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Abstract
In this paper we consider how to extend the regularity notion of usual singular (descriptor)
systems to singular systems with Markovian jumping parameters. Three regularity definitions
are introduced: the first one is based on a collection of matrices which defines the transitions of
the continuous state and the other ones take into account the stochastic nature of the system, by
using information regarding conditional first and second moments. Numerical examples illustrate
the difference between these three notions.
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Descriptor systems.

1. INTRODUCTION

A problem of prime concern in many practical situations is
related to analysis of dynamical systems which are subject
to abrupt changes in their parameters. In this paper, we
consider particularly that class of systems which can be
modeled as a discrete-time linear descriptor (singular)
system with abrupt changes that can be described by
Markovian chain with finite state-space. The associated
literature has increased steadily, with particular attention
to continuous-time singular systems with Markov jumping
(see Ibrir and Boukas [2003], Yan-Ming et al. [2005], Xu
and Lam [2006]).

The study of singular linear system with Markov jump
parameter (SLSMJP) is motivated, for example, by the
fact that systems in singular formulation frequently arise
naturally in the process of modeling (see Xu and Lam
[2006], and references in therein). During the past ten years
much attention has been devoted to investigate such a class
of stochastic systems (Costa and do Val [2002], Costa et al.
[2005], de Souza et al. [2006] and the references therein),
which is of both practical and theoretical importance.

For standard singular systems, the most primary condition
to be verified is the regularity property (Yip and Sincovec
[1981], Lewis [1986], Dai [1989]). This is due to the fact
that regularity assures that the system has solutions and
each solution is unique for each admissible initial condi-
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tion. We observe that the attempts to extend this notion
to singular systems with Markov jumping found in the
literature usually consider the regularity of each subsys-
tem. They do not consider the stochastic nature of the
system. These attempts can be considered as a particular
case of our first notion of regularity which is based on the
analysis of a collection of matrices. This first definition
does not fully take into account the stochastic nature of
the SLSMJP. It also disregards the available information
on the transition probabilities of the jump variable (despite
it considers the matrices that characterizes the continuous
state transitions), see Xu and Lam [2006].

Therefore, two more notions are introduced related to the
first and the second moment of a certain system variable,
respectively. It turns out that the three definitions are not
equivalent. However we can show that second moment
regularity implies first moment regularity. More insight
about the difference among the three notions of regularity
is provided by some numerical examples.

The paper is organized as follows. In Section 2 we present
notation and preliminary concepts. The concepts of regu-
larity for SLSMJP are described in Section 3. In Section 4
we present numerical examples.

2. NOTATION AND PRELIMINARY CONCEPTS

Let Rn be the Euclidean linear space formed by n-vectors.
Let Rr,n (respectively, Rr) represent the normed linear
space formed by all r×n real matrices (respectively, r×r)
and Rr0 (Rr+) the closed convex cone {U ∈ Rr : U =
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U ′ ≥ 0}, (the open cone {U ∈ Rr : U = U ′ > 0}), where
U ′ denotes the transpose of U ; U ≥ V (U > V ) signifies
that U − V ∈ Rr0 (U − V ∈ Rr+). Let Mr,n denote the
linear space formed by a number N of matrices such that
Mr,n = {U = (U1, . . . , UN ) : Ui ∈ Rr,n, i = 1, . . . , N};
also, Mr ≡ Mr,r. We denote by Mr0 (Mr+) the set
Mr when it is made up of Ui ∈ Rr0 (Ui ∈ Rr+) for all
i = 1, . . . N . We denote the expectation E{·|x0, θ0} symply
by E{·}.
Define the operators ϕ : Rm×n → Rmn and ϕ̂ : Mn0 →
Rn2N as follows. For V ∈ Rn, let vi, 0 ≤ i ≤ n, be such
that V =

[
v1

... v2

... · · ·
... vn

]
and let

ϕ(V ) :=

 v1

...
vn

 .

For U = (U1, . . . , UN ), we introduce the linear and invert-
ible operator Costa and Fragoso [1993] ϕ̂(U) : Mn0 →
Rn2N as:

ϕ̂(U) :=

 ϕ(U1)
...

ϕ(UN )

 .

The operators ϕ(·) and ϕ̂(·) are employed throughout
this paper in order to facilitate the handling of various
technical details.

For the Kronecker product L ⊗ K ∈ Rn2
defined in the

usual way, we have the next proposition, presented in
Brewer [1978].

