

Two Ways for Remote Plant Control

Katarína Žáková and Mikuláš Huba

Slovak University of Technology in Bratislava

Faculty of Electrical Engineering & Information Technology

Ilkovičova 3, 812 19 Bratislava, Slovakia

(e-mail: katarina.zakova@stuba.sk, mikulas.huba@stuba.sk)

Abstract: The paper presents several possibilities of remote control of experiments. One direction of the research is
devoted to the use of Matlab software environment. There are number of ways how to approach Matlab remotely.
They include e.g. Matlab S-function, COM, DDE, shared communication file or Virtual Reality Toolbox. One of
these proposed concepts was used and tested for control of the inverted pendulum system. This approach was
compared with the method enabling to approach the plant directly without using Matlab package. Finally, the gained
experience is discussed in the paper.

1. INTRODUCTION

Technology is increasingly changing our lives. First, it was
the emergence of the desktop computer, now it is the Internet.
It enables access to never-ending quantities of new
information and knowledge. As more individuals become
connected, the Internet will penetrate deeper into our
everyday activities, including the way we learn. The term e-
learning covers a wide set of applications and processes,
including computer-based learning, Web-based learning
(online Learning), virtual classrooms, and virtual & remote
collaboration. E-learning is much more than just the delivery
of content via all electronic media, including the Internet,
intranets, extranets, satellite broadcast, audio/video tape,
interactive TV, and CD-ROM. It also offers tools for
performing tasks, for communication, management,
administration, assessment and evaluation. Feedback,
interactivity and integration are the most important keywords
characterising role of e-learning in our education.

In engineering education providing hardware and software
components of existing laboratories via the Internet creates a
base for establishment of virtual laboratories. The main
motivation for using plants in the educational process is clear
physical “visibility” of the controlled dynamics, and also
authenticity enabling to exercise all design steps starting with
the plant identification and ending with the evaluation of the
control results achieved with the particular model.

Design of control applications that are available via Internet
is oriented in two directions: control of virtual devices and
control of real physical plants. The first possibility enables to
simulate the virtual model on a computer and distribute it on
CDs. Combined with Internet access and WWW it enables to
offer it to students as an online animation, too. Simulations
and animations are especially important in areas where the
nature, safety and costs of experiment do not allow to
experiment on real plants. However, using the animation
models cannot substitute the work with real physical plants
that always demonstrate some unmodelled dynamics,
parasitic noise, delays, friction, etc. Unfortunately, the

number of students is high in comparison with the number of
available real plants. A possible solution of this problem is
building of remote lab that opens learners access to
laboratories via Internet.

For accomplishing the remote control of experiment it is
necessary to create two applications: for the server and for
the client.

The paper demonstrates how to use remote control for the
inverted pendulum model. The inverted pendulum is one of
the most important classical problems of control engineering.
It is a well-known example of nonlinear, unstable control
problem. The inverted pendulum is related to rocket or
missile transport, where thrust is actuated at the bottom of a
tall system.

2. PLANT

The inverted pendulum consists of a thin rod attached to a
moving cart. Whereas the pendulum is stable when hanging
downwards, the vertical inverted pendulum is inherently
unstable, and must be actively balanced in order to remain
upright, typically by moving the cart horizontally as part of a
feedback system.

The plant is represented by a revolving pendulum mounted
on top of a moving base [11]. By a DC-motor, a toothed
wheel, a toothed belt and a clutch, the moving base can be
driven along a guiding bar over a length of approximately
1.5m in such a way that the pendulum is stabilized upright at
a preassigned position. The stabilization of the pendulum is
accomplished by a digital controller. Based on measurements
(the pendulum angle and the cart position obtained by
incremental encoders), the controller generates a suitable
signal, which controls the DC-motor by an electronic drive.

3. MATLAB POSSIBILITIES

The aim of this section is to discuss some of possibilities of a
remote approach to the plant. Our interest was dedicated to
use of Matlab like a simulation engine for the whole

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 15957 10.3182/20080706-5-KR-1001.4196

experiment. We do not mention here the standard solution –
Matlab Web Server – since it is not more supported by The
MathWorks, Inc.

