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Abstract:

Model predictive control (MPC) is an excellent approach for controlling systems with con-
straints. For nonlinear systems, nonlinear model predictive control (NMPC) is a natural solution,
but it seems to be not suitable for system with relative fast dynamics. The main disadvantage
is the time needed for solving the corresponding optimisation problem. Different approaches
are used to simplify the optimisation problem and most of them yield an approximated optimal
solution. It may happen that the best plant performances are obtained on the constraint borders.
Thus, a controller that is able to handle and to work as close as possible to constraints without
violating them, is desired. A faster computational power availability and improvements on the
algorithms, make both the academic community and the industry to work intensively on the
feasibility of using MPC on faster dynamics systems. In this work a model predictive control
approach for controlling the depth of an underwater vehicle, with relatively fast nonlinear
dynamics, is presented. Three different approaches are considered. For the internal model both a
linear time invariant (LTI) and a linear time varying (LTV) model are implemented. A constant
input weight is used for the LTI model, while for the LTV model also a state dependent input
weight is utilised. The latter shows improvement on the control performance. An Extended
Kalman Filter is used for state estimation.

1. INTRODUCTION

Model predictive control is a control technique that uses a
mathematical model to predict the future response of the
plant within a future time horizon. A specific performance
index is defined by a cost function. The prediction is done
every control interval, and together with the cost function,
it is used to attempt an optimisation of the future plant
behaviour. As result of the optimisation, a sequence of fu-
ture manipulated variables is produced. The first element
from the optimal sequence is chosen and applied as input
to the plant, then the entire computation is repeated from
the subsequent control interval. MPC is also recognised
as a receding horizon control, because of the prediction
window moving strategy.
MPC has been used and developed in industry for long
time before the academic control community started to fo-
cus its attention on it. In Maciejowski (2002) it is observed
that MPC is the only advanced control technique that has
had a wide use in industrial process control. The main
reason of its success is the ability to handle equipment
and safety constraints. A survey of available commercial
model predictive controllers, both linear and nonlinear, is
provided in Qin and Badgwell (2003).
In linear MPC, a linear internal model is used to predict
the system dynamics. However, the closed loop system
can present a nonlinear dynamics due to the existence of

constraints. Since many systems are described by nonlin-
ear models nowadays, an active research is focusing on
nonlinear model predictive control. The main reason is
that a nonlinear internal model allows us to take into
account the nonlinearities in the controller. Often the
performance is improved by working as close as possible to
the constraints. Then nonlinear model predictive control
comes as a natural way of handling that. A comprehensive
introduction on NMPC can be found in Findeisen and
Allgöwer (2002). However, there are two complications
relative to the NMPC: the stability issue and the com-
putational burden.
The stability issue for linear MPC has been analysed and
solved, for example by using a Fake Riccati Algebraic
equation (Bitmead et al. (1990)), or using a terminal
constraint (Mosca and Zhang (1992)), or a infinite horizon
predictive control (Rossiter et al. (1996)). Concerning the
NMPC stability, appreciable work is done in Michalska
and Mayne (1993) where a terminal inequality constraints
is added, such that the controller regulates the state into a
feasible region. Furthermore, a local linear state feedback
controller is designed to obtain the convergence, once the
state is in that region, to an equilibrium point. In Magni
and Sepulchre (1997) an alternative stability result is given
by the use of a Fake Hamilton Jacobi Bellman equation.
They showed that the stability margin of the receding
horizon control is comparable to an optimal control law.
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The computational burden is mainly due to the complexity
of solving the constrained nonlinear optimisation prob-
lem on-line. Due to this the computational delay can be
relevant. Moreover the non-convexity of the optimisation
problem gives no guarantee of finding always a global op-
timal solution. The computational burden is particularly
crucial in systems with relatively fast dynamics. A suitable
method to solve the optimisation problem in a known time
period is to formulate the problem as a convex optimisa-
tion problem by using a linear internal model. This was
applied in Falcone et al. (2007) for the active steering of
cars. Due to the fast dynamics involved, they used a linear
time varying MPC based on the on-line successive lineari-
sation of the nonlinear vehicle model. Another interesting
approach is the gain-scheduling MPC approach discussed
in Chisci et al. (2003), where a considerable part of the
computation is executed off-line. In Sutton and Bitmead
(1998) a model predictive control of an underwater vehicle
is described and compared to LQG control.
In this work a model predictive control approach for con-
trolling the nonlinear dynamics of an underwater vehicle,
relatively fast, is presented where a linear internal model
is used to reduce the computational load. It is shown
how the introduction of a state dependent weight in the
cost function leads to improved control performance with
respect to the use of a constant input weight. The state
dependent weight idea in the cost function, resembles
the use of a varying controller gain adopted in the gain
scheduling techniques (see Rugh and Shamma (2000)).
By assuming a constant surge vehicle speed, the control
goal is to maintain a constant distance from the ocean
bottom, using the rudder angle as control variable. The
distance from the ocean bottom is assumed to be known
(for example measured with a Doppler velocity log (DVL)
in its usual bottom-looking configuration). An Extended
Kalman Filter is used to estimate the remaining state of
the system.
In the next section the vehicle model equations are stated.
In the third section a general formulation for the model
predictive control is described. In the fourth section a state
dependent nonlinear weight is defined, and its benefits
are explained. In the fifth section the simulation results
are presented and then conclusions are given in the sixth
section.

