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Abstract: Identification of the nonlinear hysteretic behavior of a reinforced concrete (RC) bridge pier 
subjected to earthquake loads is carried out based on acceleration measurements of the earthquake 
motion and bridge responses. The modified Takeda model is employed to represent the hysteretic behavior of the 
RC pier with a small number of parameters, in which the nonlinear behavior is described by various rules of loading 
and reloading rather than analytical expressions. The sequential modified extended Kalman filter algorithm is 
proposed to identify the unknown nonlinear parameters and the state vector separately in two steps, so 
that the size of the problem for each identification procedure may be reduced and possible numerical 
problems may be avoided.  

 

1. INTRODUCTION 

For the health monitoring of civil infrastructures, it is 
important to identify the nonlinear behavior related to 
structural damage. Various system identification techniques 
are available for the identification of nonlinear structural 
dynamic systems (Yun and Shinozuka 1980, Hoshiya and 
Saito 1984, Lee and Yun, 1991; Loh and Chung, 1993; 
Yoshida and Sato , 2002; Yang et al. 2006).  

The forces induced on a bridge structure with reinforced 
concrete (RC) piers during major earthquakes may exceed the 
yield capacity of some piers and cause large inelastic 
deformations and damages in the piers as depicted in Fig. 1. 
The modified Takeda model (Roufaiel and Meyer, 1987) can 
effectively reproduce such complex nonlinear hysteretic 
behavior of RC members with a limited number of 
parameters.  

 

 

Fig. 1. Inelastic deformation of a RC bridge pier 

In this study, identification of the nonlinear hysteric behavior 
of a RC bridge pier subjected to earthquake loads is carried 
out. Only the acceleration measurements of the input 
earthquake motion and bridge responses are utilized, which 

are the easiest quantities in dynamic measurements, 
particularly for bridges with long-spans. 

A tow-step approach so called the sequential modified 
extended Kalman filter (SMEKF) algorithm with mode 
superposition with a modal sorting technique is proposed to 
identify the unknown parameters and the state vector 
separately in two steps, so that the size of the problem for 
each identification procedure may be reduced and possible 
numerical problems may be avoided. Example analyses are 
carried out for a continuous bridge model with a RC pier 
subjected to earthquake loads in the longitudinal and 
transverse directions. 

2. NONLINEAR HYSTERIC BEHAVIOR OF RC  

In this study, the modified Takeda model with axial force 
effect is employed for identification of the nonlinear 
hysteretic behavior of a RC bridge pier subjected to 
earthquake excitation.  

2.1 Moment-Curvature Curve for Cyclic Loading by the 
Modified Takeda Model 

Under load reversals, the stiffness of a RC section may 
experience degradation due to the cracking of the concrete 
and slip of the reinforcing bar. In the modified Takeda model, 
four different kinds of braches may exist in the hysteresis of 
the moment-curvature ( φ−M ) relationship as in Fig. 2, and 
each branch is defined as 

 Elastic loading and unloading; eEIEI )()( 1 = , where 

eEI )(  is the elastic stiffness of the RC member. 
 Inelastic loading; eEIEI )()( 2 α= after yield point 

),( yy Mφ , where yφ  and yM  are the yield curvature 

yφ  
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and yield moment, and α  is the ratio of the post yield 
stiffness to the elastic stiffness 

 Inelastic unloading; 3)(EI , where two points 
),( oo Mφ and )0,( +

rφ  are defined in Fig. 2.  
 Inelastic reloading; 4)(EI , which may be determined as 

in Fig. 2. 
 

 
 

 
 
 
 
 
 
 
 

 

Fig. 2. Hysteretic moment - curvature behavior of the 
modified Takeda model  

In Fig. 2, ),( ++
xx Mφ  and ),( −−

xx Mφ  are the maximum 
previous excursions in the positive and negative directions, 
which are to be updated along with 3)(EI  and 4)(EI  as the 
hysteresis proceeds. 

2.2 Significant hysteretic behavior of RC member 

Stiffness degradation; Under the load reversals well into the 
inelastic range, the stiffness of a reinforced concrete member 
decreases due to the cracking in concrete and slip of 
reinforced bars. As a consequence, a reduction in the overall 
structural stiffness occurs as in Fig 3(a). 

Pinching effect by shear force; To reflect the pinching effect, 
Roufaiel and Meyer (1987) proposed a modification of the 
reloading branch as shown in Fig. 3(b). The characteristic 
point ),( pp Mφ on the original elastic loading curve is 
determined as 

 
np εφφ =  ; np MM ε=                  ( 1 ) 

 
where 0=ε  for 5.1/ <da , 6.0)/(4.0 −= daε  for 

0.4)/(5.1 << da , 1=ε  for 0.4)/( ≥da ; =a the shear span 

length; =d the effective depth of the section; and ),( nn Mφ  
is the crossing pint of the reloading curve and the initial 
elastic loading curve. 

