
Communication and State Realization in

Decentralized Supervisory Control of

Discrete-Event Systems ⋆

Amin Mannani ∗ Peyman Gohari ∗

∗ ECE Dept., Concordia University, S-EV005.139, 1515 St. Catherine
West, Montreal, QC, H4G 2W1, Canada, (Tel: 514-848-2424 Ext.

3100; e-mail: amin man,gohari@ece.concordia.ca).

Abstract: This paper continues the authors’ previous work on studying the communication
among decentralized supervisors for a distributed Discrete-Event System (DES) in the frame-
work of Distributed Supervised DES (DSDES). Given an already available centralized supervisor
for a distributed DES, it relates a language property of this supervisor, called weak joint observ-
ability, to a property of the state-based realization of the supervisor, referred to as the existence
of the Independent Updating Functions (IUFs). The latter property means that the decentralized
implementation of the supervisor relies on each agent’s independent observation of the DES
dynamic evolution and entails simpler, delay-robust, and possibly cheaper communication; issues
currently under investigation. Examples illustrate the applicability of the approach.

1. INTRODUCTION

Supervisory Control of distributed DESs has been a sub-
ject of interest with many applications such as analysis and
design of communication protocols [Rudie and Wonham,
1990]. In s distributed DES, geographic separation of sites
restricts the agents’ observation of the whole system’ dy-
namic evolution and this, in turn, makes the satisfaction of
a global specification a difficult task. Such a specification
can be enforced by designing a set of supervisors, one for
each site with no communication amongst them, if and
only if it is controllable and coobservable [Rudie and Won-
ham, 1992]. The latter property requires that each agent,
which can exercise control over an event, can disambiguate
the legality of all the lookalike strings which are ended by
this event and determine if they are marked. The class of
coobservable specifications, though can be enlarged using
some variants of the original definition [Yoo and Lafor-
tune, 2002], still is restricted in many applications, where
an agent’s own observation is inadequate for the sake of
control purposes. In such circumstances, agents need to
communicate their knowledge of the system’s evolution
amongst each other.

Communication, thus, appears as the third capability of
a distributed DES, which affects and is affected by the
other two, namely control and observation [Rudie et al.,
2003]. There have been several attempts to model, for-
malize, classify, and solve the communication by answer-
ing different questions as “who communicates to whom
and when”, “what should be communicated and if this
is minimal” (see [Teneketzis, 1997], [van Schuppen, 2004],
and the references therein). The issue of the “content” of
the communication has been approached differently, i.e. by
exchanging event [Rudie et al., 2003] or state observation
[Barrett and Lafortune, 2000], [Ricker and Rudie, 1999].

⋆ This work was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

Reasoning that these approaches are too abstract in prac-
tice, the authors first proposed a framework based on Ex-
tended Finite-State Machines (EFSM) which implements
the state realization of an already designed centralized
supervisor’s control and observation maps in a decentral-
ized manner by designing guard formulas and updating
functions, respectively [Mannani et al., 2006]. These are
defined on a set of binary variables which is itself a union
of disjoint subsets, each assigned to an agent. Communi-
cation in this framework naturally arises as reevaluation
of guards and updating functions, measured in a bitwise
manner. This practical advantage is not the only merit
of the EFSM framework; finer classification in terms of
“communication for control” (i.e. reevaluation of guards)
and “communication for observation” (reevaluation of up-
dating functions) is gained, too. Such advantages moti-
vated the authors to generalize the EFSM framework to
the Distributed Supervised DES (DSDES) framework in
[Mannani and Gohari, 2007b], which, while inheriting the
two implementing tools, guard and updating functions,
employs a set of integer-valued variables. Such choice of
variables which are assigned by Agent-wise Labeling Maps
(ALMs), while being flexible and taken from any finite field
(including the binary one), makes the proofs more rigorous
and insightful.

This paper corresponds, within the DSDES framework,
weak joint observability, a property of the centralized su-
pervisor’s language, to the existence of independent up-
dating functions, a property of the state realization of the
centralized supervisor. Weak joint observability is a variant
of the joint observability, introduced in [Tripakis, 2001],
which requires that every illegal move be distinguished
from a legal move by (at least) one agent. On the other
hand, if all agents possess independent updating functions,
then upon the occurrence of an event, the agents which
observe it can update their variables, i.e. the indicators
of their information of the system evolution, independent

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 3204 10.3182/20080706-5-KR-1001.4199

of each other. The main contributions of the paper are
formal definitions of an IUF (within DSDES framework)
and weak joint observability, showing the necessity of the
latter for the existence of the first, and introducing classes
of weakly joint observable supervisor’s languages for which
IUFs can be computed, as justified by some examples.

The paper is organized as follows. Section 2 introduces
the notation and the formalism of DSDES, including
the ALMs. Then Section 3 formally defines the notions
of an IUF and weak joint observability and explores
their correspondence. Finally, conclusions are drawn and
suggestions for future research are made in Section 4.

