be easily extended to higher 
dimensions. In the Venn diagram the circles represent the 
standardized variances of the variables (Fig. 1 and Fig. 2). 

2.1 Pearson Correlation 

In Fig. 1 the area (A+B+C+D=1) represents the standardized 
variance of y . Area B represents the part of the variance 

of y that can be explained by the variance of 1x , Area D 
represents the part of the variance of y that can be explained 

by the variance of 2x and area C represents variance y which 

is explained by 1x as well as 2x , so to say the intersection of 

variances of 1x and 2x in consideration of y . Squared Pearson 

correlation coefficient
1

2

,y xr is then defined as the dependence 

between y and 1x regardless of all other dependencies. Thus in 
this illustration it is defined as 

1

2
,y x

B Cr B C
A B C D

+
= = +

+ + +
. (2) 

 

 

Fig. 1: Illustration of Pearson correlation 

2.2 Partial Correlation 

By eliminating the influence of 2x on y and on 1x one gets the 
squared partial correlation coefficient (Fig. 2) 

1 2

2
( , )|y x x

Br
A B

=
+

. (3) 

One can say it is the dependence between y and 1x by holding 
all other involved variables in the set constant, both for the 
target channel and for the input channels. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9133



 
 

     

 

A

B

y

x1

A

B

y

x1

A

D
C

A

partial correlation part correlation  

Fig. 2: Illustration of partial correlation (left hand) and part 
correlation (right hand) 

2.3 Part Correlation 

Considering just the dependence between y and 1x by 

eliminating the influence of 2x on 1x one gets the squared part 
correlation coefficient (Fig. 2): 

1 2

2
,( | )y x x

Br B
A B C D

= =
+ + +

 (4) 

In a way it is the relative part of the total target channel 
variance that is only explained by 1x . 

One problem of this correlation analysis could be that it 
requires several assumptions (Garson (online)): 

a) linearity of relationships 

b) the same level of relationship throughout the range 
of independent variable 

c) interval or near-interval data 

d) data, whose range is not truncated 

Another difficulty by using these multivariate correlation 
coefficients is that in the literature it is recommended to use it 
only for small data sets. In steel plants usually a lot more than 
100 variables are recorded. In order to reduce the number of 
input variables we execute a common variable selection step 
before we analyse the variables for pseudo correlations. 

3. METHOD FOR DIMENSIONALITY OPTIMIZED 
MODEL STRUCTURES 

We assume that the underlying industrial process is like a 
black box before data based analysis. Furthermore it is 
recommended to use small input variable sets for multivariate 
correlation analysis. Considering these two restrictions the 
presented method is divided into two main parts: 

First:  variable selection for a specified depended 
variable y  

Second: multivariate correlation analysis of the variable 
selection result to identify pseudo correlation within 
the input set 

In our approach pseudo correlation is defined in the following 
way: 

3.1 Definition: Pseudo correlation criteria    
 The correlation between y and ix is a pseudo 
correlation if both conditions are fulfilled: 

, 0.1
iy xr >  (5) 

1,..., 1, 1,..., 1,..., 1, 1,...,,( ) ( , )( , )
i i i m i i i my x x y x xmean r r ε

− + − +
<  (6) 

with threshold ε sufficient small and 1,..., 1{ ,..., }m mx x x  
representing an input variable set. 

For the first part we are using common variable selection 
methods (Hennig (2004)) like 

a) step forward selection linear (SFS) 

b) backward selection combined with SFS linear 
(BSFS) 

c) SFS with orthogonal projected variables in each step 
(LinOrth) 

d) SFS with orthogonal projected variables in each step 
using polynomial independent variables (PolyOrth). 

For the second part the algorithmic realization of multivariate 
correlation analysis proves for each pair ( , )iy x the pseudo 

correlation criteria (5) and (6), whereas 1{ , ..., }i mx x x∈ (the 
input channel set after variable selection). 

