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Abstract: A problem of optimal path coordination for two vehicles is presented. The path
cost for the first vehicle is a discontinuous function of the relative positions of the two vehicles.
The second vehicle is required to return its starting point. The problem is formulated in the
framework of hybrid systems to model both the discontinuous dependence of the cost function
on the state variable and the operating rules. The structure of the solution is outlined in the
framework of dynamic optimization. The value of cooperation is given by a value function.

1. INTRODUCTION

Vehicle v1 has to find the optimal trajectory from some
initial location α to a destination γ. The instantaneous
path cost for v1 is reduced by a fixed amount l when
the position of this vehicle “coincides” with the position
of another vehicle, v2. v2 has a limited amount of fuel;
it departs from β 6= α and has to return to β before it
runs out of fuel. The vehicles are allowed to collaborate to
reduce the path cost for v1, but they not allowed to meet
more than once (see Figure 1). The motivation for this
problem comes from the design of operations of unmanned
air vehicles (UAV) in hostile air spaces. The probability of
survival for each UAV is directly proportional to the path
integral taken with respect to some risk function (de Sousa
et al. [2004]). The level of risk is significantly reduced
when an UAV flies under the protection of another UAV
carrying a jamming device. This is an example of a multi-
vehicle collaborative control problem. In this problem, the
vehicle trajectories are coordinated to enable the vehicles
to interact, either to improve individual performance or
to enable group behaviors, which are not achievable by an
isolated vehicle.

We formulate the optimal collaborative control problem
for v1 and v2 in the framework of hybrid systems, and find
the structure of the solution using dynamic programming
techniques. Hybrid systems model the combinatorial as-
pects of the problem and the value functions associated
to dynamic programming techniques give the value of
collaboration. Surprisingly, these models and techniques
have not been applied to collaborative control problems.

The motivation for our approach comes from two prob-
lems of motion coordination discussed in Sethian and
Vladimirsky [2002] to illustrate the use Ordered Upwind
Methods for solving optimal hybrid control applications.
This paper does not present a mathematical formulation
of these two problems, which are easily formulated in the
framework of Branicky [1995]. The first problem consists of
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finding an optimal trajectory on a surface given that there
are discrete transitions between a finite number of pre-
defined points on the continuous state-space. This problem
can be interpreted as one of motion coordination between
a person and bus running between two or more bus stops:
it may be worthwhile for this person to take the bus to
take advantage of the reduction of the instantaneous path
cost while he/she rides the bus. The directed discrete links
change only the position in the continuous state space, but
not the underlying dynamics. The problem is solved with
the help of one value function defined on the continuous
state-space. The value function gives the optimal path
cost at each point of the state-space. The second prob-
lem consists of finding an optimal trajectory for a person
walking on a varied landscape, but also carrying a pair of
inline roller skates. The person has the option to switch
between walking and skating by paying a time penalty.
This is modeled with two discrete states, thus requiring
two copies of the same continuous-time state-space. The
problem is solved with the help of a value function defined
on the hybrid state-space.

We encode our path coordination problem as an optimal
control problem for a hybrid automaton with three discrete
states. In this formulation the state of the two-vehicle
system has two components: a memoryless component,
given by the continuous state, and a component with
memory, given by the discrete state which describes the
history of motions up to the current discrete state. This is
because the system has to “remember” if the vehicles met
at a given point, to prevent them from meeting for a second
time (not allowed). The jump sets are given by the set
reachable by v2 for a round trip from β (see Kurzhanskii
and Varaiya [2001] for details on dynamic optimization
techniques for reachability analysis).

The paper is organized as follows. In section 2 we provide
some background on hybrid systems models and dynamic
optimization techniques. In section 3 we state and for-
mulate the problem in the framework of hybrid systems.
In section 4 we use dynamic optimization techniques to
characterize the solution to the problem. In section 5
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we discuss optimal strategies. In section 6 we draw the
conclusions.

2. BACKGROUND

We briefly review the literature on dynamic programming
for optimal hybrid control problems.