2. DISTRIBUTED SDESS

Notation: Throughout this paper we use the following
notations. Consider a language L ⊆ Σ∗, called plant’s
behavior, or simply plant, and a network consisting of
distributed sensors and actuators. These sensors and ac-
tuators are the means to observe and control, respectively,
the plant’s behavior for n supervisors. Associated with
each supervisor i ∈ I = {1, 2, . . . , n} in the network define
observable and controllable event subsets Σo,i and Σc,i,
respectively, where Σo,i,Σc,i ⊆ Σ. Thereby, the i’th super-
visor observes plant’s behavior through its observational
window, modelled by the natural projection Pi : Σ∗ →
Σo,i

∗, and exercises control on events in Σc,i. Thus, from
the viewpoint of the i’th supervisor we have Σuo,i = Σ\Σo,i

and Σuc,i = Σ \ Σc,i. Define Σi = Σc,i ∪ Σo,i. Associated
with each event σ denote by Io(σ) and Ic(σ) the sets
of all sensors (respectively, actuators) which can observe
(respectively, control) σ, i.e. Io(σ) = {i ∈ I | σ ∈ Σo,i} and
Ic(σ) = {i ∈ I | σ ∈ Σc,i}. We define a centralized supervi-
sor to be one which has access to all sensors’ observations
and can exercise control over all controllable events. For
this supervisor we define Σc =

⋃

i∈I Σc,i, Σo =
⋃

i∈I Σo,i,
Σuo = Σ \ Σo, Σuc = Σ \ Σc, and P : Σ∗ → Σo

∗. Denote
by v = (v1, . . . , vn) ∈ N

n a tuple of n natural numbers
which is sometimes written as (vi, v−i) to emphasize on its
i’th component, vi, where v−i ∈ N

n−1 is the (n− 1)-tuple
obtained by removing vi from v. Let 0 denote a tuple of n
zeros. Define a map πi : N

n → N such that πi(v) = vi (i.e.
it picks the i’th component of v), and extend πi to a map
pwr(Nn) → pwr(N). Finally, the prefix closures of L ⊆ Σ∗

and {s}, s ∈ Σ∗, are shown by L and s, respectively.
To model the case of a distributed DES consisting of
component languages Li ⊆ Λ∗

i , i ∈ I = {1, 2, . . . , n},
where Λi = Λc,i∪̇Λuc,i = Λo,i∪̇Λuo,i, we notice that
for component i, events in Λi \ (Λc,i ∪ Λo,i) are neither
controllable nor observable. Therefore, we might redefine
new alphabets Σi by setting Σc,i = Λc,i, Σo,i = Λo,i, and
Σi = Λc,i∪Λo,i. Language L is defined as the synchronous
product of Li’s, i.e. L = L1‖L2‖ · · · ‖Ln.

2.1 DSDESs and agent-wise labeling maps

Definition 1. A Distributed SDES (DSDES) is denoted by
D = {Di}i∈I , where each quadruple Di = (Σ, L,Ai,Gi) is
defined as follows.

- Σ is a finite set of events (alphabet);
- L is a (regular) language defined over Σ, i.e. L ⊆ Σ∗;
- Ai : Σi × N

n → N is an updating function;
- Gi : Σi → pwr(Nn) is a guard function. �

For convenience we extend the domain of Ai and Gi to
the alphabet of all events. Define Âi : Σ × N

n → N and
Ĝi : Σ → pwr(Nn) according to: for σ ∈ Σ and v ∈ N

n,

Âi(σ, v)=

{

Ai(σ, v) ; σ∈ Σi

πi(v) ; σ/∈ Σi
, Ĝi(σ)=

{

Gi(σ) ; σ∈ Σi

N
n ; σ/∈ Σi

In the natural recursive way, Âi is extended to Âi : Σ∗ ×
N

n → N. With a slight abuse of notation, we shall use Ai

and Gi to denote Âi and Ĝi, respectively. Define a map
A : Σ∗ × N

n → N
n recursively as follows: for all v ∈ N

n,
s ∈ Σ∗, and σ ∈ Σ

A(ǫ, v) = v; A(sσ, v) =
(

Ai(σ,A(s, v))
)

i∈I
. (1)

Definition 2. The closed and marked languages of Di

are denoted by L(Di) and Lm(Di), respectively, and are
defined recursively as follows: ǫ ∈ L(Di) and for all s ∈ Σ∗

and σ ∈ Σ,
sσ ∈ L(Di) ⇐⇒ s ∈ L(Di) ∧ sσ ∈ L ∧ A(s, 0) ∈ Gi(σ)
Lm(Di) = L(Di) ∩ L.

The closed and marked languages of a DSDES D =
{Di}i∈I are denoted by L(D) and Lm(D), respectively,
and are defined as follows:

L(D) = ∩i∈IL(Di), Lm(D) = ∩i∈ILm(Di). �

Associated with each index i ∈ I, a DSDES is equipped
with guard and updating functions to capture control and
observation, respectively. Control for each Di is based
upon n-tuples of natural numbers; component i of a tuple
is updated with Ai.