3.1 Matlab Dynamic Data Exchange (DDE)

Dynamic Data Exchange is a technology developed by
Microsoft Corporation that enables communication and data
exchange among various Windows applications. DDE doesn't
need to be installed separately, it is a part of Windows
operating system. Matlab contains functions enabling full
duplex approach of Windows applications to Matlab. These
functions use Dynamic Data Exchange. However, the
communication can usually run only locally.

As written e.g. in [12] the communication starts after
establishing the so called DDE conversation. The application
starting a communication is called a client and application
answering to the client is a server, i.e. we can talk about the
client/server application. The client has to identify two DDE
parameters that are defined by server: the name of application
that should answer to the client prompt – service name and
subject of communication – topic. When the server receives a
request for opening the conversation channel, it verifies the
topic and if it is supported, it allows the client connection.
The combination of two obligatory parameters uniquely
identifies the conversation.

In general, Matlab can act both as a client and as a server as
well – despite of the fact that the second possibility is maybe
more frequent.

A client application can access MATLAB as a DDE server in
the two ways, depending on the client application. If we can
use an application that provides functions or macros to
conduct DDE conversations, the simplest way is to use these
functions or macros. If we decide to create our own
application, we can use the MATLAB Engine Library or
DDE directly [12].

The successful realized local communication with Matlab
enables to step forward and to try to implement TCP/IP
protocol to approach Matlab remotely. In this case we
transform DDE client to TCP/IP server that can be
approached by remote clients via Internet. The structure of
such connection is shown in Fig.1.

DDE Server

RTW

Matlab

Client
application

Client

Communication
card

Plant

TCP/IP

Proxy

Fig. 1. Client/server communication via DDE

However, the realization of this solution is quite time
demanding since it requires to program TCP/IP server and
also client application. The client implementation is very
often done in Java environment because of its platform
independence. The advantage is that this development
enables full optimalization of system tools and functions that
are needed for communication.

3.2 JmatLink library

The communication with Matlab can also be realized using
the dll library JmatLink [14]. It is a product from Stefan
Müller programmed in C language that using ActiveX tool
approaches data and services of Matlab. The library is
implemented in the class of Java language that has the same
name (JMatLink.class). In the case that we use Java for
development of our client application we have available all
methods of the mentioned class.

At the communication it is necessary to ensure data transfer
in both directions: from client application to Matlab and from
Matlab to client application. The client can be formed by a
Java applet and the server can be designed as a Java
application whereby both client and server communicate each
to other using TCP/IP protocol. The plant is connected to the
server where the Java application and Matlab is installed. The
server guarantees the connection and data transfer with
Matlab software. All needed m-files for simulation are placed
on the PC server where Matlab is installed.

The connection between the server and Matlab can be
established in two ways. It is possible to create an own class
of native methods or the already created class of connecting
methods can be used. We decided to use the second
alternative - JmatLink library [14].

TCP/IP protocol that is used for communication in Internet
ensures the failure-free data transfer. The data transfer
between server and client can be accomplished using sockets
that enable direct approach to network protocols of lower
level. In general, when a socket of the server waits for
connection with client, the application is blocked. Therefore
it is necessary to create the server with several threads. It is
able to open separate channel for each client. The server
waits for client’s request for connection. If there is a free
thread (the number of attached clients is smaller than the
allowed number of clients) the request of client is accepted
and the communication channel between server and client is
created. The server should keep information about the given
IP address, control algorithm and simulation scheme.

Then, the server waits for instructions from client. They
contain parameters of the system and the required simulation.
The instructions are transformed to the Matlab format and
sent to the specified Matlab workspace using JmatLink
library. The problem can be to force Simulink to give data to
workspace during the whole run of simulation and not only
after the simulation stops. However, this task can be solved.

After simulation Matlab sends simulation results back to the
server. The server transforms these data to the required
format and sends them to the client where they can be
visualized as an animation and/or a graph.