The problem of optimal switching for controlled ordinary
differential equations was first formulated in the frame-
work of dynamic optimization by I. Capuzzo-Dolcetta and
L. C. Evans in Capuzzo-Dolcetta and Evans [1984]. In
their model, an ordinary differential equation is driven
by control settings selected from a discrete set. The cost
function is the sum of two terms, an integral term and
a summation of positive switching costs, discounted over
time. The switching cost function k(q, q′) gives the cost
of switching between the control settings q and q′. The
assumption k(q, q′) < k(q, q∗) + k(q∗, q′)) ensures that it
is always cheaper to switch directly between two states
instead of taking intermediate states otherwise; this would
also give rise to multiple jumps in zero time. This optimal
control problem is formulated on an infinite horizon. The
corresponding value function is shown to be composed of a
family of value functions parameterized by the initial con-
trol setting. The switching law is quite simple: the time to
switch to a different control setting (value function) comes
when the switching cost plus the current optimal value is
equal to optimal value at the same state for another value
function. The value functions are uniformly bounded and
Hölder continuous. This is proved under the assumptions
of uniform boundedness and Lipschitz continuity of the
dynamics. The value functions form the ‘viscosity’ solution
of the dynamic programming coupled system of quasi-
variational inequalities (QVI). The problem is also studied
when the switching costs tend to zero.

A full-fledged hybrid system model, which subsumed pre-
vious models, was introduced by M. Branicky in Branicky
[1995]. The model includes autonomous and controlled
jump sets and destination sets. Controlled jump sets model
‘lazy’ transition systems in the sense that the controller
can decide to jump or not to jump in these sets – this is
the “lazy” transition semantics in the terminology of com-
puter science. The transition maps associated to each jump
may introduce discontinuities in state and in time. The
dimension of the continuous-time state space is allowed
to change with the discrete state. Branicky introduces an
optimal control problem over an infinite horizon with three
terms discounted over time: running cost, transition cost
and impulse cost. The transition maps and the cost func-
tions are assumed to be bounded, uniformly continuous
and the vector fields associated to each discrete state are
assumed to be bounded and uniformly Lipschitz in the
state. The distances between autonomous and controlled
jump sets and between autonomous jump and destination
sets are assumed to be strictly positive to prevent the
occurrence of multiple transitions in zero time; this is
why the assumption on the switching cost function k(q, q′)
imposed in Capuzzo-Dolcetta and Evans [1984] is no longer
necessary. The flow lines are assumed to be transversal to
the boundaries of the autonomous and controlled jump
sets, and the vector field is not allowed to vanish in these
boundaries. This is required to prove continuity from the

right of the value function for the optimal control prob-
lem. Dynamic programming leads to a system of QVI.
No further analysis is carried out concerning the solution
of the QVI. In Dharmatti and Ramaswamy [2005], the
value function is proved to be the ‘viscosity’ solution to
this system of QVI. The transversality assumptions lead
to two modeling difficulties: 1) the state of the system
is supposed to ‘freeze’ during the time jump; however
this is not possible at the boundary of the autonomous
and controlled jump sets; and 2) when the state enters a
controlled jump set it can only leave the set through a
discrete transition, which was supposed to be optional (cf.
Zhang and James [2006]).

A set of QVI conditions similar to those presented in Bran-
icky [1995] is presented in Bensoussan and Menaldi [1997].
The viscosity solution to the Hamilton-Jacobi-Bellman
(HJB) is discussed. This is because under their assump-
tions the value function is continuous. The problem is that
the value function for general hybrid control problems may
be discontinuous. This is mainly due to the forced jumps,
controlled jumps and discontinuous jump relations. This
problem is studied in Zhang and James [2006]. In this case,
the value function is not continuous and the solution of the
QVI is interpreted in the discontinuous viscosity setting.

Hedlund and Rantzer Hedlund and Rantzer [1999] formu-
late an optimal control problem in a finite time horizon
with a running and switching positive costs. Their model
does not incorporate autonomous or controlled jump sets
and destination sets. Assumptions on the switching cost
structure like the ones introduced in Capuzzo-Dolcetta
and Evans [1984] are not considered. This means that
consecutive jumps may occur in zero time. The dimension
of the continuous-time state space is allowed to vary with
the discrete state. Under mild assumptions they derive an
inequality of Bellman type such that every solution to
this inequality gives a lower bound of the optimal value
function. The inequality is derived with the help of piece-
wise C1 functions. The discretization of this inequality
leads to a convex optimization problem in terms of finite-
dimensional linear programming.