2. TWO DIMENSIONAL UNDERWATER VEHICLE
MODEL

Figure 1 shows a sketch of the vehicle with the reference
frames. The vehicle dynamics is given in the body-fixed
frame defined by Cxz. The surge and heave speed are
defined by u and w, respectively. The pitch angle rate
is denoted q. In the earth-fixed reference frame OXZ we
describe the motion of the vehicle as shown in (2). The
attitude of the vehicle is defined by θc.
The vehicle dynamics is described, according to Sutton
and Bitmead (1998), as

MI
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)
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where MI is the inertia matrix including the hydrody-
namic added mass, m is the vehicle mass, Dh is the damp-
ing matrix, and the buoyancy term Γg(t) is zero because
the vehicle is assumed to be neutrally buoyant. Ucw(t)
and Ucp(t) are respectively the forces and the moments
generated by the rudder and propeller. Their expressions
are given by equations (3)-(12).

V 2 , u2 + w2 (3)

ǫ , sin−1
(w

V

)

(4)

Jp ,
u

|νDp|
(5)

where ǫ is the angle between the Cx axis and the velocity
vector V. Jp is the propeller advancement coefficient, ν
is the propeller shaft rotational speed, and Dp is the
propeller diameter.
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(0.2cw cos(β) + daw)−Ucw11
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2
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3
p )

−ρ|ν|D3
pwCn

ρ|ν|D3
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 .

(12)

where Sw = bwcw is the rudder surface, and ρ is the sea
water density. Cxow, Czow, daw, bw, cw, are the rudder
characteristics, and Ct0p, Ct1p, Ct2p, Ct3p, Cn, Dap, are
the propeller characteristics (more details can be found in
Santos and Bitmead (1995)).
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The vehicle has two inputs, they are respectively the
rudder deflection β, and the propeller rotation frequency
ν, and they can be used for control purpose.
The ocean bottom position is modelled such that it will be
treated as a disturbance to be rejected by the controller.
Its model is described by the state xf which is the rate of
change of the absolute angle of the ocean bottom defined
by θ∗(t) at x∗(t). The angular velocity of the sea floor θ̇∗(t)
is modelled as the negative output of a first order filtered
white noise process driven by ξ(t) (equations 13-14):

ẋf (t) = Afxf (t) + Bfξ(t) (13)

f(t) = Cfxf (t). (14)

The relative angle θ between the ocean bottom and the
vehicle is given by

θ(t) = θc(t) − θ∗(t) (15)

which gives

θ̇(t) = θ̇c(t) − θ̇∗(t)
= q(t) + Cfxf (t).

