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Abstract: In this paper, an observer-based fault detection and isolation (FDI) method for
a biological wastewater treatment process (WWTP) is presented. The residual is generated
utilizing an Extended Luenberger function observer. The FDI of a set of sensors faults is done
by using a bank of Luenberger observers. The implementation of the proposed approach and the
results obtained from its application to the WWTP demonstrate its simplicity and effectiveness.

1. INTRODUCTION

The increasing complexity of modern engineering systems
has motivated the development of different fault detection
and isolation (FDI) approaches for the purpose of supervi-
sion. This development has been demonstrated by a large
number of publications (Frank (1996); Isermann (1993);
Blanke et al. (2003); Gertler (1998) and Chen and Patton
(1999)).
Nowadays, the field of model-based FDI is well-studied,
there exists a wide variety of model-based FDI approaches
for linear and non linear systems, e.g. the observer-based
approach, the parity space approach, and the parameter
estimation approach. Key references of model-based FDI
can be found in Chen and Patton (1999); Gertler (1998);
Patton and Chen (1997); Frank (1996); Willsky (1976);
Garcia and Frank (1997); Blanke et al. (2003) and Chen
and Patton (1999). Especially the observer-based approach
has gained a lot of interest recently (Garcia and Frank
(1997); Frank et al. (1999); Hammouri et al. (1999); Ni-
jmeijer (1999); DePersis and Isidori (2000)).
The main task of observer-based FDI approach is to design
an observer structure that generates structured residuals
that enable detection and isolation of the considered faults.
In order to isolate faults a set of residuals with different
fault sensitivity should be designed using a bank of ob-
servers. Each residual is formed through an observer and
will be robust to a specific set of faults but sensitive to
other faults.
There exist many different observer-based approaches con-
sidering linear systems and different classes of nonlinear
systems. Most of these methods only handle a specific
class of nonlinear FDI problems. The extension of the
existing results of linear FDI to the nonlinear case is not
an easy task. With the application of nonlinear observer
theory some results have been obtained, principally in the
detection and, with some restrictions, also in the isolation
of faults. Some problems taking into consideration more
general models as well as the design of the corresponding
nonlinear observers are still opened, because of the diffi-
culties of estimating the state or the measurement vector
of a nonlinear system, even if the nonlinearities are known

and no disturbances are present.
During the operation of an industrial plant (e.g., a bio-
logical wastewater treatment process), many disturbances
and faults can occur. The nature of these changes can be
either sudden or slow and they can be related to normal or
faulty process (and/or instrumental) operation, provoking
real or apparent deviations from the normal operation.
Most bio-chemical processes are highly complex systems,
with a great number of components interacting to achieve
the system’s purpose. In these systems, all components are
related in a complex manner, which means that a fault in
one component can often cause the failure of the entire
system. To prevent this event, it is essential to detect faults
immediately in order to enable the controlling system to
take actions, so that the system can still fulfill its purpose.
In the last decades, biological treatment processes have
proven to be an effective way to deal with polluted wastew-
ater.
In particular, activated sludge is one of the most used for
this purpose (Henze et al. (1987)). The main feature of
this process includes degradation of influent biodegradable
pollutants, containing both organic carbon and nitrogen
by use of microorganisms. The organisms form flocs which
are separated from the treated wastewater by means of
gravity settling. A portion of the activated sludge settled
is wasted while a large fraction is recirculated back to the
reactors to maintain the appropriate substrate-to-biomass
ratio (Nejjari et al. (1999)).
This paper focuses on observer-based FDI for nonlinear
systems. The observer-based residual generation, using
Extended Luenberger observers is applied to an activated
sludge process (Nejjari and Quevedo (2002))focussing on
detecting and identifying sensor faults.
We consider only additive faults and assume that a fault
can occur in one sensor at a time. This means that, if there
is a fault, we are lacking just one correct measuring signal.
The outline of this paper is as follows. The problem of
observer-based fault detection is formulated in section 2.
The implementation of the bank of observer-based FDI
is presented in section 3. Simulation results are given in
section 4 and some concluding remarks end the paper.
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2. OBSERVER-BASED FAULT DETECTION