A simplified version of the hybrid system model intro-
duced by Branicky is presented in Shaikh [2004]. The
keys simplification are: 1) the state is kept continuous at
switching times; and 2) the dimension of the continuous-
time state space is kept constant. There is a discrete
transition map which defines, at each discrete state, the
discrete states that can be reached in one discrete tran-
sition. The assumptions also include transversality condi-
tions as in Branicky [1995]. The author introduces a class
of optimal control problems with terminal and running
cost functions that depend on the discrete state; there are
no switching costs. A set of necessary conditions in the
form of a hybrid maximum principle are introduced. The
corresponding value function is shown to be bounded and
continuous. A HJB equation is derived with the help of
the principle of optimality. The minimization in the HJB
is taken over the continuous-time control setting and the
discrete states. This is because the switching costs are
zero. The HJB equation is used to establish a verification
theorem for optimal control candidates, but there is no
discussion on viscosity solutions. The discrete transition
map is not taken into consideration as a constraint in the
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HJB minimization. This can only happen if all discrete
states can be reached in a finite number of transitions.
However, this condition is not stated in the assumptions.

3. PROBLEM FORMULATION

3.1 The system

We consider planar motion models (evolving in R
2) for

vi, i = 1, 2

ẋi(t) = fi(xi, ui), ui ∈ Ui, t ≥ 0

x1(0) = α, x2(0) = β

where ui are the controls and Ui are closed sets.

Consider v1. The cost of a path joining two points, α and
γ, is

J1(u1(.), γ) =

∫ tf

0

l(x1, x2) · k1(x1, u1)ds (1)

where k1(., .) ≥ 0, l : R
2 × R

2 → [0, 1] is a piecewise
constant function (l = c, 0 < c < 1 if x1 = x2 and l = 1
otherwise) and tf is the first time when x1(tf ) = γ under
the control function u1(.). The function l models the fact
that the path cost for v1 is reduced when the positions of
v1 and v2 coincide.

v2 is fuel constrained. The model of fuel consumption is
captured by an additional state variable c2 ∈ R (indicating
the amount of fuel in the fuel tank)

ċ2(t) = g2(x2, u2) =

{

w2(x2, u2) if c2 > 0
0 otherwise

c2(0) = θ

where w2(., .) ≤ 0.

We associate the cost function J2 to the fuel remaining in
v2 when it reaches x at time t under the control u2(.)

J2(u2(.), x) = c2(t) (2)

The standing assumptions are:

A1) fi, w2, l : R
2 × Ui → R

2 are uniformly Lipschitz in x
and uniformly continuous in the control variable. This
condition ensures existence and uniqueness of solutions.

A2) There exist K1 < ∞ and 1 ≤ ς1 < ∞ such
that ‖l(x1, x2) · k1(x1, u1)‖ ≤ K1(1 + ‖(x1, x2)‖)

ς1 for
(x1, x2) ∈ R

2 × R
2, u1 ∈ U1.

A3) There exist K2 < ∞ and 1 ≤ ς2 < ∞ such that
‖g2(x2, u2)‖ ≤ K2(1 + ‖x‖)ς2 for x ∈ R

2, u2 ∈ U2.
A4) 0 ∈ int fi(xi, Ui). This means that each vehicle is

locally controllable.
A5) f1(x,U1) ⊆ f1(x,U2). This means that v2 is capable

of replicating the motions of v1.

3.2 The case for coordination

The optimal path planning problem for v1 when operating
in isolation is (l = 1) is

Problem 1. [Uncoordinated] Find

inf
u1(.)

J1(u1(.), γ) (3)

The path planning problem becomes more interesting
when the two vehicles are allowed to collaborate to coordi-
nate their motions. We consider the following operational
constraints: 1) if v2 leaves β, then it must return to β; and
2) the vehicles can meet only once and move together until
the point where v2 returns to β (this precludes behaviors
where the vehicles move together and separate repeatedly).