(16)

where θ̇∗(t) = −f(t) = −Cfxf (t).
The relative distance between the ocean bottom and the
vehicle centre is given by κ(t) and its rate of change is
computed with

κ̇(t) = u(t) sin(θ(t)) − w(t) cos(θ(t)). (17)

We assume we can measure the distance between the
vehicle centre and the ocean bottom, and the measurement
is affected by a white Gaussian noise η:

y(t) = κ(t) + η(t). (18)

The system (1-17) can be written in compact form as

ẋ(t) = f (x(t), β(t), ξ(t)) (19)

where x(t) = (u, w, q, θ, κ, xf )T is the state vector, and
where the measurements are given by (18). The vehicle pa-
rameters can be found furthermore in Santos (1995). The
system (18)-(19) has a non-minimum phase behaviour, in
the sense that a positive input step change on β makes
the vehicle to accelerate in the opposite direction for
converging eventually to the steady state value of the
response. Furthermore, an inability to accelerate in an ar-
bitrary direction, due to the limited range of control value
reachable Ucw, makes the system nonholonomic. These
considerations make the control of the vehicle interesting
and suitable for investigating the model predictive control
features.
In this work a discrete time framework is used, then a
discrete time model is needed, and it can be easily obtained
by using the Euler approximation

ẋ(t) ≃
xk+1 − xk

h
(20)

Fig. 1. Vehicle reference frames

where h is the sampling time. The correspondent discrete
time model is then written as

xk+1 = f(xk, βk, ξk, h)
yk = g(xk, h).

(21)

3. MODEL BASED PREDICTIVE CONTROL

3.1 Formulation

For a generic discrete nonlinear system

xk+1 = f(xk, βk) + ωk

yk = g(xk, βk−1) + vk
(22)

where k is the sampling time index, x is the state vector,
β is the input vector, y is the measurement vector, ω and
v are Gaussian white noise vectors. The cost function to
minimise is

min
β̄

f(x, β) =

Np−1
∑

i=0

{

(xi − xiref
)Q(xi − xiref

)+

(βi − βiref
)P (βi − βiref

)
}

+
(xNp

− xNpref
)S(xNp

− xNpref
)

(23)

subjected to the following constraints

x(t = 0) = x0

βLi
≤ βi ≤ βUi

, 0 ≤ i ≤ Np

xLi
≤ xi ≤ xUi

, 0 ≤ i ≤ Np

(24)

where β̄ = {β0, β1, ..., βNp}, Np is the prediction horizon
length, and the subscript ref indicates the reference vec-
tors. In the constraint inequalities the subscript L and
U indicate the lower and upper bound, respectively. The
weights Q and S are positive semidefinite matrices, and P
is a positive definite matrix.

3.2 Internal models used for prediction

We want to use a linear internal model such that a
convex optimisation problem is obtained. Two different
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approximations of (22) are employed. The first one is a
linear time invariant (LTI) model

xi+1 = Axi + Bβi

yi = Cxi
(25)

where A, B, and C are the matrices obtained by linearising
(22) at the origin.
The second one is a linear time varying (LTV) model

xi+1 = Aixi + Biβi

yi = Cixi
(26)

where Ai, Bi, and Ci are computed by:

Ai =
∂f(x, β)

∂x

∣

∣

∣

∣

x=x∗
i
,β=β∗

i

Bi =
∂f(x, β)

∂β

∣

∣

∣

∣

x=x∗
i
,β=β∗

i

Ci =
∂g(x)

∂x

∣

∣

∣

∣

x=x∗
i
,β=β∗

i

(27)

where i = {1, 2, ..., Np}, β∗ is the tail of the optimal
solution from the previous time step, and x∗ is the state
obtained when β∗ is applied to (22). The complete algo-
rithm is described in the next section.

4. NONLINEAR STATE DEPENDENT COST
FUNCTION WEIGHT

The model predictive control cost function is chosen as in
Sutton and Bitmead (1998):

J =

Np
∑

i=0

y2
i + Pcβ

2
i + Rcθ

2
i (28)

where Pc is the input weight, and Rc is a penalty on the
angle θ in order to avoid that the vehicle heads backward.
The cost function (28) can be written in the form of (23)
where
xiref

= (0, 0, 0, 0, 0)T , βiref
= 0, xi = (wi, qi, θi, κi, xfi

)T ,

Q =











0 0 0 0 0
0 0 0 0 0
0 0 Rc 0 0
0 0 0 1 0
0 0 0 0 0











, P = Pc, and S = Q.