3.3 Component Object Model

Component Object Model (COM) is a software architecture
developed by Microsoft to build component based
applications that can be called up and executed in a Windows

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15958

environment. A program can call the object whenever it
needs its services. Standard applications, such as word
processor and spreadsheets [13], can be written to expose
their internal functions as COM objects, allowing them to be
“automated” instead of manually selected from a menu. For
example, a small script could be written to extract data from a
database, put it into a spreadsheet, summarize and chart it, all
without manual intervention. The similar functionality is also
supported by Matlab. The user can approach the most of
object parameters via interface that enables communication
between COM client and COM server. Matlab supports the
only interface and it is called IDespatch. Except of the
interface the programmers need to know what approach
methods they can use. The simplest one is the already
mentioned Automation method also supported by Matlab.

3.4 Communication via file

This type of communication is in its nature very simple. It
uses normal Web server where we can also have our web
pages and Matlab functions that enable to read from files.

The communication functions on the base of shared file (see
Fig.2). User can enter own simulation parameters and
commands in the form that can be filled in via web browser.
After its submitting they are written into the file placed on
server. Simulation is running infinitely long time and Matlab
reads the file in regular time instants.

Simulink

Matlab
 Web

browser

Communication
card Plant

TCP/IP

File
 RTW

Web server

Fig. 2. Communication with Matlab via file

The big advantage of the method consists in the fact that the
block scheme prepared in Simulink is attached to the real
plant permanently and therefore visualization via Virtual
Reality toolbox can also be used. However, there is also one
drawback excluding this method. Real-time Workshop does
not support I/O functions with files. Therefore this solution is
suitable only for simulations without RTW.

3.5 S-function

Next possibility for remote communication with Matlab is to
use S-function. S-function is a block in Simulink, i.e. Matlab
graphical simulation environment. It can be written in one of
compatible language, e.g. C, C++, Ada, Fortran, Matlab, etc.
S-functions can be compiled as MEX files and dynamically
linked to Matlab whenever it is needed.

S-functions use special syntax that enables interactions with
Simulink and its ODE. The structure of S-function allows to
create continuous, discrete and also hybrid functions. In this

way user can create own blocks that can also be used with
Matlab Real-Time Workshop.

Let’s consider that we need to transfer data from Matlab to
user. S-function can be realized in two ways. It can be used
as a TCP/IP client or a TCP/IP server. In the first case the
block representing the TCP/IP client is placed in the
Simulink model. We have to ensure the transfer of measured
signals to the user that can visualize results e.g. by means of
Java applet in web browser. Then, it is necessary to create a
application (e.g. Java application) that consists of two TCP/IP
servers. The TCP/IP client in S-function connects to one of
these servers and the client in Java applet to the second one.
TCP/IP servers in Java application only move data between
themselves and in such a way send data to user. The second
solution is less complicated because it is not necessary to use
an additional Java application. TCP/IP server realized in
Matlab S-function can directly connect to TCP/IP client on
the user side that can be again created as Java applet.

Simulink

RTW

Matlab

Client
application

Client

Communication
card

Plant
 TCP/IP

 S - function

Fig. 3. Communication via TCP/IP using S-function

The disadvantage of S-functions consists in the fact that if we
want to use them in combination with Real-Time Workshop
we cannot use any Windows API functions, any I/O functions
for communication with files and many other functions that
could cooperate with timers. In Fig.3 we can see a basic
block scheme illustrating communication between remote
client and Matlab using S-function.

4. MATLAB REALISATION

The previous section summarised various alternatives how to
use Matlab engine for remote control of plant. Now, our
attention will be dedicated to the method where the
communication is partially based on the use JmatLink library.
Since it was necessary to build the server and also client side
of experiment we will describe step by step both.

4.1 Server

The server is an application that listens at a particular port
and responds to clients. It has 3 main tasks: it has to reply to
all requests from clients, it sends information to Matlab and it
receives information from Matlab.