In what follows, and to simplify the analysis of the problem
we introduce an additional assumption.

A6) The fuel optimal paths for v2 are also fuel optimal
for the path traveled in the opposite direction.

Assumption A6 means that the problem is symmetric in
the terminology of Bardi and Capuzzo-Dolcetta [1997].
Observe that the system in the previous example satisfies
the assumption. This is because: 1) the cost function does
not depend on the direction of motion; and 2) the system
dynamics are reversible.

Let R denote the set of point reachable by v2 for a round
trip from β under fuel budget θ. This is the set of points
where the two vehicles can start to move together. A
characterization of R is in order. For this purpose we
introduce a value function for the problem of minimizing
the fuel consumption for vehicle v2

V2(x) = max
u2(.)

J2(u2(.), x)

V2(β) = θ

Proposition 3.1. Under the standing assumptions the value
function V2 is continuous in x.

The proof is standard and we omit it.

Proposition 3.2. R is a closed set given by

R = {x : V2(x) ≤
θ

2
} (4)

Proof. The expression for R follows from the consideration
of Assumption A6. The fact that R is closed follows from
the continuity of V2. 2

It may be worthwhile for v1 to deviate from the optimal
path (of Problem 1) to join v2 at a point in R before
reaching γ. The following example illustrates this point.

Example 3.1. Let:
ẋi(t) ∈ B0 ⊂ R

2, i=1,2 (B0 is the unit closed ball).
α = (0, 0), β = (50, 40), γ = (100, 0).
c2(0) = θ = 12
k1(x1, u1) = 1,−w2(x2, u2) = 0.2, l(x, x) = 0.1
Consider Figure 1. R is the circle of radius 30 with center
β (the optimal fuel cost of the round trip from β to the
boundary of the circle is 60 × 0.2 = 12 = θ). This is the
set of points where the two vehicles can start to move
together.

The fuel optimal paths for v2 are straight lines. The
same happens with the optimal paths for v1 (for fixed
values of l). This is because we have simple dynamics and
piecewise constant cost functions. The straight line joining
α and γ is the optimal path for Problem 1; the optimal
cost is 100. The cost of the path (α, η, µ, γ), where v1

deviates from the original optimal path to benefit from
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Fig. 1. Example of coordinated paths.

a cost reduction in the segment (η, µ), is 94.2182 – with
η = (39.2000, 24.1254) and µ = (60.7999, 24.1254)). v2

complies with the constraints by taking a loop (triangle)
from β, with fuel cost 12.0000 (within the fuel budget).

Remark 1. We briefly discuss the structure of the solution
in the previous example. Consider, for the sake of our
discussion, that the optimal coordinated path for v1 is
(α, η, µ, γ). Then the two path segments (α, η) and (µ, γ)
are optimal with respect to the uncoordinated cost func-
tion. Otherwise we could pick other paths to connect these
points with a lower cost. This is impossible since the path
(α, η, µ, γ) is optimal under our assumption. This means
that up to the point η, the path optimization for v1 is
independent of what v2 does. The same happens with
v2 for the path segments (β, η) and (µ, β). On the other
hand, when the two vehicles meet at point η, the path
optimization for both vehicles is no longer decoupled. Here,
we need a third state variable to describe the evolution of
the system. This is because the motions of the vehicles
coincide, and because we need to keep track of the fuel
consumption for v2. This means that, from the perspective
of v1, all that really matters in what concerns v2 is: 1) the
point where the meeting takes place; and 2) the amount of
the fuel remaining in the fuel tank of v2. We observe that
the amount of the fuel in v2 at the meeting point should
be optimal (otherwise this vehicle had been spending more
fuel than what was needed to reach that point).

3.3 Hybrid model

The formulation of the coordinated optimal path planning
problem for vehicle v1 requires the consideration of a state
variable that keeps track of what each vehicle does. We
do this with a 3-state hybrid automaton. The hybrid state
space is S =

⋃

v∈{a,b,c}(Sv × v). v1 evolves in Sa = R
2

after departing from α. The positions of the two vehicles
coincide in the discrete state b . However, we need an
additional variable to keep track of the fuel consumption
for v2; this is why Sb = R

2 × R
+
0 . v1 moves in Sc = R

2

after taking the transition from discrete state b to discrete
state c (after leaving v2).