Fault detection has two main objectives: Detection and
Isolation. Detection consists of producing a signal from
which we can obtain information whether a fault is present
or not. Isolation consists of determining in which compo-
nents the fault is present. The most widely used approach
to generate diagnostic signals (residuals) are observers.
The basic idea of the observer-based FDI consists in es-
timating the outputs of the system from the measure-
ment using an observer and then constructing residuals by
properly weighted output’s estimation errors. One specific
diagnostic signal must be generated per each fault to be
detected, each diagnostic signal being sensitive only to one
particular fault.
In a plant, faults can occur either in the main processing
equipments (variation in process parameters) or in the
auxiliary equipments (bias or drift in sensors, actuators,
controller outputs etc). In the case of actuator faults, we
lose the ability to control the system through one of the
actuators. Sensor fault reduces the reliable measurement
information through a loss of a sensor, making the system
less observable while a fault in the process component
changes the behavior of all the plant.

2.1 Extended Luenberger-based FDI

Process modeling including process equations that are
shown in appendix A and the faults that can occur in
the plant can be rewritten in the following form:

ẋ = f(x, u) + Lv (1)

y = Cx + Mv + w (2)

In these equations the k-dimensional vector v represents in
its component all the possible faults and matrices L and
M represent the relationship between a fault occurrence
and the system dynamics and outputs. We assume that
actuators and model faults affect the system dynamics and
sensor faults affect the measurement. So the matrices L
and M can be partitioned as follows:

L = [L1 L2] (3)

M = [M1 M2] (4)

L1 has the same number of columns as M1, L2 has the
same number of columns as M2. L2 and M1 contain only
zeros.
We want to realize observer-based fault detection, that
is based on the comparison of measured and estimated
outputs, using a bank of observers. This bank consists of
m observers (in this case m=3), where every observer is
fed with p (in this case p=2) different process outputs. To
realize observer-based fault detection we need to modify
the observers, adding an output that we will call residual:

˙̂x = f(x̂, u) − K(y − Cx̂) (5)

r = y − Cx̂ (6)

This output is the error between the measurement and its
estimation. Based on this new set of signals, we can now
start the detection and identification process.
To achieve alarm generation it is better to work with

digital signals. Hence, for each residual we add a binary
variable, building a fault code vector with elements:

ei(t) =

{

1 if |ri(t)| > ki

0 else
(7)

(8)

where i takes values from 1 to s if we have s residuals.
Of course s will be minor or equal to the product of the
number of outputs and the number of observers we have.

2.2 Possible hypothetical faults

In order to test the fault detection system, we need to
implement artificial yet realistic faults. In this case we
are limiting the type of faults to simple additive faults
occurring in the sensors taking the measurements. A more
general case (discriminate also actuator and model faults)
would be far more complex and this simple case will
be enough to illustrate the use of observer-based fault
detection techniques. Thus, in this particular case, the
above defined L matrix will be all zeros and the faults
will affect the outputs but not the dynamic evolution of
the process. So the simplified detection scheme should be
similar to the one in Fig. 1.
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Fig. 1. Fault detection scheme

We additionally simplify the problem supposing that only
one sensor at once can present a fault.

In real cases faults can often be represented as an output
percentage. So the output with fault will be as follows:

yfi
(t) = yi(t) − fiyi(y) = (1 − fi)yi(t) (9)

Where fi is a real number such that 0 < fi ≤ 1. We will
test the observer on these particular fault occurrences.

3. IMPLEMENTATION OF OBSERVER-BASED
FAULT DETECTION

To detect sensor faults in a system, it is necessary to
implement more than just one observer. We chose three
measurable signals to implement a bank of observers
containing three Extended Luenberger Observers (ELO).
Based on the output signal of this bank of observers we
then realized the detection of faults. Both implementation
steps are further explained in the following subsections.

3.1 Bank of Observers

We simply repeat twice the steps we made to build the
Extended Luenberger Observer and calculate the gain
matrices imposing the same minimal convergence speed
for each observer. Matrix C changes depending on which
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two of the three measured output signals (Ss, So or Xs)
the observer is using.