Proposition 1. For any L, K ∈ Rn

(i) (L⊗K)′ = L′ ⊗K ′

(ii) for H ∈ Rn, Y = LKH ′ ⇔ ϕ(Y ) = (H ⊗ L)ϕ(K)

Consider the standard linear singular system (SS)

Sx(k + 1) = Fx(k), (1)

where x ∈ Rn is the state variable, F is real constant
matrix of appropriate dimension, and the matrix S may
be singular, with rank(S) = nS ≤ n. The next definition
is standard in the literature of SS (see Dai [1989], Yip and
Sincovec [1981], and references therein).

Definition 2.1. The pencil (S, F) is called regular if there
exist a constant scalar λ ∈ C such that |λS + F | 6= 0, i.e.,
det(λS − F ) 6= 0 except a finite number of λ ∈ C, where
C is the field of complex numbers.

The following characterization for regularity, presented
in Dai [1989], Yip and Sincovec [1981], is based on the
analysis of matrix pencils Gantmacher [1974] and on the
analysis of discrete descriptor systems Luenberger [1978].

Theorem 1. The following statements are equivalent.

(i) (S, F ) is regular;
(ii) If X(0) is the null space of F (denoted by Ker(F ))

and X(k) = {x|Fx ∈ SX(k − 1)}, then Ker(S) ∩
X(k) = 0, for k = 0, 1, . . . ;

(iii) If Y (0) = Ker(FT ), Y (k) = {x|F ′x ∈ S′Y (k − 1)}
then Ker(S′) ∩ Y (k) = 0, for k = 0, 1, . . .;

(iv) Let

G(t) =


S
F S

F
. . .
. . . S

F

 ∈ R(t+1)n×nt.

Then rank(G(t)) = nt, t = 1, 2, . . .;
(v) Let

H(t) =


S F

S F
. . . . . .

S F

 ∈ Rnt×n(t+1).

Then rank(H(t)) = nt, t = 1, 2, . . .;
(vi) rank (G(n)) = n2;
(vii) rank (H(n)) = n2.

We consider the discrete-time SLSMJP, defined in a fun-
damental probability space (Ω, F̄ , P), as

Φ :
{

Sθ(k+1)x(k + 1) = Fθ(k)x(k), k = 0, 1, . . .

x(0) = x0, θ(0) = θ0
(2)

where the variable x ∈ Rn is referred to as the continuous
state, or simply state, θ is the state of an underlying
discrete-time homogeneous Markov chain Θ = {θ(k); k ≥
0} having N = {1, . . . , N} as state space and P =
[pij ], i, j = 1, . . . , N as the transition rate matrix. The
matrices Fi and Si, i = 1, . . . , N , belong to the collections
of N real constant matrix: F = (F1, . . . , FN ), dim(Fi)=
n × n, and S = (S1, . . . , SN ), dim(Si)= n × n, may be
singular, with rank(Si) = rSi ≤ n.

For a set A ∈ F̄ the indicator function 1A is defined in the
usual way, that is, for w ∈ Ω,

1A(w) =
{

1 if w ∈ A
0 otherwise

Notice that for any i = 1, . . . , N , 1{θ(k)=i}(w) = 1 if
θ(k) = i, and 0 otherwise.

At time step k, assuming θ(k) = i and θ(k + 1) = j, the
dynamics are governed by the form

Sjx(k + 1) = Fix(k). (3)
That is, we have random switches between descriptor
systems. The aim of this paper is to study how to extend
the regularity notion of descriptor system to SLSMJP. We
present here three different concepts. One notion considers
the behavior of the system for each possible realization
of θ, as it considers (3) for each possible combination
of i, j ∈ N , and the other ones rely on the transition
probabilities of the jumping system, in such a manner that
realizations of θ with zero probability are disregarded.

3. THE CONCEPTS OF REGULARITY FOR SLSMJP

Regularity notions for dynamical systems are related to
the idea of existence and uniqueness of solution for any
given admissible initial condition. Since the SLSMJP is a
stochastic system, there are many ways of characterizing
existence, giving rise to different notions of regularity. The
notions that we introduce in this section are related to
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the first and second moments of the process x(k), via the
quantities

qi(k) := E
{
x(k)1{θ(k)=i}

∣∣ x0, θ0

}
∈ Rn;

Qi(k) := E
{
x(k)x′(k)1{θ(k)=i}

∣∣ x0, θ0

}
∈ Rn.

At this point we are in position to introduce one regu-
larity concept requiring the existence and uniqueness of
SLSMJP.

Definition 3.1. The System Φ is said to be regular if
det(λSj − Fi) is not identically zero for each j, i ∈ N ,
except a finite number of λ ∈ C.