Pinching effect by axial force; When RC member is subjected 
to an axial load, the moment-curvature relation may alter. The 
following empirical formula was adapted for *M in Fig. 3(c) 
as 
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where ),( xx Mφ  represents the maximum previous excursion 
in the opposite direction; yφ is the corresponding curvature at 
yield; P  is the axial compressive force; oP  is the nominal 
compressive strength; and β  is the parameter which 
controls the pinching behavior by the axial force.  

Strength deterioration; If a RC member is strained beyond a 
certain critical level during cyclic loadings, its strength may 
deteriorate as shown in Fig. 3(d). The following strength drop 
index is used. 

 
5.1
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where MΔ  is the moment capacity reduction in a single 
load cycle up to curvature φ ; γ  is the strength 
deterioration parameter. 

 
(a) Stiffness degradation     (b) Shear effect 
 

 
 (c) Axial Force effect      (d) Strength deterioration 

Fig. 3. Significant hysteretic behavior of a RC member 
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3. NONLINEAR DYNAMIC ANALYSIS BY MODE 
SUPERPOSITION WITH MODAL SORTING 

Nonlinear dynamic analysis is generally carried out by means 
of a direct step-by-step integration, which involves a large 
number of degrees of freedom (DOFs) and high 
computational cost. However, a dynamic formulation with a 
large number of DOFs may cause serious difficulty in the 
present nonlinear system identification problem. Hence modal 
superposition with a modal sorting scheme is employed in 
approximation in the nonlinear dynamic analysis procedure, 
so that the size of the identification problem may be reduced 
and the efficiency and accuracy of the parameter 
identification may be improved. 

3.1 Equation of Motion 

If a structure is subjected to a severe earthquake, some weak 
elements may experience damage and the dynamic response 
of the structural system becomes nonlinear, which can be 
generally described by a nonlinear equation of motion as  

 
)(}{)()()()( tuLMtRtKUtUCtUM g−=+++       ( 4 ) 

 
where M , C and K are the mass, damping, and initial 
stiffness matrix; )(tU , )(tU , )(tU are the displacement, 
velocity, and acceleration vectors; }{L is the influence vector 
accounting the direction of the earthquake excitation; )(tug is 
the ground acceleration, and )(tR is the nonlinear residual 
force vector. If a mode superposition method is used to 
approximate and to reduce the present nonlinear dynamic 
problem, and if a diagonal modal damping is assumed, a 
series of modal equations of motion can be obtained from (4) 
as  

 
)()()(2)( 2 tftqtqtq nnnnnnn =++ ωως , ln ,,2,1=        (5) 

 
where )(),( tqtq nn and )(tqn are the modal displacement, 
velocity and acceleration for the n-th mode; nζ  and nω  are 
the corresponding damping ratio and natural frequency; and 

)(tf n  is the modal load which includes the nonlinear residual 
force. Hence, the above modal equations can be solved 
iteratively at each time by updating the nonlinear residual 
force.  

3.2 Mode Superposition Method with Modal Sorting 

When the mode superposition method is applied for the 
analysis of the dynamic systems, the truncation of modes may 
cause significant difficulty in obtaining reasonable dynamic 
response. Therefore, a modal sorting technique is proposed to 
select the modes with larger contribution to the DOF near the 
damaged location. The j-th modal contribution to the i-th 
DOF ijΞ  under earthquake load nay be evaluated as 

 
jjijij SΓ=Ξ φ                  ( 6 ) 

 
where ijφ  is the j-th eigenvector at the i-th DOF, jΓ  is the 
modal participation factor at the j-th mode; jS  is the 
deformation response spectrum of the ground motion at the j-
th natural period at jωω = . The modes are sorted by the 
order of the magnitudes of those modal contribution values 
for a specific DOF. With the sorted modal vectors, the global 
displacement vector can be obtained as 

 
)(~)( tQtU Φ=                      ( 7) 

 
where Φ~  is the matrix of the sorted eigen-vectors matrix, 
and )(tQ  is the corresponding modal displacement vector. 

4. NONLINEAR PARAMETER IDENTIFICATION OF 
BRDGES USING EXTENDED KALMAN FILTER 

For identifying the hysteretic behavior of a RC bridge pier 
under severe earthquake loads, the extended Kalman filtering 
(EKF) technique is utilized in this study.  

4.1 State Equation 

At first a series of the modal equations of motion in discrete 
time, (5), are transformed into a general form of a nonlinear 
discrete state equation at tkt Δ=  as  

 

kkkkk wkfG +ΧΧ=Χ + ));(,(1          ( 8 ) 
 
where kX  is the augmented state vector including the modal 
displacements, velocities, accelerations and the unknown 
parameters ( βα ,,yM  and γ  as defined in Section 2) as 

 

T
y

lllk

kkkkM
kqkqkqkqkqkq

)]()()()(         
 )()()()()()([ 111

γβα
=Χ

     ( 9 ) 

 
where l  is the number of modes included; and kw  is a 
system noise vector with a covariance Q .  