The server application could be any of standard servers like
http, ftp or a custom server made for the specific application.
The another possibility is to create a Java proxy server that
will interpret user commands from the client application to
Matlab. For this purpose it is possible to use a dll library
JmatLink [14] that accesses services and data of Matlab. The
library is implemented to the simple class JmatLink.class that
can be used inside of created Java proxy server.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15959

Proxy server was realized as a Java application. On the one
side there is a TCP/IP server that receives commands from
the client (Java applet). These commands are transformed to
the Matlab commands and sent to the Matlab workspace
using methods of JMatLink library (Fig.5).

Proxy server has 3 basic functions: to start the real time
simulation, to stop the real time simulation and to change the
model parameters during the simulation running.

4.2 Client

In general, TCP/IP client is an application that connects to a
specific port on a TCP/IP server and exchanges data either as
a stream or text.

The client application enables user to run the simulation via
the web page interface. In a general way the user can use own
parameters and choose among presented controllers. The
application can also give user a possibility to follow
simulation results, save them and use them later in the same
application or in another software environment. It is installed
on a web server that can be approached by a student via
Internet. It is usually realized as Java applet. In Fig.4 the
applet for an inverted pendulum control is shown. After its
opening in a user web browser, TCP/IP client connects to the
proxy server and to the S-function in the Simulink model. An
user is informed about the time of connection and the
connection status. After the client is connected, everything is
prepared for real-time simulation.

The user can enter a required position of the pendulum. The
buttons „Start“ and „Stop“ serve for the control of simulation
running. During the simulation user can follow numerical
values of the carriage position, deviation angle of the
pendulum, time of simulation and the graphical dependence
of the carriage position. The simulation results can also be
visualized via the model animation.

Fig.4. The realised client application

Connection between Matlab and Java client can be realized
directly using TCP/IP communication. TCP/IP server can be
realized by Matlab S-function. It enables transfer of data
from Matlab to the connected TCP/IP client (Java applet).
The Matlab S-function operating as TCP/IP server is placed
in Matlab/Simulink model whereby the input of this block is
formed by signals that should be transferred to the client.

 Matlab

Commands
for Matlab

Commands
for Matlab

JmatLink - ActiveX

WORKSPACE

TCP/IP server
S-function
Port 2524

SIMULINK (RTW) ActiveX
Client Port: 2526

JmatLink TCP/IP SERVER

TCP/IP Client TCP/IP Client

ANIMATION GRAPH

Simulation data

JProxy application

JClient applet

Fig.5. Communication between server and client

It is to say, this solution is demanding for hardware of server
since Simulink has to run in real time and in the same time it
has to save data to the Matlab workspace. In addition,
ActiveX service also has to access to the same workspace.
All these factors can freeze Matlab on slower computers.

5. REMOTE CONTROL WITHOUT MATLAB

In spite of the fact that Matlab brings a comfortable way of
plant control, it is not always available. Therefore in the
following sections we tried to devote our attention to the
remote control of experiment that doesn’t require to use
Matlab engine for simulation. Let’s start with summarising of
facts that we wanted to take into account for server and client
side of experiment.

5.1 Server Side

The choice of programming tools for the server side of
experiment was influenced by several requirements:

• Expansibility of the experiment – the experiment should
be easily spread without need for long study of the
source code.

• Maximal use of system tools – the effort was to skip all
intermediate stages between application and operating
system.

• Accessible hardware and software – it was necessary to
take into account the most used systems and software
environments at the universities and their accessibility
for users.

The first requirement can be fulfilled by the selection of the
programming language with good support of the object-
oriented programming. One can choose from many languages
such as .NET, Basic, Delphi, C++, Java, Python, and
JavaScript. Matlab with its toolboxes also offers an
alternative to the design of remote control of plants [9].