Note that the above definition does not fully take into
account the stochastic nature of the SLSMJP, in the
sense that it disregards the available information on the
transition probabilities, P. It basically requires that, for
any realization of the Markov chain, ω → {θ(0), θ(1), . . .},
the associated pairs (Sθ(k+1), Fθ(k)), k ≥ 0, are regular,
even for ω such that P(ω) = 0.

In what follows we introduce the regularity notions asso-
ciated with the quantities qi(k) and Qi(k). We first derive
recursive equations for qi(k) and Qi(k). Let Im denote
the m × m identity matrix and, for Di ∈ Mn, i =
1, . . . , N, diag(Di) be the Nn × Nn matrix with Di in
the diagonal and zero elsewhere. We define

(i) F := (P′ ⊗ In) diag(Fi) ∈ RNn;
(ii) S := diag (Si) ∈ RNn;

(iii) V := (P′ ⊗ In2) ∈ RNn2
;

(iv) H := diag (Fi ⊗ Fi) ∈ RNn2
;

(v) F := V H ∈ RNn2
;

(vi) S := diag (Si ⊗ Si) ∈ RNn2
;

(vii) q̂(k) =


q1(k)
q2(k)

...
qN (k)

 ∈ RNn ;

(viii) Q = (Q1, . . . , QN ) ∈Mn0.

Theorem 2. For k = 0, 1, . . .

(a) Sq̂(k + 1) = Fq̂(k)
(b) Sϕ̂(Q(k + 1)) = F ϕ̂(Q(k))

Proof. (a).

E
{
Sθ(k+1)x(k + 1)1θ(k+1)=j

}
= E

{
Fθ(k)x(k)1θ(k+1)=j

}
SjE

{
x(k + 1)1θ(k+1)=j

}
=

N∑
i=1

E
{
Fθ(k)x(k)1θ(k+1)=j1θ(k)=i

}
Sjqj(k + 1) =

N∑
i=1

pijFiqi(k)

(4)

Equation (4) can be equivalently written as


S1 0 . . . 0
0 S2 . . . 0
...

...
. . .

...
0 0 . . . SN




q1(k + 1)
q2(k + 1)

...
qN (k + 1)



=


p11F1 p21F2 . . . pN1FN

p12F1 p22F2 . . . pN2FN

...
...

. . .
...

p1NF1 p2NF2 . . . pNNFN




q1(k)
q2(k)

...
qN (k)

 ,

(5)

which leads to the result in (a) with

q̂(k) =
[
q′1(k) q′2(k) · · · q′N (k)

]′
.

(b). Consider

Wj(k + 1) = E
{

Sθ(k+1)x(k + 1)x′(k + 1)

S′θ(k+1)1{θ(k+1)=j}

}
= SjE

{
x(k + 1)x′(k + 1)1{θ(k+1)=j}

}
S′j

= SjQj(k + 1)S′j , j = 1, . . . , N

(6)

or, equivalently,
W1(k + 1)
W2(k + 1)

...
WN (k + 1)

 =


S1Q1(k + 1)S′1
S2Q2(k + 1)S′2

...
SNQN (k + 1)S′N

 . (7)

Employ Proposition 1 into (7) yields

ϕ̂(W (k + 1)) =

S1 ⊗ S1 · · · 0
...

. . .
...

0 · · · SN ⊗ SN


× ϕ̂(Q(k + 1))

(8)

i.e.,
ϕ̂
(
W (k + 1)

)
= S ϕ̂

(
Q(k + 1)

)
. (9)

On the other hand, Wj(k + 1) can also be written as

Wj(k + 1) = E
{(

Fθ(k)x(k)
) (

Fθ(k)x(k)
)′

1{θ(k+1)=j}

}
= E

{
Fθ(k)x(k)x′(k)F ′

θ(k)1{θ(k+1)=j}

}
=

N∑
i=1

E
{(

Fθ(k)x(k)x′(k)F ′
θ(k)

)
1{θ(k)=i}

1{θ(k+1)=j}

}
=

N∑
i=1

pijFiE
{
x(k)x′(k)1{θ(k)=i}

}
F ′

i

=
N∑

i=1

pijFiQi(k)F ′
i

(10)

i.e., W1(k + 1)
...

WN (k + 1)

 =

 p11F1Q1(k)F ′
1 + . . . + pN1FNQN (k)F ′

N
...

p1NF1Q1(k)F ′
1 + . . . + pNNFNQN (k)F ′

N

 .