3.2 Discussion about used variable selection methods 

Each of the variable selection methods has its own 
advantages and disadvantages and we do not want to discuss 
this in more detail at this point and refer the reader to the 
literature (e. g. Hennig (2004)). By the experience with real 
industrial data it is important not only to count on one 
favourite method for variable selection, but to have a certain 
range of methods to handle the different kinds of 
relationships and complexity of such plants. For instance, at 
this point we want to remind of the information gaps inside 
the measurement data. But nevertheless, often the dimension 
of the obtained input sets is not optimal in the sense of 
choosing the most important input channels for a target 
channel without losing model quality.  

In fact the used variable selection methods are looking for 
statistical dependencies within the measurement data, with 
respect to already chosen variables. One should think, that the 
iteratively generated input sets are optimal in the sense of the 
best selection dependent of the selection criteria. But we may 
not overlook the fact, for instance for all SFS methods, if one 
channel is chosen, it is not possible to eliminate it afterwards, 
even if it is unnecessary due to the interconnected influence 
of a variable that is chosen later.  

3.3 Discussion about the combination with multivariate 
correlation analysis 

With this argumentation it makes sense to check the selected 
input variables for pseudo correlations and try to optimize the 
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dimension of the input set with the positive side effect that 
the used multivariate correlation method is able to reveal the 
significant dependencies in the sense of cause and effect 
(Garson (online)). 

The definition of the pseudo correlation criteria should be 
considered as a first developing step. Inequation (5) describes 
a necessary condition for a real relationship between two 
variables. The bivariate cross correlation coefficient should 
theoretically be greater than zero, but due to numerical 
reasons and measurement errors, like noise, we defined ad 
hoc a minimum coefficient, that turns out was a good choice 
for our application on steel plant data. The second condition 
(6) is more than an implementation of partial correlation like 
Mori and Kurata (2007) did. During detailed testing on our 
special need it turned out that combining partial correlation 
and part correlation gives better results than using just one 
method. This applies especially in the case of physically 
interpretable structures. The reason for that can be worked 
out considering the following cases in Table 1.  

Table 1. Structure of partial and part correlation 

 Partial  Corr. Part Corr. 
Case high small high small 

1 1 0 1 0 
2 1 0 0 1 
3 0 1 1 0 
4 0 1 0 1 

Partial correlation coefficient high means that the input 
variable explains a big part of the target channel variance, 
which can not be explained by the other involved channels. 
Partial correlation coefficient small means that the input 
channel does not add much to the unexplained variance part 
of the target channel (unexplained by using all other involved 
channels). 
Part correlation coefficient high means that the input 
variable adds a lot to the total variance of the target channel 
considering all other involved input channels. 
Part correlation coefficient small means that the input 
variable adds little to the total variance of the target channel. 

Case 1 in Tab. 1 represents the situation where an input 
variable explains a big part of the total target channel 
variance and a big part of the variance that can not be 
explained by the others involved input channels. For sure 
such an input variable is real correlated with the target 
channel. Case 2 describes the combination of high partial 
correlation but only a small contribution to the unexplainable 
part of y . Here it would be important to check how large the 
portion of the target channel variance is that can not be 
explained by others. If it is small, this variable is important 
for the model. The situation where the input variable explains 
a lot of the unexplained part but less of the total variance is 
considered in case 3. Such a variable could be important, if 
the unexplained part is significant. And finally in the fourth 
case we consider the situation that both multivariate 
correlation coefficients are small. These are the typical 
circumstances of pseudo correlation. 

From these case studies and due to the real application results 
we concluded that it will be the best if we start by using an 
average multivariate correlation coefficient with a definable 
threshold. Therein is some potential for further developments 
but for this application definition 3.1 works very well. In the 
following section we will show the possibility to get 
surprisingly well optimized variable selection results in 
combination with satisfying model quality. 

4. APPLICATION RESULTS 

The method was tested on data of a temper rolling mill as 
seen in Fig. 3. Temper rolling represents the final cold rolling 
operation after annealing in the route of the production of 
cold rolled strip. 

 

Fig. 3: Temper rolling mill (Siemens VAI) 

For confidentiality reasons we avoid to denote the variables 
with their real name or their physical units. Therefore we 
again denote the target variable with y  and the input 

variables with ix . We used linear regression models to 
identify and validate models. 