The implementation of the bank of observers was then
realized in Simulink and shown in Fig. 2 and Fig. 3.

Fig. 2. First layer of Simulink implementation of the bank
of observers

Fig. 3. Simulink implementation of bank of observers

Inside each block (subsystems called Luenberger Observer
1-3 in Fig. 3) there is an Extended Luenberger Observer.
Each Extended Luenberger Observer implemented in the
bank of observers uses two of the three measured signals
(Ss, So and Xs) to observe the system. We call O1 the
observer that uses So and Xs, O2 the one that uses Ss and
Xs and O3 using Ss and So.
With these three observers we can generate nine residuals.

3.2 Fault Detection

The Implementation of the fault detection system in
Simulink can be seen in Fig. 4. The subsystem in Fig. 4
called Detection System is further shown in Fig. 5.

Thanks to the bank of observers implemented, we can now
generate the residuals that allow the detection of faults.

We will name ri,j the residuals of the measured system
output j and its estimation using the observer i thus
calculating each residual

Fig. 4. First layer of Simulink implementation fault detec-
tor

Fig. 5. Simulink implementation of the actual fault detec-
tion subsystem

ri,j = ym,j − ye,i,j

where ym,j is the measured system output and ye,i,j the
estimation made by the observer i for measurement j.
Once generated, each residual is integrated in order to
obtain its average value to use the resulting signal to
generate the fault vector. As we did with the residual, we
can arrange the fault vector as a matrix E, where

Ei,j(t) =

{

1 if |Ri,j(t)| > ki,j

0 else
(10)

Ri,j(t) is the integrated signal. We found the limits k by
observing the generated signals when there are no faults
in the plant or the sensors and taking their maxima.

Running the system with a fault in output k, we will have
an error signal different from zero if the used observer uses
that output (j �= k) or if the estimated variable is k. So we
will obtain just two zero values in the E matrix. Note that
we can determine in which measured output signal the
fault is occurring just by knowing how many zeros there
are in each row of this matrix.
Thus we can define another error signal:

sj(t) =

r
∑

i=1

Ei,j(t) j = 1, 2, 3 (11)

If a fault occurs, we can determine that it is in component
k if

sk(t) = 1 (12)

and sj(t) = 3 for j �= k. (13)

In this way we reduce the signal we have to analyze to
generate alarms to just 6 bits, 2 for every observer (we only
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need two bits to represent numbers from 0 to 3), while with
the E matrix we needed 9 bits, one for each component.

Because of process noise and slow signal convergence these
signals are not constant. Therefore, to have a more robust
detector, we changed these conditions to:

Decision Rule:

There is a fault in the measured system output
k if

max sj(t) = 2 (14)

and sk(t) = min sj(t) (15)

for at least one time interval d.

4. SIMULATION RESULTS

First of all we need to calculate the limits ki,j for the
residuals. Instead of working with residuals we will cal-
culate these values for the integrated residuals, in order
to eliminate noise and take the DC component off the
signal. We wrote some lines of code to find these values.
sig1, sig2 and sig3 are three-dimensional, time-dependent
vectors that contain the integrated residuals from each of
the observers:

limits(1,:)=max(abs(sig1));
limits(2,:)=max(abs(sig2));
limits(3,:)=max(abs(sig3));

The result is a 3x3 matrix, whose (i, j) element con-
tains the ki,j limit. In these lines we simulated that no
faults were occurring. This process is graphically shown in
Fig. 6(a)-(c), where subfigure (a) shows the thresholds for
observer O1, (b) those for O3 and (c) for O2.
Note that it is not necessary to take higher values for the
limits, because we will just generate the alarm when the
alarm status is present for more than one time interval d,
so we have a good guarantee that no alarm is produced
when there is no fault in the sensors.

Then we simulated three fault occurrences (one in each of
Ss,So and Xs) and observed the changes in the graphics.
Fig. 7 shows the case of a 67% fault of the Ss sensor
occurring at the 15th day. The fault is detected at 16.4
(days), when at least two residuals of the first observer
and one of the second have reached the limit. So we can
deduce that the fault is in Ss, applying the decision rule
defined in (3.2).