The second requirement excludes the JavaScript and similar
scripting languages since these languages are only the
presentation languages. They don’t send commands to the
operating system directly and therefore they need an

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15960

additional tool for communication between application and
operating system. The Java language brings the similar
situation. In spite of the fact that Java is a multi-platform
instrument it also needs an extra tool for communication with
application. It can be easily understood that such indirect
connection between the operating system and application
limits the fluent running of the application and its velocity.
Simply said, such applications are slower.

Finally, at the choice of the programming tool we had to
realize that the most of computers at the university is
equipped by the Microsoft Windows operating system and
therefore the design should be oriented in this way.

Summarizing these facts we decided to use .NET technology
since it is the product of the same company as the operating
system that is installed on the computer taking care about the
control of the inverted pendulum. This solution should
provide the maximal compatibility between the operating
system and the created application.

5.2 Client Side

The realization of the client side also requires considering
various aspects of its design. It is needed to adjust requests of
users, programmers and possible technical limits of
application. The chosen tool should be suitable for animation,
i.e. it should guarantee smooth animations. It should enable
simple Internet communication (the communication can be
implemented e.g. using sockets). Finally, the requirement is
to create a multi-platform application. The platform
independence is important because the application is
presented to users via Internet. These requirements can be
fulfilled by several solutions. Let’s introduce some of them.
One can use:

• combination of JavaScript and CSS. In this case the
graphical layout of the HTML web site is ensured by the
Cascading Style Sheets that can be dynamically changed
by JavaScript. The disadvantage is that the animation is
not very smooth and there is relatively complicated
communication with the server.

• Java applet. Since Java enables a comfortable network
programming, the communication is very simple.
However, there still exist the problem with smooth
animation without a blinking. This problem can be
solved, but it is uselessly tricky and complex.

• Macromedia Flash animation. This software enables to
create nice animations that are independent on the
platform. In addition, using ActionScript offers a simple
control of application and Internet communication on the
base of XML sockets.

We decided to use the third mentioned possibility.

6. .NET & MACROMEDIA FLASH REALISATION

Similarly, as in the case of remote experiment supported by
Matlab, let us describe server and client side of experiment
separately.

6.1 Server Side

The server application enables parallel processing of several
tasks. This is enabled by using several threads (Fig.6).

Fig.6. Overview of threads in the server application

Firstly, it is necessary to activate the power converter. The
output of the A/D card Option 600-3 gives only the low-
voltage unified signal ±10V. Since the used DC motor can
work with much better performance that the card can supply
the provided signal has to be amplified.

Next, one has to detect the actual state of remote experiment.
If the control is running, the value of the control signal is
computed and it is sent to analogue output of the A/D card.
As soon as the time determined by the sampling period
elapses, the whole cycle for computing the control signal is
repeated.

The next thread is responsible for visualization of results to
the possible local user. He or she can receive numerical
information about the actual position of the pendulum and its
angle. Moreover, there is also visualized a simplified version
of the animation.

Further, there are 2 threads that ensure communication with
the remote client realized by means of the Flash animation.
The task of the first one is to wait for the request of the first
remote user, to process this request and to give him or her
back the asked data. Meanwhile, the second thread informs
all next interested remote clients that the experiment is
running and they have to try to connect later. As soon as the
experiment ends the first thread is again prepared to serve to
the first interested remote user.

The first step to start the remote experiment is to execute the
server application. Its activating causes that the equipment is
synchronized, i.e. it is initialized into the initial zero position

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15961

situated in the middle of the pendulum path. The processor
tick counter is also synchronized with the processor.

The server application presents a simple local graphical user
interface that enables administrator to set and verify most of
activities that will be later available to the remote user. The
application enables to start and stop the plant control, there is
the sketch animation and finally the area for the setting of
parameters. The application seems to be very simple.
However, their main task is to enable to client to connect to
the inverted pendulum remotely.

6.2 Client Side

As it was already told the client application was prepared
using Macromedia Flash. For the communication with server
it is needed to create a new instance of the native class
XMLSocket. Firstly, user has to connect to the server. For
this purpose he or she has to specify the server IP and the
number of the port that is used for communication. Then, the
client-server communication is ensured by the following two
methods (Fig.7).