Problem 3. Control problem for DSDESs: Let the plant
be modeled by an automaton G = (Q,Σ, δ, q0, Qm) and
E ⊆ Lm(G) be a nonempty specification language which
is controllable with respect to G, observable with re-
spect to (G, P), and Lm(G)-closed (see [Wonham, 2007],
Theorem 6.3.1). Assume that that E is enforced by a
proper, feasible and admissible centralized supervisor S =
(R,Σ, ξ, r0, Rm). Design guard and updating functions for
each Di = (Σ, Lm(G),Ai,Gi) such that L(D) = E and
Lm(D) = E. �

Since the DSDES framework aims at studying communi-
cation among supervisors, we exclude the cases in which E
may be satisfied without communication and assume that
E is neither decomposable nor coobservable w.r.t. G and
Pi, (i ∈ I) [Rudie and Wonham, 1992].

Definition 4. Let S = (R,Σ, ξ, r0, Rm) be a centralized
supervisor. An Agent-wise Labeling Map (ALM) is a map
ℓ : R → pwr(Nn) with the following properties:

(1) 0 ∈ ℓ(r0);
(2) ∀r, r′ ∈ R. r 6= r′ ⇒ ℓ(r) ∩ ℓ(r′) = ∅ (labels are

disjoint);
(3) ∀r, r′ ∈ R, r 6= r′, ∀σ ∈ Σo, ∀v ∈ N

n. v ∈ ℓ(r) ∧
r′ = ξ(r, σ)
=⇒ ∃!v′ ∈ N

n. v′ ∈ ℓ(r′) ∧ [∀i ∈ Io(σ). vi 6= v′

i] ∧
[∀j ∈ I \ Io(σ). vj = v′

j].

We call an ALM finite if its image is a finite set. 2

By Theorem 4 in [Mannani and Gohari, 2007a], there
exists an efficiently computable finite ALM for every
centralized supervisor S = (R,Σ, ξ, r0, Rm). Let ℓ : R →
pwr(Nn) be a finite ALM for S. There exists a map µ : Σ×
N

n → N
n that is consistent with the labeling of ℓ, i.e.

∀r, r′ ∈ R, σ ∈ Σ, v ∈ N
n, v ∈ ℓ(r) ∧ r′ = ξ(r, σ) =⇒

µ(σ, v) ∈ ℓ(r′) ∧ [∀i ∈ Io(σ). πi(µ(σ, v)) 6= πi(v)]
∧ [∀j ∈ I \ Io(σ). πj(µ(σ, v)) = πj(v)].

The updating functions can be defined using the map µ so
that each supervisor only updates the label components it
can observe, i.e. for all r, r′ ∈ R and σ ∈ Σ we have:

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3205

r′ = ξ(r, σ) ∧ v ∈ ℓ(r) =⇒ Ai(σ, v) = πi(µ(σ, v)). (2)

Upon occurrence of σ, µ does not change the value of any
vj with j ∈ I \Io(σ). This fact and (2) imply the following.

∀i ∈ I, v ∈ N
n, σ ∈ Σ \ Σo,i.Ai(σ, v) = πi(v). (3)

Formula (2) relates A to the transition structure of S, i.e.

∀s ∈ L(S),∀r ∈ R. A(s, 0) ∈ ℓ(r) ⇐⇒ r = ξ(r0, s) (4)

A solution to Problem 3: Define D = {Di}i∈I , Di =
(Lm(G),Σ,Gi,Ai) for all i ∈ I, where the maps Ai are
defined as in (2), and the maps Gi are defined for as follows:

∀σ ∈Σ. Gi(σ)=

{

{ℓ(r) | r ∈ R ∧ ξ(r, σ)!}; if σ∈ Σc,i,
Nn; if σ∈ Σuc,i.

(5)

Then L(D) = E and Lm(D) = E.

2.2 Communication among supervisors

The DSDES framework employs updating and guard func-
tions as two means to capture the observation- and control-
related information of a centralized supervisor, respec-
tively. Communication naturally arises to evaluate either
the former or the latter which are referred to as “communi-
cation for observation” and “communication for control,”
respectively. To begin with, let the vector of values after a
string s is observed be denoted by v := A(s, 0) and denote
supervisor i by Si.

Communication for observation: Upon observing the
occurrence of an event σ, supervisor i must update vi

with the value Ai(σ, v). However, to correctly evaluate
Ai(σ, v), Si needs to know the value of v, and thus
may need to receive the value vj , for all j 6= i, from
Sj . There are two methods to communicate the required
values. According to the first approach, Si requests all
such supervisors to send it their vj ’s. According to the
second approach, after Sj updates the value of vj , it
immediately sends the new value to all the supervisors
whose updating functions depend on vj . In both cases,
communication for observation is initiated by a supervisor
which observes the occurrence of an event and may wait
until a need for an updated value arises (the first approach)
or choose to communicate immediately after an update
(the second approach). Assuming that communication
is instantaneous, i.e. the system does not execute any
transitions while the queries are being answered, once the
required information is received, Si can unambiguously
determine its new value for vi. This information may be
used to update its estimate of the states of S and find out
what control decisions have to be made over events in Σc,i.