There is a controlled vector field fv associated to each
discrete state, where fa = fc = f1 and fb = {f1, g2}.
The control constraints are Ua = U1, Ub = U1 × U2 and
Uc = U1.

In the terminology of Branicky [1995], associated to each
discrete state v there are autonomous jump sets Av,v′ ,
controlled jump sets Cv,v′ and jump destination sets Dv,v′ .

The trajectory of the system jumps from Sv to Sv′ upon
hitting the autonomous jump set Av,v′ ; it may or may not
leave Sv upon hitting the controlled jump set Cv,v′ and
it can leave Sv at any point in Cv,v′ ; the destination of a
jump is Dv,v′ .

In what follows xi represents the i-th component of x.

The autonomous and controlled jump sets for the system
are respectively A =

⋃

v,v′ Av,v′ and C =
⋃

v,v′ Cv,v′ . The

jump set is J = A
⋃

C. These are given by

Ca,b = R

Ab,c = {(x1, x2, x3) : x3 = V2(x
1, x2)}

Da,b = {(x1, x2, x3) : x3 ≥ V2(x
1, x2)}

Db,c = Sc

with R given by equation 4. The transition maps are

Ga,b : Ca,b → Da,b, Ga,b(x) = (x, θ − V2(x))

Gb,c : Ab,c → Db,c, Gb,c(x) = (x1, x2)

The interpretation is as follows. v1 starts moving in Sa;
if x1(.) enters Ca,b then it may continue in Sa, or take a
controlled jump to Sb. In the case of a controlled jump, the
transition map Ga,b maps the current state of v1 to a state
extended to include the optimal amount of fuel remaining
in v2 at the same location after departing from β with an
initial amount of fuel θ. In Sb, the positions of the two
vehicles coincide; there is an autonomous jump from Sb to
Sc when the trajectory of the system hits Ab,c. This means
that v2 had to leave, since there was just enough fuel to go
back to β. The jump relation consists of eliminating the
third component of the state. The transition maps imply
that v2 uses fuel optimal strategies to travel to the meeting
point and to reach β after leaving v1. One could ask why
is it necessary to include the discrete state c in the model
(instead of having the autonomous jump from discrete
state b to discrete state a). An autonomous transition from
b to a could lead to trajectories in the controlled jump set
Ca,b = R ⊂ Sa. But this jump can only be taken once.
We need to keep track of the jump. We do this with the
discrete state c.

In what follows we adopt the notation from Zhang and
James [2006]. Time is measured continuously with a real
variable t in [0,+∞) and the state variable is (x, v).
Trajectories are piecewise continuous in x and are nor-
malized to be right-continuous. The hybrid control input
is I = ({t0, uv(0)(.)}{ti, uv(i)}

N
1 ), N ∈ {0, 1, 2}, where

ti ≤ ti+1(t0 = 0) gives the sequence of times selected
to switch the discrete dynamics. The activation of hybrid
control input can only take place in the set C, or in the
boundary of the set A. This spatial dependence translates
to time dependence as follows.

Given (x, v) and u(.), define the hitting times of A and J
as

TA(x, v, u(.)) = inf{t ≥ 0 : (x(t), v) ∈ A}

T J (x, v, u(.)) = inf{t ≥ 0 : (x(t), v) ∈ J}

where x(.) is the trajectory departing from (x, v) under
the control function u(.).

Definition 3.1. Given a hybrid state (x, v) a hybrid control
I is called an admissible control with respect to (x, v) if:

• 0 = t0, ti ≤ ti+1
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• T J(x(t+i ), v, u(.)) ≤ ti+1 − ti ≤ TA((t+i ), v, u(.))

This means that between discrete jumps the trajectory
may evolve in J . Jumps may take place in C and must
take place in ∂A (the boundary of A).

In our model Da,b ∩ Ab,c 6= ∅ and Da,b is not a closed set.
This makes it possible for an instantaneous jump from
discrete state a to c to occur: first as a controlled jump
from a to b at the points in ∂R, and then as an autonomous
jump to c. This problem can be solved by changing these
sets to impose a strictly positive distance between them.

