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Abstract: We propose the use of Bayesian approach to a reactive robot control in conjunction
with a nonlinear filtering scheme known as particle filters. The approach integrates the optimal
control from Bayesian framework with one of the path planning methods known as Vector
Field Histogram. Doing this ensures the particle filtering method to track an optimal steering
direction. In addition, collision avoidance method is inherently embedded into that scheme due
to the fast computing power and a simple implementation of these integrated approach.

1. FROM BAYESIAN TO PARTICLE FILTERS

The Bayesian approach provides a formal framework
such that measurements, parameter estimation errors, and
state/control trajectory costs are to be evaluated. The
particle filtering methods allow us to carry out Bayesian
parameter and state estimation for a quite general class
of nonlinear stochastic systems. In order to obtain the
estimate of the system, two models are introduced as
follows: a dynamic model and a observation model.The
dynamic model here describes the evolution of the state
of the system with time. On the other hand, the observa-
tion model encapsulates the noisy uncertainty present on
measuring the current state.

To explicitly deal with the uncertainty present in the
observations and the dynamics, the Bayesian approach
represents its estimate of the system state as a posterior
probability density function (pdf ) computed based on all
available information. First, a mathematically tractable
representation of the system is needed, often called a
state-space model. In the case of detecting the obstacles,
state could for example be the position and angle of the
obstacles. The state of the system at time t is represented
by a random variable xt. Assuming that there are T
frames of data to be processed, and at time t only data
from times 1 . . . t − 1 are available, the measurements at
time t are labeled zt and will contain a list of feature
measurements. The measurements up to t are denoted Zt,
Zt = {z1, · · · , zt}.
The objective of a Bayesian filter is now to find the pos-
terior density p(xt|Zt) conditioned over all observations
until time t, using Bayes’ formula:

p(xt|Zt) = p(xt|zt, Z
t−1)

=
p(zt|xt, Z

t−1)p(xt|Zt−1)

p(zt|Zt−1)

=
p(zt|xt)p(xt|Zt−1)

p(zt|Zt−1)

(1)

A full description of this standard particle filter is beyond
the scope of this paper, but the interested reader is
referred to Ryu et al [2006] for further details. For the
sake of understanding the algorithm in this paper, it is
sufficient to know that each posterior distribution p(xt|Zt)

is represented by a collection of M particles {ω(i)
t , i =

1, 2, ..., M}. It allows that properties of the posterior
distribution can be estimated directly from the collection
of particles.

Suppose we have two conditional probabilities relating to
detection of the obstacle given that all we know is range
and angle as follows:

p(Xt|Zt
Range) (2)

p(Xt|Zt
Angle) (3)

We can combine the evidence from Equation (2) and (3)
and apply Bayes’ rule on them. Since it is very difficult to
estimate conditional probability for evidence combination,
we simplify the application of Bayes’ rule to add one
evidence at a time, which is called Bayesian updating.

The first statement of Equation (4) can be read as the
probability of the current state (i.e., detection of obstacle)
at time t given that all we know is the range and angle from
sensor. Therefore, we can reformulate the above equations
as follows:

p(xt|Zt
range, Z

t
angle) =

p(xt|Zt
angle)p(Zt

range|Zt
angle, xt)

p(Zt
range|Zt

angle)

=
p(xt)p(Zt

angle|xt)p(Zt
range|xt)

p(Zt
range)p(Zt

range|xt)

= αp(xt)p(Zt
angle|xt)p(Zt

range|xt)

(4)

where α is normalization factor, p(xt) prior for the tran-
sition model, and p(Zt

angle|xt)p(Zt
range|xt) observation

model. Equation (4) basically is derivation of the following
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rules: conditional independence of each added observation
and Bayesian updating rule. It is noted that this simplified
form of Bayesian updating only works when the condi-
tional independence relationships hold.

1.1 Observation Likelihood Model

The observation likelihood is probabilities that provide a
representation for expressing the certainty about active
cell (i,j). Therefore, we must have a function, which trans-
fers a laser scanner reading into appropriate probability for
each active cell. The following equations are a set of func-
tions which quantify the observation models of Equation
(4) into probabilities.

p(Zt
angle|xt) = 1 − (

θ

Amax

)2

p(Zt
range|xt) = 1 − (

r

Rmax

)2
(5)

where Rmax and Amax are the maximum detection range
and the scanning angle, respectively. Equation (5) indi-
cates that the higher the observation likelihood is, the
closer the obstacles is to the acoustic axis and likewise
the nearer the active cell (i,j) is to the origin of the laser
scanner.

1.2 Dynamic Model

The prior probability for characteristics of the environ-
ment, p(xt), should be expressed as the transition model
(i.e., prediction). Since we know that Markovian dynamics
is inherently embedded in the prior. We can derive the
prior probability as follows:

p(xt, xt−1) =

∫

t−1

p(xt|xt−1)p(xt−1|Zt−1
r,a )dxt−1 (6)

2. COMPUTING STEERING DIRECTION

Polar obstacle density consists of the probability value
since each certainty value is computed based on the
observation model. If we only regenerate the particles
over the polar obstacle density according to the prediction
model, we can complete the particle filtering procedure
and result in choosing the most traversable valley in Figure
1.

The similarity measure D is derived based on the Bhat-
tacharyya similarity coefficient and can be defined as fol-
lows Ryu et al [2006]:

D[γ, δt] =

√

√

√

√1 −
N

∑

i=1

√

γiδi,t (7)

where γ and δ are discrete probability distribution of
reference features and candidate features, respectively.
As a result, the smaller D is, the more similar the two
distributions are. In the context of the particle filter,
we use the normal gaussian distribution to evaluate the
likelihood between them as follows:

Fig. 1. Transaction from polar obstacle density to obser-
vation likelihood

π(D) =
1√
2πσ

ǫ−
D

2

2σ2 (8)

where the width of the likelihood is controlled by the
variance parameter σ2 in the function of D.

3. CONCLUSION

This paper presents the probabilistic control for the mobile
robot integrated with the Vector Field Histogram. In
order to impart a decision making control to the mobile
robot, the particle filtering approach is derived given the
two evidences. Since the VFH inherently generates the
1D polar obstacle density, we are able to compute the
similarity measurement without modifying the standard
particle filter approach.
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