Communication for control: The objective of commu-
nication for control is to update the vector of values to
determine if it is included in the image of guard functions.
Let event α be in Σc,l. Then α is enabled at s if and only
if v ∈ Gl(α). To determine if this is the case, Sl may need
to receive the value vj , for all j 6= l, from Sj . Since Sl

is uncertain about the state of the centralized supervisor,
and therefore about whether or not α should be disabled,
out of the two policies mentioned for “communication for
observation,” only the second one is applicable in this case;
that is, a “communication for control” should always be
initiated by supervisors which have updated their label
values upon such updates.

According to the above classification, the “order” of com-
munication is as follows. Upon the occurrence of an event,

first all supervisors observing it should employ communi-
cation in one of the two ways described above to update
their values and determine their state estimates. Next, all
of them should send their updated values to those whose
guards require them. Once labels, and guard and updating
functions are specified in DSDES framework, they can be
implemented in the EFSM framework by employing binary
variables for each agent (see [Yang and Gohari, 2005] and
[Mannani et al., 2006]). Thereby, the exchange of label
values is reduced to the communication of bits.

3. INDEPENDENT UPDATING FUNCTIONS

3.1 Motivation

In general, behavioral and structural properties of a cen-
tralized supervisor as well as the ALM used to label its
states determine which type(s) of communication is (are)
needed by a solution to Problem 3. The above classification
of communication lets us distinguish the class of solutions
in which only communication for control is required. We
first show, using an illustrative example, the advantage of
this class of solutions over solutions that require both types
of communication and then characterize such solutions.

Example 1. Consider a centralized supervisor S which is
implemented by a network of 2 supervisors, i.e. |I| = 2, by
using an ALM ℓ1 and then in the EFSM framework using
sets of boolean variables X1 = {x1

1
, x2

1
} and X2 = {x1

2
, x2

2
}.

Let Σo,1 = Σc,1 = {α1}, and the updating functions
and guard formula associated with supervisor 1 be as
follows: g1(α1) = hα1

(x1

1
, x1

2
), a1(x

1

1
, α1) = fα1,1(x

1

1
, x2

1
),

and a1(x
2

1
, α1) = fα1,2(x

1

1
, x2

1
, x1

2
, x2

2
) 1 . Accordingly, upon

observing α1, supervisor 1 (S1) should update x1

1
and x2

1

for which it should have received the values of x1

2
and

x2

2
from supervisor 2 (S2). Knowing that g1(α1) requires

the updated value of x1

2
, S2 then sends the updated value

of x1

2
to S1. In summary, communication for observation

(respectively, control) would require the transfer of 2 bits
(respectively, 1 bit) from S2 to S1.

Assume now that there exists another ALM for S with
the following EFSM implementation: X1 = {x1

1
, x2

1
, x3

1
},

X2 = {x1

2
, x2

2
}, g1(α1) = h′

α1
(x1

1
, x3

1
, x1

2
, x2

2
), a1(x

1

1
, α1) =

fα1,1(x
1

1
, x2

1
), a1(x

2

1
, α1) = fα1,2(x

2

1
, x3

1
), and a1(x

3

1
, α1) =

fα1,3(x
1

1
, x2

1
, x3

1
). This new labeling employs a third vari-

able, x3

1
, and its guard depends on two (as opposed to

one) variables of S2, but its updating functions do not
depend on S2’s variables, i.e. it needs no communication
for observation. As a result, S1 can access all information
it needs, captured by x1

2
and x2

2
, though one single com-

munication for control. Moreover, in the first case if the
values of x1

2
and x2

2
are received in error, x1

1
and x2

1
may

be updated to incorrect values, thus S1 cannot trust the
values of its private variables thereafter. Retransmission
of x1

2
and x2

2
would not help S1 unless it keeps a record of

the evolution of its private variables. However, a corrupted
communicated for control only affects g1(α1) which can be
reevaluated upon a retransmission of the correct values. ♦

The above example, though not being a rigorous analy-
sis, motivates studying of IUFs and state structures and
behaviors for which they can be computed.

Definition 5. An updating function Ai associated with
the i’th agent is called an Independent Updating Function
1 Detailed information of supervisor 2 is not important for the
purpose of this example and hence is not mentioned.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3206

(IUF) if for all σ ∈ Σi and v, v′ ∈ N
n the followings holds.

vi = v′

i =⇒ Ai(σ, v) = Ai(σ, v′). �

In simple words an IUF Ai reevaluates the agent i’s
associated component of v, i.e. vi, based on its own current
value, vi, only and it need not know the value of v−i.
This fact together with (4) and (3) imply that when
updating functions are independent, the current state of
the recognizer may be computed by forming an n-tuple of
agents’ independent observations of the system’s behavior.