(11)
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Employing Proposition 1 into (11), we can check that
ϕ̂(W (k + 1)) = F ϕ̂(Q(k)) (12)

and, identifying (9) and (12),
S ϕ̂

(
Q(k + 1)

)
= F ϕ̂

(
Q(k)

)
. (13)

♦

Theorem 2 shows that the quantity q (related to the first
moment of process x(k)) evolves in time as a state of a SS,
satisfying the difference equation (1) with (S, F ) replaced
by (S, F). Similarly, Q (related to the second moment of
x(k)) satisfies (1) with (S, F ) replaced by (S,F). This
provides a natural way for extending the Definition 2.1
to SLSMJP, as follows.

Definition 3.2. The System Φ is said to be first moment
(f.m.) regular if (S, F) is regular.

Definition 3.3. The System Φ is said to be second moment
(s.m.) regular if (S, F) is regular.

Theorem 1 can be applied to check regularity of the pencil
(S+λF), immediately leading to the next result, presented
here without proof. See Yip and Sincovec [1981], Dai
[1989], and references therein for similar proofs.

Theorem 3. The following statements are equivalent.

(i) The System Φ is f.m. regular;
(ii) If X(0) = Ker(F), X(k) = {x|Fx ∈ SX(k − 1)}, it

must be Ker(S) ∩X(k) = 0, k = 0, 1, . . .;
(iii) If Y (0) = Ker(FT ), Y (k) = {x|FT x ∈ ST Y (k − 1)},

Ker(ST ) ∩ Y (k) = 0, k = 0, 1, . . .;

(iv) Let

G(t) =


S
F S

F
. . .
. . . S

F

 ∈ R(t+1)nN×Nnt.

Then rank(G(t)) = Nnt, t = 1, 2, . . .;

(v) Let

H(t) =


S F

S F
. . . . . .

S F
S F

 ∈ RNnt×Nn(t+1).

Then rank(H(t)) = Nnt, t = 1, 2, . . .;

(vi) rank (G(Nn)) = N2n2;
(vii) rank (H(Nn)) = N2n2.

Theorem 4. The following statements are equivalent

(i) The System Φ is s.m. regular;
(ii) If X(0) = Ker(F), X(k) = {x|Fx ∈ SX(k − 1)}, it

must be Ker(S)∩ X(k) = 0;
(iii) If Y (0) = Ker(FT ), Y (k) = {x|FT x ∈ ST Y (k−1)},

Ker(ST ) ∩ Y (k) = 0;

(iv) Let

G(t) =


S
F S

F
. . .
. . . S

F

 ∈ R(t+1)n2N×Nn2t.

Then rank(G(t)) = Nn2t, t = 1, 2, . . .;

(v) Let

H(t) =


S F
S F

. . . . . .
S F
S F

 ∈ RNn2t×Nn2(t+1).

Then rank(H(t)) = Nn2t, t = 1, 2, . . .;

(vi) rank (G(n2N)) = N2n4;
(vii) rank (H(n2N)) = N2n4.

Remark 1. Note that, when we consider Sj = In, i ∈ N ,
the System Φ reduces to a non-singular Markov jump
linear system. Accordingly to Definitions 3.1 – 3.3, this
system is regular, f.m. regular and s.m. regular, respec-
tively. Indeed, it is a well-known fact that solutions for
non-singular Markov jump systems (with finite Markov
state space) exist and are unique, see e.g. Costa et al.
[2005].

Remark 2. Consider the case when N = 1, sometimes
referred to as a “degenerated” Markov jump case. It is
a straightforward task to check that the SLSMJP reduces
to a SS and that the Definitions 3.1 – 3.3 are equivalent
to require that (S1, F1) is regular.

3.1 Relation between the first moment and second moment
regularity

In this section we show that s.m. regularity is stronger
than f.m. regularity, by employing the characterizations
for regularity given in theorems 3 and 4.

Lemma 1. If rank(H(t)) is full then rank(H(t)) is full.

Proof. We present here only a sketch of the proof. We
consider the case n = 2 and N = 2, for notational
simplicity; systems with larger dimensions can be handled
similarly. Let

S1 =
[
s111 s121

s211 s221

]
, S2 =

[
s112 s122

s212 s222

]
,

F1 =
[
f111 f121

f211 f221

]
, F2 =

[
f112 f122

f212 f222

]
and P =

[
p11 p12

p21 p22

]
.

By Theorem 3 we have

H(t) =


S F 0 · · · 0
0 S F · · · 0
...

...
. . . . . .

...
0 0 · · · S F

 , t = 1, 2, . . .

and, by Theorem 4,
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H(t) =


S F 0 · · · 0
0 S F · · · 0
...

...
. . . . . .

...
0 0 · · · S F

 , t = 1, 2, . . .