In (8)-(9), the state vector includes the acceleration terms in 
addition to the conventional state vector consisting of 
displacement and velocity terms. Acceleration records are 
easier to measure than displacement and velocity, particularly 
for bridges with long-spans, hence only acceleration 
measurements are utilized in the present identification 
problem. Then the observation equation can be written as 

 
kkk kh ν+= );X(Y                    (10) 

 
where kY  is the acceleration measurement vector, which 
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contains the relative accelerations at the selected nodes to the 
ground motion, and kv  is the observation noise vector with a 
covariance kR . 

4.2 Sequential Modified Extended Kalman Filter 

In this study, two steps approach so called the sequential 
modified extended Kalman filter (SMEKF) is proposed. At 
first the state vector consisting of only the system responses is 
estimated based on the concurrent estimates of the parameters 
using the EKF. Then the unknown parameters are identified 
based on the estimated state using the sequential prediction 
error method (Lee and Yun 1991, Yun et al. 1997). The 
SMEKF procedure is summarized in Fig. 4. 

 

 
 
Fig. 4. Sequential Modified Extended Kalman Filter 
(SMEKF) Algorithm 

The extended Kalman filter (EKF) is used for the sequential 
state estimation based upon the observed data of the response 
as  

 Prediction;  

),ˆ(X̂ 1 kkkkk fG Χ=+                          (11) 

k
T

kkkkkkkk QPP 111 +ΦΦ= +++                 ( 1 2 ) 

where kP  is the error covariance matrix, and  
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tfGt
X̂X

1 X
);,X(I

=
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∂Δ+=Φ             ( 1 3 ) 

 Filtering;  

]X̂HY[KX̂X̂ 1111111 kkkkkkkkk +++++++ −+=        ( 1 4 ) 
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where kK is the Kaman gain matrix, and 
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The EKF is based on the first order Taylor approximation of 
the state transition equation on the estimated state trajectory. 
However, there are limitations if the first order derivatives of 
the nonlinear terms are not well defined as in the modified 

Takeda model used in the present study, so that the state 
transition matrix kk 1+Φ  may not be adequately evaluated. 
Schei (1997) proposed an algorithm with a finite difference 
scheme to improve this limitation of the EKF as  
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where je  is small perturbation in the j-th component of the 
state vector X. 

In the sequential prediction error method, the adaptation gain 
matrix 1B +k  can be obtained as  

 
T
kkkk ΨΨ+= −−

+
11

1 BB                    (19) 
 

In (19), kΨ  is the Jacobian matrix of the observation error 

vector function )θ̂,1(e kk + and can be evaluated 
approximately using a finite difference scheme similarly to 
the state transition matrix kk /1Φ +  in (18).  

5. EXAMPLES FOR IDENTIFICATION OF HYSTERETIC 
BEHAVIOR OF RC PIERS 

5.1 Two-Span Continuous Bridge Model in Longitudinal 
Direction 

This example is a simplified continuous bridge model with a 
pier in the middle of the deck. It is assumed that a scaled El 
Centro earthquake (NS, peak ground acceleration (pga) = 
0.15g, 1940) is applied in the longitudinal direction, so the 
effect of the deck may be considered as an additional lumped 
mass on the top of the pier.  

 
Fig. 5. Two span continuous bridge model subjected 
earthquake excitation in longitudinal direction 

The first natural frequency of this model is obtained as 0.64 
Hz, while the damping ratio is assumed as 5% viscous 
damping for each mode. It is also assumed that 3% in RMS 
random noises are included in the measured ground excitation 
and acceleration response. Fig. 6 shows the measured input 
earthquake acceleration and relative acceleration response at 
the top of the pier.  

 

Nonlinear Sequential Prediction Error 
Method for Nonlinear Parameters 

)]θ̂,X̂(ŶY[ΨBθ̂θ̂ 1/11111 kkkkkkkkk ++++++ −+=  

Extended Kalman Filter for 
State Estimation 
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(a) Ground acceleration     (b) Relative acceleration 

at Node  ①  

Fig. 6. Input excitation and nonlinear responses 

In this example, the performance of two system identification 
techniques, i.e. the SMEKF and EKF, is compared Table 1 
and Figs. 7 and 8 show that the SMEKF has provided 
excellent estimates for the nonlinear parameters with the 
acceleration response measurement only at the top of the pier, 
if the first 3 modes are used in the dynamic analysis.  