3.2 Weak joint observability

It turns out that the existence of a DSDES possessing
only independent updating functions, depends directly on
properties of the closed and marked language of S. In
particular, this is related to a property of the language of
supervisor S called weak joint observability. This property
was originally defined in [Mannani et al., 2006] motivated
by a definition of joint observability in [Tripakis, 2001] and
is extended to the case of marking now. In simple words
joint observability requires that within the closed behavior
(respectively, marked behavior) of the plant, any legal-
illegal pair of strings (respectively, any marked-unmarked
pair of strings) can be told apart by at least one agent. To
simplify the notation, let us first define two equivalence
relations.

Definition 6. Two sequences s, s′ ∈ Σ∗ are called observa-
tionally equivalent, denoted by s ≡I s′, if for all i ∈ I
it holds that Pi(s) = Pi(s

′). Also define s ≡U s′ if
Puo(s) = Puo(s

′). �

Denote the equivalence class of s ∈ Σ∗ by [s] = {s′ | s′ ≡I

s}. Notice that two observationally equivalent sequences
are not necessarily trace equivalent [Mazurkiewics, 1995]
as their projections onto events in Σuo might be different.
A jointly observable language is characterized as follows 2 .

Lemma 7. (Lemma 3.1, [Tripakis, 2004]). Let L and K be
two languages such that K ⊆ L ⊆ Σ∗. K is called Jointly
Observable (JO) with respect to L and (Σo,1, · · · ,Σo,n) iff

∀s ∈ K, ∀s′ ∈ L \ K, ∃i ∈ I. Pi(s) 6= Pi(s
′). �

For control purposes one should differentiate between
the closed and marked languages. Having this in mind,
Lemma 7 can be equivalently stated as follows.

Lemma 8. Let L and K be two languages such that K ⊆
L ⊆ Σ∗. K is called Jointly Observable (JO) with respect
to L and (Σo,1, · · · ,Σo,n) iff

∀s, s′ ∈ L. s ∈ K ∧ s ≡I s′ =⇒ s′ ∈ K. (6)

∀s, s′ ∈ L. s ∈ K ∧ s ≡I s′ =⇒ s′ ∈ K. (7)

�

Weak joint observability weakens the requirements of joint
observability by asking for the distinguishing property
between legal strings and the minimal-length illegal strings
as defined next. The reason is that, from a control perspec-
tive, one cares about the first illegal move regardless of any
of its feasible future behavior in the plant.

Definition 9. Let L and K be two languages such that
K ⊆ L ⊆ Σ∗. K is called Weakly Jointly Observable
2 Lemma 7 was originally introduced as the definition of a jointly
observable language in [Tripakis, 2001], but was shown later to be
equivalent to a new definition for—what is then called—observable
languages in [Tripakis, 2004]. Here, for notational convenience we
choose the original definition. While the original definition is for any
two languages K and L, we also assume, without loss of generality,
that K ⊆ L.

(WJO) with respect to L and (Σo,1, · · · ,Σo,n) if the
following conditions hold.

∀s, s′ ∈ L, ∀σ ∈ Σ.

sσ ∈ K ∧ s′σ ∈ L ∧ s′ ∈ K ∧ s ≡I s′ =⇒ s′σ ∈ K (8)

∀s, s′ ∈ L. s ∈ K ∧ s ≡I s′ =⇒ s′ ∈ K (9)

�
It can be readily shown that joint observability implies
weak joint observability [Mannani and Gohari, 2007a].
When it is clear from the context, (Σo,1, · · · ,Σo,n) will
not be mentioned. We finish this subsection by proving a
result which is used in Subsection 3.4.

Definition 10. A language A ⊆ Σ∗ is called trace-closed if

∀s, s′ ∈ Σ∗. s ≡I s′ ∧ s ≡U s′ ∧ s ∈ A =⇒ s′ ∈ A (10)

�
It is shown next that trace-closedness is inherited by K
when it is jointly observable with respect to L.

Lemma 11. Let K ⊆ L ⊆ Σ∗, L be trace-closed, and K
be JO with respect to L. Then K is trace-closed.

Proof : Let s, s′ ∈ Σ∗ be two strings such that s ≡I s′,
s ≡U s′, and s ∈ K. Then we have

[s ∈ K =⇒ s ∈ L] [K ⊆ L]

=⇒ [s ∈ L ∧ s ≡I s′ ∧ s ≡U s′ =⇒ s′ ∈ L] [Defn. 10]

=⇒ [s, s′ ∈ L ∧ s ≡I s′ ∧ s ∈ K =⇒ s′ ∈ K], [(7)]

i.e. K is trace-closed. �

Remark 12. As stated in [Tripakis, 2005], checking joint
observability of K is decidable if L is trace-closed, other-
wise it is undecidable in general.