Fig.7. Client-server communication

The method onData() enables to receive and process data
from the server. The data are in the XML form and therefore
they have to be separated to single values using a XML
parser. Only after parsing, data can be used for numerical and
graphical visualization of results.

The send() method is used for sending all requests to the
server. ActionScript processes the request for actual results
from the remote plant and another requests are related to the
setting of the remote plant. It is needed to set the pendulum
required position, the sampling period and also to switch on
and off the whole experiment.

The final client application enables to visualize results. The
main attention is devoted to the model animation. User can
also follow numerical values of the required position of the
pendulum, its actual position, angle and the elapsed time.

Using the client application menu user can connect to or
disconnects from the server, can start and stop the control of
the plant provided by the predefined controller and he or she
can switch between the setting and graph mode of the
window. In the setting mode user determines parameters for
the remote control. The graph mode shows the graphical
dependencies of all followed variables (position, angle,
control variable). The measured data can also be saved into

the local file and visualized later in some external software
environment, e.g. in Matlab, Excel, etc.

7. CONCLUSIONS

The paper presents two ways of the remote experiment
realization. The first one exploits advantages of the standard
simulation package Matlab. Using Java language it was
possible to build a bridge between the server application and
the real plant. The main contribution of the second realisation
offers an atypical way of the solution. The client application
is designed using the widespread multimedial format Flash. It
enables to create a simple and effective animation that has
only low requirements on the velocity of Internet connection.
The server application working on the Microsoft Windows
platform can also be easily used without a deeper knowledge
of the programming code. From this reasons the presented
solution can be a good alternative to other techniques that
enable to design and accomplish experiments in remote
laboratories.

ACKNOWLEDGMENT

The work has been supported by ESF Project JPD BA3, No.
13120120183 and by Slovak Grant Agency and Grant VEGA
1/3089/06. This support is very gratefully acknowledged.

REFERENCES

[1] P. Bisták, K. Žáková, “Organising Tele-Experiments for
Control Education,”. 11th Mediterranean Conference on
Control and Automation, Rhodes, Greece, June 2003.

[2] P. Karagiannis, I. Markelis, K. Paparrizos, N. Samaras,
A. Sifaleras, “E-learning technologies: employing
Matlab web server to facilitate the education of
mathematical programming”, Int. J. of Math. Education
in Science and Technology, Vol. 37, No. 7/15 Oct. 2006.

[3] J. Liguš, J. Ligušová, I. Zolotová, “Distributed Remote
Laboratories in Automation Education,” 16th EAEEIE
Annual Conf. on Innovation in Education for Electr. and
Information Eng., Lappeenranta, Finland, June 2005.

[4] F. Michau, S. Gentil, M. Barrault, “Expected benefits of
web-based learning for engineering education: examples
in control engineering”, European Journal of
Engineering Education, Vol. 26, Number 2/June 1, 2001.

[5] S. Müller, H. Waller, ”Efficient Integration Of Real-
Time Hardware And Web Based Services Into
MATLAB”, 11th European Simulation Symposium,
October 1999, Erlangen, Germany.

[6] M. Repčík, K. Žáková, “Remote Control of Inverted
Pendulum”, Int. Conf. on Remote Engineering & Virtual
Instrumentation, Porto, Portugal, 23.-27.6.2007.

[7] Chr. Schmid, “Virtual Laboratory for Engineering
Education,” ICDE conf., Vienna, Austria, 1999.

[8] K.Žáková, M.Huba, V.Zemánek, M.Kabát, “Experiments
in Control Education,” IFAC Symp. on Advances in
Control Education, Gold Coast, Australia, Dec. 2000.

[9] K. Žáková, M. Sedlák, “Remote control of experiments
via Matlab”, Int. J. of Online Eng., Vol. 2, No. 3, 2006.

[10] http://www.learnframe.com
[11] http://www.amira.de
[12] http://www.mathworks.com
[13] http://www.answers.com
[14] http://www.held-mueller.de

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15962