4.1  Example One 

The target variable we first analysed can be seen in Fig. 4.  

 

Fig. 4: Training data of the target variable 

For validation we have used another data set of the temper 
rolling mill with the same variables. The target channel of 
this data set is illustrated in Fig. 5. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9135



 
 

     

 

 

Fig. 5: Validation data of the target variable 

So we have a target variable y  and in the case of our 

measuring system 542 input variables 1 542, ,x x… . After 
applying the different methods of variable selection we 
obtained different input variable sets with a range between 4 
and 15 input variables. The best input set we got of these was 
the PolyOrth set with a model validation quality of 0.9978. 
The corresponding model prediction compared to the 
validation data of the target variable is shown in Fig. 6.  

 

Fig. 6: Model validation for the PolyOrth input set 

The worst input set (BSFS) had a validation quality of 0.5330 
and is illustrated in Fig. 7. 

 

Fig. 7: Model validation for the BSFS input set 

After performing multivariate correlation analysis only two 
input variables are left over, 15x and 16x . These two process 
variables, independently of the performed input variable set, 
were the result after pseudo correlation analysis. Building a 
linear regression model of y with the input variables 15x and 

16x results in a validation quality of 0.9980, illustrated in Fig. 

8. That is nearly the same as the best model, PolyOrth, which 
used 10 input variables. The selection criteria of PolyOrth 
were the partial F-test with a probability value of 5%. Even if 
we reduce the probability value to 610− % the dimension of 
the input space is bounded below with 4 and there is no 
further reduction of the dimension possible within the 
variable selection method.  

 

Fig. 8: Model validation for the two variable input set after 
multivariate correlation analysis 

From process experts knowledge we know that in this case 
the optimized input structure of the data based model matches 
exactly the physical model structure. So we have shown that 
the dimension of the approximated input space can be 
optimized by multivariate correlation analysis without losing 
important information of the underlying process. We even 
achieved a gain in validation quality compared to some used 
variable selection methods. 

4.2  Example Two 

Now we chose another variable as the target (Fig. 9), the 
denotation is like in example one. 

 

Fig. 9: Training data (left) and validation data (right) of the 
target variable 

Performing again the presented types of variable selection we 
obtained different input variable sets with a range between 9 
and 21 input variables. The best input set we got of these was 
the LinOrth set. Even this model had a poor model validation 
quality of 0.2976 (Fig. 10). 

The worst model we obtained (SFS) had a validation quality 
of 0 and is shown in Fig. 11. 

After applying multivariate correlation analysis to the input 
variable sets obtained by variable selection we got two 
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different sets of input variables. In two cases we got the set 

20 524,x x . In the two other cases we got the input variable set 

20 518 524, ,x x x . The validation quality of these two input data 
sets show a negligible difference from 0.9933 to 0.9946. The 
validation for the two variable input set can be seen in Fig. 
12. 

 

Fig. 10: Model validation for the LinOrth input set 

 

Fig. 11: Model validation for the SFS input set (the scale of 
the y-axis is different to Fig. 10) 

 

Fig. 12: Model validation for the two variable input set after 
multivariate correlation analysis 

In this case we achieved a big gain in validation quality 
compared to use only variable selection by applying 
multivariate correlation analysis. 

5. CONCLUSIONS 

We presented a multivariate pseudo correlation analysis for 
complex systems where the reduction of the input space is an 
important task. Especially for black box processes with no 
available process expert knowledge and with missing 

information inside promising results could be obtained, even 
with very high dimensional data. Common variable selection 
methods represent generally a good basis for data based 
modeling but are often useless for process experts because 
the input structures frequently consist of trivial coherences 
between process parameters. An extensive conformity 
between the calculated input structures and the physical 
model structures strengthen the process expert that the 
relevant physical phenomena and influence parameters are 
taken into account. Mainly for systems with low or even 
missing process knowledge, optimized structures represent an 
important prerequisite to optimize process understanding and 
technology know-how. Consequently the next development 
steps should show the robustness of the method with other 
plant characteristics and the performance should be proved 
systematically for nonlinear relationships between process 
variables. 
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