3.3 A necessary condition for the existence of IUFs

This subsection establishes one side of the relationship
between the language of a centralized supervisor, i.e. a
behavior, and its state realization. The result was first
shown in [Mannani and Gohari, 2007a] in the EFSM
framework and is proved here in DSDES framework and
using the improved definitions for the sake of completeness.

Lemma 13. Let the updating functions Ai be all indepen-
dent. Then the following holds.
∀i ∈ I, ∀s ∈ L(S), ∀v ∈ N

n. Ai(s, v) = Ai(Pi(s), v)

Sketch of the Proof : By (3), starting from any label v of
an arbitrary state, the occurrence of any event σ ∈ Σ\Σo,i

may not change the value of the i’th component of v, i.e.
Ai(σ, v) = πi(v). By Definition 5, any change in the value
of this component is independent of the values of other
components. This completes the proof. �

Corollary 14. If the updating functions Ai are all inde-
pendent, then all observationally equivalent strings lead
to the same state.

Proof : Let s, s′ ∈ L(S) be two observationally equivalent
strings, i.e. ∀i ∈ I. Pi(s) = Pi(s

′). Lemma 13 then implies
that ∀i ∈ I. Ai(s, 0) = Ai(Pi(s), 0) = Ai(s

′, 0). Thus by
(1) we have A(s, 0) = A(s′, 0) and by the uniqueness of
labels in Definition 4, the proof is complete. �

Assumption 1. As can be seen, weak joint observability
assumes that K ⊆ L. In general, when K and L are
respectively taken to be Lm(S) and Lm(G), where S
and G are the supervisor, designed using supervisory
control theory, and plant, respectively, this does not hold.
However, such a supervisor S implements the supervisory
control map in the following sense:

Lm(S) ∩ Lm(G) = K ∧ L(S) ∩ L(G) = K. (11)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3207

Therefore, in the subsequent discussion, we may safely
assume that Lm(S) ⊆ Lm(G). �

Proposition 15. Let G, E, and S = (R,Σ, ξ, r0, Rm), be
as before and ℓ(.) be an ALM which labels the states of S
yielding independent updating functions. Then Lm(S) is
WJO with respect to Lm(G).

Proof : Let s, s′ ∈ L(G) and σ ∈ Σ such that sσ ∈ L(S),
s′σ ∈ L(G), s′ ∈ L(S), and s ≡I s′. Then we have:

[s, s′ ∈ L(S) ∧ s ≡I s′ =⇒
ξ(r0, s) = ξ(r0, s

′)] [Cor. 14]
=⇒ [s, s′ ∈ L(S) ∧ sσ ∈ L(S) ∧

ξ(r0, s) = ξ(r0, s
′) =⇒ s′σ ∈ L(S)]

Similarly for any two strings s, s′ ∈ Lm(G) such that
s ∈ Lm(S) and s ≡I s′ the following holds.

[s, s′ ∈ Lm(G) ∧ s ∈ Lm(S) =⇒ s, s′ ∈ L(G)
∧ s ∈ L(S) =⇒ s′ ∈ L(S)] [Part 1 of proof]

∧ [s, s′ ∈ L(G) ∧ s ∈ L(S) ∧ s ≡I s′

=⇒ ξ(r0, s) = ξ(r0, s
′)] [Cor. 14]

=⇒ [s ∈ Lm(S) ∧ ξ(r0, s) = ξ(r0, s
′) =⇒s′ ∈ Lm(S)] �

3.4 Construction of IUF-yielding ALMs

Proposition 15 establishes one side of the relationship
between the existence of IUFs and weak joint observability.
The other side of this relationship, i.e. the fact that for a
WJO behavior there exists a representation and an ALM
which yield IUFs, seems more challenging to prove. First of
all, there are different possible state representations for a
given behavior. Second, it can be shown through examples
that the existence of IUFs depends on the choice of the
associated ALM (see Mannani and Gohari [2007a]), too.
Moreover, a general constructive procedure for finding a
suitable ALM for a specific representation of the behavior
that yields IUFs is not yet known to exist. These facts have
led the authors to investigate specific state representations
for which IUFs can be computed. In what follows, we
distinguish one such class of problems.

Lemma 16. For i ∈ I let Ai ⊆ Σ∗

i be a language recognized
by Ai = (Qi,Σi, ηi, q0,i, Qm,i) such that

∀q, q′ ∈ Qi, ∀σ ∈ Σi \Σo,i. q′ = ηi(q, σ) =⇒ q′ = q, (12)

i.e. all transitions unobservable to agent i are selfloops.
Let A = A1‖ · · · ‖An ⊆ Σ∗ be the synchronous product
of Ai’s recognized by A = A1‖ · · · ‖An. There exists an
ALM yielding IUFs for (almost) any such A. �

The proof is omitted here due to space considerations.
However, we notice that to define an ALM ℓi(.) for each
recognizer Ai, its observable selfloops should be modified
in the following cases. Example 2 illustrates the idea.
C1 For an event, say αi ∈ Σo,i, which is selflooped in

one state, say q1 ∈ Qi, and causes a state change in
another state, say q2 ∈ Qi (see Mannani and Gohari
[2007a], Remark 1),