Let I(x, v) denote an admissible control with respect to
(x, v) and Λ(x, v) denote the set of all admissible controls.

Proposition 3.3. Given an initial hybrid state (x, v) the
hybrid system possesses a unique hybrid execution.

Proof. The proof follows standard arguments from Shaikh
[2004]. 2

3.4 Optimal collaborative control

Now consider the running cost maps kv : Sv × Uv → ℜ+:

ka(x, u) = k1(x, u)

kb(x, u) = σk1((x
1, x2), u1) − (1 − σ)g2((x

1, x2), u2)

kc(x, u) = k1(x, u)

where σ ∈ [0, 1].

An explanation for the definition of kb is in order. The
positions of the two vehicles coincide in the discrete state b.
However, the minimization of the path cost for v1 may not
be compatible with the minimization of the fuel consump-
tion for v2. The problem is that v2 is fuel constrained. The
longer the fuel lasts, the longer v1 benefits from the path
coordination. We model this trade-off with kb(x, u) which
is a convex combination of the two other cost functions.

Consider the path optimization problem for v1. The cost
of a path joining (α, a) and (γ, v) is

J̃1((I(α, a), (γ, v), σ) =
N

∑

i=0

∫ ti+1

ti

kv(i)(x(s), uv(i)(s))ds (5)

where N ≤ 2, tN+1 = tf and x(tf ) = γ.

We introduce the explicit of dependence on σ to remind
us that the optimal solution depends on this parameter.

Problem 2. [Coordinated] Find

inf
I(α,a)∈Λ(α,a)

J̃1(I(α, a), (γ, v), σ) (6)

Let T denote the set of points reachable by v2 in Sb under
the fuel constraint θ for a round-trip from β. T is the set
of all (x1, x2, x3) ∈ Sb such that the first two components
(x1, x2) are in R and the last component (x3) satisfies the
fuel constraint:

T = {x ∈ Sb : (x1, x2) ∈ R ∧ (x3 ≥ V2(x
1, x2))∧

((θ − V2(x
1, x2)) ≥ x3)}

Remark 2. The set M = {Sb\T, b} is not reachable in the
hybrid state space S.

4. DYNAMIC PROGRAMMING

In the spirit of dynamic programming we embed Problem
2 in a family of optimization problems where the final
position varies. Introduce the value function

V (x, v, σ) = inf
I(α,a)∈Λ(α,a)

J̃1(I(α, a), (x, v), σ)

V (α, a, σ) = 0

where ∀x ∈ (Sb\T ) : V (x, b, σ) = +∞.

The fact that not all points in Sb are reachable under the
constraints imposed on v2 leads to this extended-valued
value function.

In what follows we drop the explicit dependence of V on
σ to simplify the notation.

The following theorem, presented without proof, states two
important properties of the value function.

Theorem 1. The value function V (x, v) is bounded and
continuous in S\ M .

The following theorems can be proved with the help of the
results from Zhang and James [2006].

Theorem 2. The value function V (x, v) satisfies the prin-
ciple of optimality for every v ∈ {a, b, c}.

Theorem 3. The value function V (x, v) is the viscosity
solution of the HJB equation.

Vt(x, v) + inf
u∈U

[Vx(x, v) · fv(x, u) − kv(x, u)] = 0

V (α, a) = 0

5. OPTIMAL STRATEGIES

The optimal strategy for v1 is derived from the value func-
tion V (x, v). This requires some additional computations.

The position of v1 is given by the continuous state of the
hybrid automaton in the discrete states a and c, and by the
first two components of the continuous state in the discrete
state b; the third component, x3, is the fuel remaining in
v2. However, the value function V in b depends not only
on (x1, x2), the position of v1, but also on x3, the fuel
remaining in v2. An additional minimization over x3 is
required. This is done next with the help of a new function,
Ṽ : R

2 → R.

Ṽ (x, a) = V (x, a)

Ṽ (x, b) = min
x3∈[V2(x),θ−V2(x)]

V ((x, x3), b)

Ṽ (x, c) = V (x, c)

Ṽ (x, a) is also the optimal value function for Problem 1.