The result can be proved by considering the negative
implication, that is, we show that if H(t) is not full rank
then H(t) is also not full rank for each t = 1, 2, . . . In this
situation, there exists a linear combination of the rows of
H(t) that equals to zero with scalar coefficients βi, not all
equal to zero. This leads, in particular, to the following set
of equations

β1s111 + β2s211 = 0
β3s112 + β3s212 = 0
β1p11f111 + β2p11f211

+ β3p12f111 + β4p12f211 = 0

(14)

Taking the squares in the first equality in (14), we imme-
diately get that

β2
1s2

111
+ β1β2s111s211 + β1β2s111s211 + β2

2s2
211

= 0 (15)
and multiplying the thirty equation of (14) by f111

β1p11f
2
111

+ β2p11f111f211

+ β3p12f
2
111

+ β4p12f111f211 = 0
(16)

and by f211

β1p11f111f211 + β2p11f
2
211

+ β3p12f111f211 + β4p12f
2
211

= 0
(17)

We need to analyze for which values of αi, i = 1, . . . , Nn2t,
the following equation holds

α1H1 + α2H2 + . . . + αNn2tHNn2t = 0 (18)
where Hl is the l-th row of matrix H(t), t = 1, 2, . . . In
particular for t = 1 and we rewrite (18) as

α1H1 + α2H2 + . . . + α8H8 = 0. (19)
From (19) we have that

α1s
2
111

+ α2s111s211 + α3s211s111 + α4s
2
211

= 0. (20)
Identifying (15) and (20) we are able to find αi as function
of βj with α1 = β2

1 , α2 = α3 = β1β2 and α4 = β2
2 however,

from (19) we also have

α1p11f
2
111

+ α2p11f111f211 + α3p11f111f211

+ α4p11f
2
211

+ α5p12f
2
111

+ α6p12f111f211

+ α7p12f111f211 + α8p12f
2
211

= 0.

(21)

adding (16) and (17) we get

β1p11f
2
111

+ β2p11f111f211 + β1p11f111f211

+ β2p11f
2
211

+ β3p12f
2
111

+ β4p12f111f211

+ β3p12f111f211 + β4p12f
2
211

= 0
(22)

and identifying in (21) and (22) we are able to find αi

as function of βj with α1 = α3 = β1, α2 = α4 = β2,
α5 = α7 = β3, α6 = α8 = β4. Note that α1 = β2

1 and
α1 = β1, α2 = β1β2 and α2 = β2, α3 = β1β2 and α3 = β1,
and α4 = β2

2 and α4 = β2 so β1 = β2 with β1 = 0 or
β1 = 1. Thus we can find non zero αi satisfing (19), hence
the claim.

♦

4. NUMERICAL EXAMPLES

Example 4.1. Consider the system

S1 =
[
0 0
0 1

]
, S2 =

[
1 0
1 0

]
, F1 =

[
1 0
0 1

]
F2 =

[
0 0
0 1

]
and P =

[
1 0

0.5 0.5

]
.

Note that
det (λS1 − F2) = 0,

so, by Definition 3.1, we have that this system is not
regular, but by Theorem 3 this system is f.m. regular even
though by Theorem 4 this system is not s.m. regular.

Note that, in Example 4.1 the system is neither regular by
Definition 3.1 nor s.m. regular, although it is f.m. regular.
This example show that regularity of f.m. not imply in
regularity of s.m., i.e. the converse of Lemma 1 does not
hold.

The next example presents one case when the system is
regular, according to Definition 3.1, but it is neither f.m.
nor s.m. regular.

Example 4.2. Consider the system

S1 =
[
0 0
0 1

]
, S2 =

[
0 0
1 0

]
, F1 = F2 =

[
1 0
0 1

]
and P =

[
0.5 0.5
0.5 0.5

]
.

Note that
det (λS1 − F1) = det (λS1 − F2) 6= 0
det (λS2 − F1) = det (λS2 − F2) 6= 0,

so, by Definition 3.1, this system is regular, and by
Theorem 4 we have that this system is not s.m. regular.
This shows that regularity by Definition 3.1 does not imply
in regularity by the second moment.

5. CONCLUSION

In this paper we provide regularity concepts for SLSMJP.
In Definition 3.1 we present a concept that is based on a
collection of matrices which defines the system, but it does
not take into account the transition probabilities of the
jump process. Statistical information should be relevant
to characterize the system behavior, and in Definitions 3.2
and 3.3 we present f.m. and s.m. regularity notions that
rely on this information, via the conditional moments of
Theorem 2. We show in Lemma 1 that s.m. regularity
implies f.m. regularity and, in Example 4.1, that the
converse of Lemma 1 does not hold. Example 4.2 shows
that regularity by Definition 3.1 does not imply s.m.
regularity.
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