C2 For an event, say α ∈ Σo,i ∩ Σo,j , j ∈ I, j 6= i, which
is selflooped in one state, say q3 ∈ Qi, and causes a
state change in an state, say q4 ∈ Qj , of Aj ,

a state q̂1 (respectively q̂3) is added to Ai which inherits
all the outgoing non-selfloop transitions of q1, all selfloops
at q1 labeled with events in Σloop,i = Σuo,i ∪ {σ ∈
Σo,i | ∀q, q′ ∈ Qi. q′ = ηi(q, σ) ⇒ q = q′}, and q1’s
(respectively q3’s) marking, while all selfloop transitions
at q1 (respectively q3’s) which are not labeled by events in
Σloop,i are replaced with transitions with the same labels

from q1 (respectively q3’s) to q̂1 (respectively q̂3) and vice
versa. Notice that in case q1 = q3 one duplicated state q̂1

takes care of the both cases.

α2

α2α1

β1

α2

α2

β1

α2

α1α

α α2α1

α1

α1

α1α2

α2

α2

β1

1, 0 0, 1

0, 2

2, 02, 1

2, 2

0, 0

1, 1

1, 2

α2

β2

β2

β2

α

A

α2A2A1

α β2 α2

α1

0 1 0 1
β1 α

α1

α

α α1

α2, β2

β1

1

2

α2,

β2 0

Ã1

α2β2

(a)

(b)

(c)

α2α

α2

α
α1, β1

α1, β1

α1,

β1

0

12

β2

Ã2

Fig. 1. (a) The recognizers A1 and A2. (b) The modified

recognizers Ã1 and Ã2 whose states are labeled. (c)
The meet of the modified recognizers whose states are
labeled by joint labeling of the ALM’s for Ã1 and Ã2.

Example 2. Figure 1-a shows two recognizers A1 and A2

where Σ1 = Σo,1 = {α, α1, β1}, Σ2 = {α, α2, β2}, and
Σo,2 = {α, α2} and all states are assumed to be marked.

Clearly (12) is satisfied. To arrive at the recognizers Ã1

and Ã2 in part (b) of the same figure, we notice that while
the common event α makes a selfloop transition at state
0 of A1 it also makes a state change at state 0 of A2.
Therefore, by C2, state 0 is duplicated yielding state 2
of Ã1. Also, event α2 which moves A2 from state 0 to
state 1 forms a selfloop at state 1 of the same recognizer.
Thus, following the modification C1, state 1 is duplicated
producing state 2 of Ã2. Labeling the states of the two
modified recognizers, we would have the corresponding
updating functions A1 and A2 as in Table 1.

Recognizer A is then computed as the meet of Ã1 and Ã2

as can be seen in part (c) where the tuple formed by the

two ALM’s for Ã1 and Ã2 is used as the ALM for A for
which the updating functions in Table 1 are the IUFs. ♦

Next we show that Lemma 16 can be applied to the case
where a language is trace-closed.

Lemma 17. For a trace-closed language A ∈ Σ∗ there
exists a state representation for which there exists an ALM
yielding IUFs.

Sketch of the proof : Since A is trace-closed, for each
string in A all members of the equivalence class of that

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3208

string modulo ≡I belong to A, i.e. A =
⋃

i∈I P−1

i Pi(A)
and A = A1‖ · · · ‖An. Then each Pi(A) can be recognized
by Ai = (Qi,Σi, ηi, q0,i, Qm,i) satisfying the condition of
Lemma 16 by which the required ALM is computed. �

In light of Lemma 16, any substructure derived from such
a recognizer A in Lemma 16, may be assigned the same
ALM. The following definition and corollary makes this
point clear.

Definition 18. Let B = (Q,Σ, ξ, q0, Qm) be a recognizer.

A recognizer B̂ = (Q̂,Σ, ξ̂, q0, Q̂m) is called a subrecognizer

of B if Q̂ ⊆ Q, Q̂m = Q̂ ∩ Qm, and

∀σ ∈ Σ∗, ∀q, q′ ∈ Q̂. q′ = ξ̂(q, σ) =⇒ q′ = ξ(q, σ) �

Corollary 19. Let A = (Q,Σ, ξ, q0, Qm) be a recognizer
for which there exists an ALM ℓ yielding IUFs and

Â = (Q̂,Σ, ξ̂, q0, Q̂m) be a subrecognizer of A. Then ℓ,

restricted to the states of Â, is an ALM for Â yielding
IUFs.

Proof : For any two states q, q′ ∈ Q and any string s ∈ Σ∗,
with q′ = ξ(q, s) ∈ Q, and any label v ∈ ℓ(q) assigned by
the ALM, and the updating function A it holds that

q′ = ξ̂(q, s) =⇒ q′ = ξ(q, s) [Defn. 18]
⇐⇒ A(s, v) ∈ ℓ(q′). [(4)]

Thus the same updating function applies to Â. In partic-
ular, this holds for the case of the IUFs, too. �

Lemma 17 and Corollary 19 imply the following result.