 
The results also show the limitation of the EKF for multi-
degrees of freedom with a very limited number of the 
observation response; i.e. one acceleration measurement at 
the top of the pier. The recalculated acceleration responses at 
the top of the pier using the identified nonlinear parameters 
are compared with the exact value in Figs. 7(b) and 8(b). The 
response recalculated using the identified nonlinear 
parameters by the SMEKF have been found to coincide very 
well with the exact value. 
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(a) φ−M  relationship      (b) Acceleration Response 

Fig. 7. Recalculated hystereses and acceleration response 
using the estimates by the SMEKF and modal sorting (  
: Exact and  : Estimated) 
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(a) φ−M  relationship        (b) Acceleration Response 

Fig. 8. Recalculated hystereses and acceleration response 
using the estimates by the EKF and modal sorting (  : 
Exact and  : Estimated) 

5.2 Two-Span Continuous Bridge Model in Transverse 
Direction 

The second example is a two span continuous bridge model 
subjected to an earthquake load in the transverse direction. 
The bottom of the bridge pier is assumed to be damaged by a 
scaled El Centro earthquake (NS, pga = 0.4g, 1940). The 
acceleration responses in the transverse direction are assumed 
to be measured at 5 points on the bridge deck and 1 point near 
the bottom of the pier. It is assumed that 3% noises in RMS 
level are also included in the excitation and response 
measurements.  

 
Fig. 9. Two span continuous bridge model and input ground 
motion in the transverse direction 

The fundamental natural frequency of this bridge model is 
obtained as 9.3 Hz in the transverse direction (the 3rd mode). 
The viscous damping ratio is assumed as 5% for each mode. 
In this example, the mode superposition with modal sorting is 
utilized to reduce the problem size for the system 
identification. The modal contribution values in (6) were 
estimated at Node  near the bottom of the bridge pier⑥  in 
Fig. 9, in which local damage was expected during the 
earthquake.  

Table 2 shows two estimated nonlinear parameters using 

Table 1. Estimated parameters of bridge pier for 
earthquake in longitudinal direction 

Nonlinear 
Parameters 

yM  
(KN⋅m) α  β  γ  

Exact Values 1200.0 0.0100 1.0000 0.0500
Initial guesses 600.0 0.0050 0.5000 0.0250

SMEKF 849.5 0.0090 1.1373 0.0349w/ 1 
mode EKF 901.3 0.0122 0.5649 0.0421

SMEKF 1175.5 0.0093 1.0876 0.0352w/ 3 
modes EKF 892.9 0.0122 1.6470 0.0345
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various numbers of the sorted modes and SMEKF. The 
accuracy of the estimate forβ  is not so good as shown in this 
table. However, very good estimate has been obtained for the 
hysteresis as shown in Fig. 11, which indicates the 
insensitivity of the parameter for the overall hysteretic 
behavior in the present example case. 

 
The results indicate that the accuracy of the estimated 
parameters got improved with the increasing number of the 
modes included. Reasonable estimates of the parameters were 
obtained with the SMEKF, which can reproduce excellent 
hystereses as shown in Fig. 10.  
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(a) with 5-modes             (b) with 12-modes  

Fig. 10. Estimated φ−M  relationships by the SMEKF and 
modal sorting (  : Exact and  : Estimated) 

In Fig. 11, the recalculated acceleration responses with the 
identified parameters using 12 sorted modes are compared 
with the exact responses. It can be found that very accurate 
responses have been estimated. 
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(a) Accel. at Node ③         (b) Accel. at Node ⑥ 

Fig. 11. Recalculated acceleration responses by the SMEKF 
with 12 sorted modes (  : Exact and  : Estimated) 

6. CONCLUSIONS 

The hysteretic behavior of a RC bridge pier is modeled using 
the modified Takeda model. As the modified Takeda model 
defined the hysteresis with various rules of loading and 
reloading, a finite difference scheme is employed in the 
conventional extended Kalman filter (EKF) for calculating 
the state transition matrix. A mode superposition method with 
modal sorting is proposed to reduce the problem size for the 
nonlinear system identification using Kalman filtering 
techniques. The sequential modified extended Kalman filter 
(SMEKF) is also proposed to improve the convergence and to 
prevent the erroneous estimation results in practical structural 
dynamic system with a large number of DOFs, in which the 
EKF is used for the state estimation and the nonlinear 
sequential prediction error method is for the parameter 
identification.  

From the various example analyses of bridge structures, it has 
been found that both of the SMEKF and a mode superposition 
with modal sorting technique are very effective to identify the 
nonlinear hysteretic behavior and parameters involved in a 
locally damaged bridge pier with a limited measurement data 
for the acceleration responses of the bridge structure. The 
system identification for nonlinear structural dynamic 
systems was customarily carried out with displacement or 
velocity responses. However, in this study a nonlinear 
parameter identification method has been developed using the 
acceleration measurements only, which are much easier to 
measure in the practical bridge structures, such as long-span 
bridges. 
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