As it is shown in the next section, using the model (25)
and the cost function (28) the controller is able to regulate
the output, but only if the vehicle starts from a depth
relatively close to the reference, Figs. (2-3).
To increase the region of attraction a nonlinear input
weight Pc is defined as follow:

Pc = Pc(k) = aκ2
k + b (29)

where κ is the relative depth at time step k, a and b are
positive constant design parameters. Thus, for every time
step a new input weight is calculated. An estimate κ̂ of
the relative depth is obtained using an Extended Kalman
Filter. The input weight is then computed by

Pc(k) = aκ̂2
k + b. (30)

4.1 Algorithm

The MPC algorithm is applied to the time discrete non-
linear system (21). For a general time step k we:

(1) use βk and yk to estimate the state x̂k;
(2) use the tail of the optimal solution at the previous

step β∗|k−1 =
{

β∗

2 , β∗

3 , ..., β∗

Np
, 0
}

to compute the

future state x∗, within the prediction horizon Np;
(3) compute the Jacobians (27) about the predicted x∗

and β∗;
(4) calculate the state dependent nonlinear weight (30);
(5) find the optimal solution of the corresponding QP

optimisation problem;

(6) from the optimal solution β∗|k =
{

β∗

1 , β∗

2 , ..., β∗

Np

}

apply β∗

1 to the vehicle, increment k and go to the
algorithm step (1).

5. SIMULATION RESULTS

The MPC controller has been simulated in the Matlab
environment. Some relevant simulation parameters are:
sampling period h = 0.2s, input constraints |β| 6 0.5rad,
cost function weights Pc = 150 and Rc = 10 when constant
weights are used, a = 0.2, and b = 5 when the nonlinear
input weight (30) is applied. The QP problem is solved
on-line with the standard Matlab QP solver quadprog.
The control goal was to make the vehicle follow the ocean
bottom with a 50m offset. Figure 2 shows the result of
a simulation carried out using the LTI model and the
cost function (28) with the constant input weight Pc. The
vehicle was able to achieve its task, only when starting
from of maximum distance from the bottom of about 70.
As expected this result is due to the linear model obtained
by linearising the system around the origin. In fact when
the vehicle starts too far away from the reference, the
linearised model does not represent accurately the real
system. This is shown in (3) where the vehicle, starting
from 50m above the reference, fails to converge to the
assigned depth.
By employing the constant input weight and the LTV
model (26) instead of the LTI one, the region of attraction
becomes bigger. Figures 4 and 5 show the controller perfor-
mance when the vehicle starts at 20 and 50 meters above
the reference, respectively. In both cases the tracking error
converges to zero, but in the second case the control input
presents large oscillations that could damage the actuator
system.
Figures 6 and 7 are obtained employing the LTV model
with the state dependent input weight (30). The results
are improved with respect to the use of the constant input
weight. The region of attraction is larger and the control
input does not present oscillations.

6. CONCLUSIONS

In this work a model predictive control scheme for the
depth control of an underwater vehicle was implemented.
Three different approaches were considered. For the inter-
nal model both a linear time invariant and a linear time
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Fig. 2. Controlled input β, tracking error, and trajectory
in the vertical plane (with respect to the 50m vertical
offset) using the LTI model (25) and constant cost
function weights (initial tracking error 20m).
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Fig. 3. Controlled input β, tracking error, and trajectory
in the vertical plane (with respect to the 50m vertical
offset) using the LTI model (25) and constant cost
function weights (initial tracking error 50m).

varying model were implemented. For the LTI model, a
constant input weight was used while for the LTV model
also a state dependent input weight was utilised. The latter
showed improved control performance in terms of region
of attraction and convergence time.
When the vehicle is moving along the vertical, that is
for θ = −π/2, ω = 0, and q = 0, the linearised system
is unobservable. Future work is needed to analyse the
possibility of using the MPC prediction feature to deal
with this issue.
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Fig. 4. Controlled input β, tracking error, and trajectory
in the vertical plane (with respect to the 50m vertical
offset) using the LTV model (26) and constant cost
function weights (initial tracking error 20m).
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Fig. 5. Controlled input β, tracking error, and trajectory
in the vertical plane (with respect to the 50m vertical
offset) using the LTV model (26) and constant cost
function weights (initial tracking error 50m).
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Fig. 6. Controlled input β, tracking error, and trajectory
in the vertical plane (with respect to the 50m vertical
offset) using the LTV model (26) and state dependent
input weight (initial tracking error 50m).
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Fig. 7. Controlled input β, tracking error, and trajectory
in the vertical plane (with respect to the 50m vertical
offset) using the LTV model (26) and state dependent
input weight (initial tracking error 100m).
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