Corollary 20. For any trace-closed supervisor’s language
there exists a state representation for which IUFs can be
obtained. These IUFs can be employed for any subrecog-
nizer of the state representation, too. �

4. CONCLUSION

This paper explains the importance of independent updat-
ing functions (IUFs) in communication among decentral-
ized supervisors of discrete-event systems. It also shows
that weak joint observability is a necessary condition for
the existence of IUFs and, to establish the other direction,
provides constructive procedures to obtain IUFs for some
classes of centralized supervisors. We would like to prove
the correspondence in both directions in general and study
the exact consequences of the existence of IUFs and the
computational issues related to their computations in our
future work.

REFERENCES

George Barrett and Stéphane Lafortune. Decentralized su-
pervisory control with communicating controllers. IEEE
Trans. Automat. Contr., 45:1620–1638, September 2000.

Amin Mannani and Peyman Gohari. Decentralized su-
pervisory control of discrete-event systems over com-
munication networks. Technical Report CRG-TR0207,
Control and Robotics Group, Department of Elec-
trical and Computer Engineering, Concordia Uni-

Table 1. Updating functions for Ã1 and Ã2.

σ1 v1 A1(σ1, v1) σ2 v2 A2(σ2, v2)

α1 0 1 α2 0 1
α1 2 1 α2 1 2
β1 1 0 α2 2 1
α 0 2 β2 0 0
α 2 0 α 1 0
— — — α 2 0

versity, Montreal, Canada, February 2007a. URL
http://users.encs.concordia.ca/ crg/CRG.html.

Amin Mannani and Peyman Gohari. A framework for
modeling communication among decentralized super-
visors for discrete-event systems. Technical Report
CRG-TR0407, Control and Robotics Group, Depart-
ment of Electrical and Computer Engineering, Concor-
dia University, Montreal, Canada, April 2007b. URL
http://users.encs.concordia.ca/ crg/CRG.html.

Amin Mannani, Yue Yang, and Peyman Gohari. Distrib-
uted extended finite-state machines: Communication
and control. In Proc. of the IEEE 8th International
Workshop on Discrete-Event Systems (WODES’06),
pages 161–167, Ann Arbor, USA, July 2006.

A. Mazurkiewics. Introduction to trace theory. In V. Diek-
ert and G. Rozenberg, editors, The book of traces. World
Scientific, New Jersey, 1995.

S. Laurie Ricker and Karen Rudie. Incorporating commu-
nication and knowledge into decentralized discrete-event
systems. In Proc. IEEE Conference on Decision and
Control (CDC’99), pages 1326–1332, Phoenix, USA,
December 1999.

Karen Rudie, Stéphane Lafortune, and Feng Lin. Minimal
communication in a distributed discrete-event system.
IEEE Trans. Automat. Contr., 48:957–975, June 2003.

Karen Rudie and W. Murray Wonham. Supervisory con-
trol of communicating processes. In L. Logrippo, R. L.
Probert, and H. Ural, editors, Protocol Specification,
Testing, and Verification. Elsevier Science Publishers,
B. V., North Holland, 1990.

Karen Rudie and W. Murray Wonham. Think globally, act
locally: Decentralized supervisory control. IEEE Trans.
Automat. Contr., 37:1692–1708, November 1992.

D. Teneketzis. On information structures and nonsequen-
tial stochastic control. CWI Quarterly, 10(2):179–199,
1997.

Stavros Tripakis. Undecidable problems of decentralized
observation and control. In Proc. IEEE Conference on
Decision and Control (CDC’01), ,, December 2001.

Stavros Tripakis. Undecidable problems of decentralized
observation and control on regular languages. Informa-
tion Processing Letters, 90:2128, 2004.

Stavros Tripakis. Decentralized observation problems.
In Proc. IEEE Conference on Decision and Control-
European Control Conference (CDC-ECC’05), pages 6–
11, Seville, Spain, December 2005.

Jan H. van Schuppen. Decentralized control with com-
munication between controllers. In Vincent D. Blondel
and Alexandre Megretski, editors, Unsolved Problems in
Mathematical Systems and Control Theory. Princeton
University Press, Princeton, USA, 2004.

Walter Murray Wonham. Supervisory con-
trol of discrete-event systems, 2007. URL
http://www.control.utoronto.ca/DES/.

Yue Yang and Peyman Gohari. Embedded supervisory
control of discrete-event systems. In IEEE Conference
on Automation Science and Engineering (ASE), pages
410–415, August 2005.

T.-S. Yoo and Stéphane Lafortune. A general architecture
for decentralized supervisory control of discrete-event
systems. Discrete-Event Dynamic Systems: Theory and
Applications, 12(3):335–377, July 2002.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3209