Keep in mind that the discrete state keeps the history of
the system. So v1 can reach the same position in the three
discrete states. To find the optimal path cost at x ∈ R

2

we need to drop the dependence of Ṽ on the discrete state
with another minimization. This is done with the the help
of a new function, V (x) : R

2 → R.

V (x) = min
v∈{a,b,c}

Ṽ (x, v) (7)

The optimal discrete state at x is given by

v∗ = argminv∈{a,b,c}Ṽ (x, v) (8)
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Observe that v∗ is not necessarily a singleton. We summa-
rize these observations in the theorem.

Theorem 4. V (γ) is the optimal value for solving Problem
2. If v∗ = a then path coordination is not optimal.

The optimal control is given by u∗ as follows

u∗ = argminu∈UVt(x, v) + [Vx(x, v) · fv(x, u) − kv(x, u)]
(9)

Both the dynamics and the cost function do not depend
directly on time. This simplifies the coordination of the
optimal paths for the case when path coordination is the
optimal solution: the vehicles are required to meet at the
point where the two paths intersect for the first time.

We now study the conditions under which the solutions to
Problems 1 and 2 differ. These are aimed at simplifying the
process of finding numerical solutions to the coordinated
problem.

Proposition 5.1. Let Υ = V (γ, a) and Q = {x ∈ Sa :
V (x, a) ≤ Υ}. If Q∩R = ∅, then the solutions of Problems
1 and 2 coincide.

Proof. The condition Q ∩ R = ∅ means that γ can be
reached with cost budget less than the one required to
reach the set R, where coordination is possible. 2

Let Υ be optimal value for Problem 1 and ΥR be optimal
value for the following problem

inf
u1(.),xR∈R

(J1(u1(.), xR) + JxR
(u1(.), γ)) (10)

where JxR
is the cost of going from xR to γ.

Proposition 5.2. The solutions for Problems 1 and 2 coin-
cide if ΥR > Υ.

Proof. Notice that xR ∈ R in equation (10). The condition
ΥR > Υ means that it is not possible for v1 to reach the
boundary of R and from there to move to γ for a cost less
than Υ. 2

Proposition 5.3. The optimal cost for Problem (2) is l
times the optimal cost for Problem 1 when there exists
a trajectory x2(.) leaving β passing through α and γ
and returning to β such that: 1) x2(.) satisfies the fuel
constraint θ; and 2) the segment of x2(.) joining α and γ
coincides with the optimal path for Problem 1.

Proof. Consider first that v2 is not fuel constrained. Then,
the trajectories of v2 can be made to coincide with the
trajectories of v1 along the path for v1. This means that:
1) there exists a path as the one in the statement of the
proposition; and 2) that v1 benefits from a constant cost
reduction along its path. Now consider the case when v2 is
fuel constrained. If there is a path satisfying the conditions
of the proposition, the optimal cost for v1 cannot be
further reduced from the optimal level obtained without
fuel constraints.2

6. CONCLUSIONS

We introduced an optimal collaborative control problem
for a two-vehicle system. The problem consists of minimiz-
ing the path cost for v1 when this cost is a discontinuous
function of the relative positions of the two vehicles and

v2 is required to return to its starting point. The problem
is formulated as an optimal hybrid control problem for a
hybrid automaton model with three discrete states. The
autonomous and controlled jump sets are given by the
set reachable by v2 in round trip from β under the given
fuel constraints. Transitions in the hybrid automaton take
place when collaboration is the optimal solution. The
transition to the second state is taken by v1 under the
assumption that it meets v2 and that v2 followed a fuel-
optimal path. The optimal path cost for v1 at a given loca-
tion is given by two sequential minimizations of the value
function for the optimal hybrid control problem. Future
work concerns investigating other collaborative control
problems in this setting, and removing some of the more
restrictive assumptions. The assumption that the positions
of the vehicles have to coincide for the cost reduction to
take place is easily replaced by weaker assumptions. This is
the case when the cost reduction is achieved if the distance
between the two vehicles does not exceed a given value.
In fact, this new assumption introduces a state constraint
which is easily handled for the dynamics considered in this
paper.
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