The process of alarm generation is done considering digital
signals. In Fig. 8 we show the si(t) graphics in the case of
fault occurrence displayed in Figures 7.

Furthermore, we developed a MATLAB code to randomly
generate different faults and detect them. We just focused
on the possibility of a 33%, 67% or 100% fault to have a
general overview. In our simulations we succeeded in de-
tecting correctly every fault occurrence, with a maximum
delay of one day and a half in the case of 33% faults and
better performances in the other cases (between 0.2 and
1.5 days). This way we test the efficiency of the detector.

0 10 20 30
0

5

10

15

20

25

30

Residual of S
s

Time (days)

in
te

g
ra

l 
o
f 

|r
i,
j(t

)|

0 10 20 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3Residual of S
o

Time (days)

in
te

g
ra

l 
o
f 

|r
i,
j(t

)|

0 10 20 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Residual of X
s

Time (days)

in
te

g
ra

l 
o
f 

|r
i,
j(t

)|

(a) Observer using So and Xs
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(b) Observer using Ss and So
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(c) Observer using Ss and Xs

Fig. 6. Thresholds for fault detection in observer using So

and Xs
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(a) Observer using So and Xs
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(b) Observer using Ss and So
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(c) Observer using Ss and Xs

Fig. 7. Simulation results for fault occurring in Ss
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Fig. 8. Alarm Generation with digital signals for fault in
Ss

5. CONCLUSION

The article presents an observer-based fault detection and
isolation approach for an activated sludge process.
By implementing a bank of three Extended Luenberger
Observers, each using different measured signals from the
plant, it was possible to calculate three sets of each three
residuals, enabling to thus decide with a set of previously
defined decision rules, whether there occurred a fault in
the sensors, and to identify also, which sensor is in fault.
Although the work only shows the basic principles of
observer-based fault detection and identification, the re-
sults obtained are quite promising. They show that it is
possible, to achieve reliable and relatively fast fault detec-
tion and identification with the very common Luenberger
Observer and the concept of a bank of these observers.
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Appendix A. PROCESS EQUATIONS

dXH

dt
=

Qin

Vr

(XH,in − XH) +
r1Qin

Vr

(XH,rec − XH) + RXH

dXS

dt
=

Qin

Vr

(XS,in − XS) +
rQin

Vr

(XS,rec − XS) + RXS

dXI

dt
=

Qin

Vr

(XI,in − XI) +
rQin

Vr

(XI,rec − XI) + RXI

dSI

dt
=

Qin

Vr

(SI,in − SI)

dSS

dt
=

Qin

Vr

(SS,in − SS) + RSS

dSO

dt
=

Qin

Vr

(SO,in − SO) + KLa(CS − SO) + RSO

dXH,rec

dt
= XH

Qin + Qr

Vdec

− XH,rec

Qr + Qw

Vdec

dXS,rec

dt
= XS

Qin + Qr

Vdec

− XS,rec

Qr + Qw

Vdec

dXI,rec

dt
= XI

Qin + Qr

Vdec

− XI,rec

Qr + Qw

Vdec

RXH
= ρ1 − ρ2

RXS
= (1 − φXI

)ρ2 − ρ3

RXI
= φXI

ρ2

RSS
= −

ρ1

YH

+ ρ3

RSO
= −

1 − YH

YH

ρ1

ρ1 = µH,maxXH

SS

KS + SS

SO

KO + SO

ρ2 = bHXH

ρ3 = KhXH

XS

XH

KX + XS

XH

SO

KO + SO

Process parameters and variables

Vr aerator’s volume

Vdec settler’s volume

r recycling flow

φXI
fraction of inert COD generated in biomass lysis

bH Heterotrophic biomass decay rate

µH,max Heterotrophic max. growth rate

Kh hydrolysis rate constant

KS Saturation constant for SS

KO Saturation constant for SO

KLa Oxygen mass transfer coefficient

KX Hydrolysis saturation constant

YH Yield coefficient

Qin influent flow rate

XH Heterotophic biomass concentration

XS Slowly biodegradable substrates

XI Inert particulate organics

SI Soluble inert organics

SS Readily biodegradable substrates

SO Dissolved oxygen

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9730


